1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Basic functions for dealing with memory.
//!
//! This module contains functions for querying the size and alignment of
//! types, initializing and manipulating memory.

#![stable(feature = "rust1", since = "1.0.0")]

use clone;
use cmp;
use fmt;
use hash;
use intrinsics;
use marker::{Copy, PhantomData, Sized};
use ptr;
use ops::{Deref, DerefMut};

#[stable(feature = "rust1", since = "1.0.0")]
pub use intrinsics::transmute;

/// Leaks a value: takes ownership and "forgets" about the value **without running
/// its destructor**.
///
/// Any resources the value manages, such as heap memory or a file handle, will linger
/// forever in an unreachable state.
///
/// If you want to dispose of a value properly, running its destructor, see
/// [`mem::drop`][drop].
///
/// # Safety
///
/// `forget` is not marked as `unsafe`, because Rust's safety guarantees
/// do not include a guarantee that destructors will always run. For example,
/// a program can create a reference cycle using [`Rc`][rc], or call
/// [`process::exit`][exit] to exit without running destructors. Thus, allowing
/// `mem::forget` from safe code does not fundamentally change Rust's safety
/// guarantees.
///
/// That said, leaking resources such as memory or I/O objects is usually undesirable,
/// so `forget` is only recommended for specialized use cases like those shown below.
///
/// Because forgetting a value is allowed, any `unsafe` code you write must
/// allow for this possibility. You cannot return a value and expect that the
/// caller will necessarily run the value's destructor.
///
/// [rc]: ../../std/rc/struct.Rc.html
/// [exit]: ../../std/process/fn.exit.html
///
/// # Examples
///
/// Leak some heap memory by never deallocating it:
///
/// ```
/// use std::mem;
///
/// let heap_memory = Box::new(3);
/// mem::forget(heap_memory);
/// ```
///
/// Leak an I/O object, never closing the file:
///
/// ```no_run
/// use std::mem;
/// use std::fs::File;
///
/// let file = File::open("foo.txt").unwrap();
/// mem::forget(file);
/// ```
///
/// The practical use cases for `forget` are rather specialized and mainly come
/// up in unsafe or FFI code.
///
/// ## Use case 1
///
/// You have created an uninitialized value using [`mem::uninitialized`][uninit].
/// You must either initialize or `forget` it on every computation path before
/// Rust drops it automatically, like at the end of a scope or after a panic.
/// Running the destructor on an uninitialized value would be [undefined behavior][ub].
///
/// ```
/// use std::mem;
/// use std::ptr;
///
/// # let some_condition = false;
/// unsafe {
///     let mut uninit_vec: Vec<u32> = mem::uninitialized();
///
///     if some_condition {
///         // Initialize the variable.
///         ptr::write(&mut uninit_vec, Vec::new());
///     } else {
///         // Forget the uninitialized value so its destructor doesn't run.
///         mem::forget(uninit_vec);
///     }
/// }
/// ```
///
/// ## Use case 2
///
/// You have duplicated the bytes making up a value, without doing a proper
/// [`Clone`][clone]. You need the value's destructor to run only once,
/// because a double `free` is undefined behavior.
///
/// An example is a possible implementation of [`mem::swap`][swap]:
///
/// ```
/// use std::mem;
/// use std::ptr;
///
/// # #[allow(dead_code)]
/// fn swap<T>(x: &mut T, y: &mut T) {
///     unsafe {
///         // Give ourselves some scratch space to work with
///         let mut t: T = mem::uninitialized();
///
///         // Perform the swap, `&mut` pointers never alias
///         ptr::copy_nonoverlapping(&*x, &mut t, 1);
///         ptr::copy_nonoverlapping(&*y, x, 1);
///         ptr::copy_nonoverlapping(&t, y, 1);
///
///         // y and t now point to the same thing, but we need to completely
///         // forget `t` because we do not want to run the destructor for `T`
///         // on its value, which is still owned somewhere outside this function.
///         mem::forget(t);
///     }
/// }
/// ```
///
/// ## Use case 3
///
/// You are transferring ownership across a [FFI] boundary to code written in
/// another language. You need to `forget` the value on the Rust side because Rust
/// code is no longer responsible for it.
///
/// ```no_run
/// use std::mem;
///
/// extern "C" {
///     fn my_c_function(x: *const u32);
/// }
///
/// let x: Box<u32> = Box::new(3);
///
/// // Transfer ownership into C code.
/// unsafe {
///     my_c_function(&*x);
/// }
/// mem::forget(x);
/// ```
///
/// In this case, C code must call back into Rust to free the object. Calling C's `free`
/// function on a [`Box`][box] is *not* safe! Also, `Box` provides an [`into_raw`][into_raw]
/// method which is the preferred way to do this in practice.
///
/// [drop]: fn.drop.html
/// [uninit]: fn.uninitialized.html
/// [clone]: ../clone/trait.Clone.html
/// [swap]: fn.swap.html
/// [FFI]: ../../book/first-edition/ffi.html
/// [box]: ../../std/boxed/struct.Box.html
/// [into_raw]: ../../std/boxed/struct.Box.html#method.into_raw
/// [ub]: ../../reference/behavior-considered-undefined.html
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn forget<T>(t: T) {
    ManuallyDrop::new(t);
}

/// Returns the size of a type in bytes.
///
/// More specifically, this is the offset in bytes between successive elements
/// in an array with that item type including alignment padding. Thus, for any
/// type `T` and length `n`, `[T; n]` has a size of `n * size_of::<T>()`.
///
/// In general, the size of a type is not stable across compilations, but
/// specific types such as primitives are.
///
/// The following table gives the size for primitives.
///
/// Type | size_of::\<Type>()
/// ---- | ---------------
/// () | 0
/// bool | 1
/// u8 | 1
/// u16 | 2
/// u32 | 4
/// u64 | 8
/// i8 | 1
/// i16 | 2
/// i32 | 4
/// i64 | 8
/// f32 | 4
/// f64 | 8
/// char | 4
///
/// Furthermore, `usize` and `isize` have the same size.
///
/// The types `*const T`, `&T`, `Box<T>`, `Option<&T>`, and `Option<Box<T>>` all have
/// the same size. If `T` is Sized, all of those types have the same size as `usize`.
///
/// The mutability of a pointer does not change its size. As such, `&T` and `&mut T`
/// have the same size. Likewise for `*const T` and `*mut T`.
///
/// # Size of `#[repr(C)]` items
///
/// The `C` representation for items has a defined layout. With this layout,
/// the size of items is also stable as long as all fields have a stable size.
///
/// ## Size of Structs
///
/// For `structs`, the size is determined by the following algorithm.
///
/// For each field in the struct ordered by declaration order:
///
/// 1. Add the size of the field.
/// 2. Round up the current size to the nearest multiple of the next field's [alignment].
///
/// Finally, round the size of the struct to the nearest multiple of its [alignment].
///
/// Unlike `C`, zero sized structs are not rounded up to one byte in size.
///
/// ## Size of Enums
///
/// Enums that carry no data other than the descriminant have the same size as C enums
/// on the platform they are compiled for.
///
/// ## Size of Unions
///
/// The size of a union is the size of its largest field.
///
/// Unlike `C`, zero sized unions are not rounded up to one byte in size.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// // Some primitives
/// assert_eq!(4, mem::size_of::<i32>());
/// assert_eq!(8, mem::size_of::<f64>());
/// assert_eq!(0, mem::size_of::<()>());
///
/// // Some arrays
/// assert_eq!(8, mem::size_of::<[i32; 2]>());
/// assert_eq!(12, mem::size_of::<[i32; 3]>());
/// assert_eq!(0, mem::size_of::<[i32; 0]>());
///
///
/// // Pointer size equality
/// assert_eq!(mem::size_of::<&i32>(), mem::size_of::<*const i32>());
/// assert_eq!(mem::size_of::<&i32>(), mem::size_of::<Box<i32>>());
/// assert_eq!(mem::size_of::<&i32>(), mem::size_of::<Option<&i32>>());
/// assert_eq!(mem::size_of::<Box<i32>>(), mem::size_of::<Option<Box<i32>>>());
/// ```
///
/// Using `#[repr(C)]`.
///
/// ```
/// use std::mem;
///
/// #[repr(C)]
/// struct FieldStruct {
///     first: u8,
///     second: u16,
///     third: u8
/// }
///
/// // The size of the first field is 1, so add 1 to the size. Size is 1.
/// // The alignment of the second field is 2, so add 1 to the size for padding. Size is 2.
/// // The size of the second field is 2, so add 2 to the size. Size is 4.
/// // The alignment of the third field is 1, so add 0 to the size for padding. Size is 4.
/// // The size of the third field is 1, so add 1 to the size. Size is 5.
/// // Finally, the alignment of the struct is 2, so add 1 to the size for padding. Size is 6.
/// assert_eq!(6, mem::size_of::<FieldStruct>());
///
/// #[repr(C)]
/// struct TupleStruct(u8, u16, u8);
///
/// // Tuple structs follow the same rules.
/// assert_eq!(6, mem::size_of::<TupleStruct>());
///
/// // Note that reordering the fields can lower the size. We can remove both padding bytes
/// // by putting `third` before `second`.
/// #[repr(C)]
/// struct FieldStructOptimized {
///     first: u8,
///     third: u8,
///     second: u16
/// }
///
/// assert_eq!(4, mem::size_of::<FieldStructOptimized>());
///
/// // Union size is the size of the largest field.
/// #[repr(C)]
/// union ExampleUnion {
///     smaller: u8,
///     larger: u16
/// }
///
/// assert_eq!(2, mem::size_of::<ExampleUnion>());
/// ```
///
/// [alignment]: ./fn.align_of.html
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub const fn size_of<T>() -> usize {
    unsafe { intrinsics::size_of::<T>() }
}

/// Returns the size of the pointed-to value in bytes.
///
/// This is usually the same as `size_of::<T>()`. However, when `T` *has* no
/// statically known size, e.g. a slice [`[T]`][slice] or a [trait object],
/// then `size_of_val` can be used to get the dynamically-known size.
///
/// [slice]: ../../std/primitive.slice.html
/// [trait object]: ../../book/first-edition/trait-objects.html
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::size_of_val(&5i32));
///
/// let x: [u8; 13] = [0; 13];
/// let y: &[u8] = &x;
/// assert_eq!(13, mem::size_of_val(y));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn size_of_val<T: ?Sized>(val: &T) -> usize {
    unsafe { intrinsics::size_of_val(val) }
}

/// Returns the [ABI]-required minimum alignment of a type.
///
/// Every reference to a value of the type `T` must be a multiple of this number.
///
/// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
///
/// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
///
/// # Examples
///
/// ```
/// # #![allow(deprecated)]
/// use std::mem;
///
/// assert_eq!(4, mem::min_align_of::<i32>());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(reason = "use `align_of` instead", since = "1.2.0")]
pub fn min_align_of<T>() -> usize {
    unsafe { intrinsics::min_align_of::<T>() }
}

/// Returns the [ABI]-required minimum alignment of the type of the value that `val` points to.
///
/// Every reference to a value of the type `T` must be a multiple of this number.
///
/// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
///
/// # Examples
///
/// ```
/// # #![allow(deprecated)]
/// use std::mem;
///
/// assert_eq!(4, mem::min_align_of_val(&5i32));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(reason = "use `align_of_val` instead", since = "1.2.0")]
pub fn min_align_of_val<T: ?Sized>(val: &T) -> usize {
    unsafe { intrinsics::min_align_of_val(val) }
}

/// Returns the [ABI]-required minimum alignment of a type.
///
/// Every reference to a value of the type `T` must be a multiple of this number.
///
/// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
///
/// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::align_of::<i32>());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub const fn align_of<T>() -> usize {
    unsafe { intrinsics::min_align_of::<T>() }
}

/// Returns the [ABI]-required minimum alignment of the type of the value that `val` points to.
///
/// Every reference to a value of the type `T` must be a multiple of this number.
///
/// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::align_of_val(&5i32));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn align_of_val<T: ?Sized>(val: &T) -> usize {
    unsafe { intrinsics::min_align_of_val(val) }
}

/// Returns whether dropping values of type `T` matters.
///
/// This is purely an optimization hint, and may be implemented conservatively:
/// it may return `true` for types that don't actually need to be dropped.
/// As such always returning `true` would be a valid implementation of
/// this function. However if this function actually returns `false`, then you
/// can be certain dropping `T` has no side effect.
///
/// Low level implementations of things like collections, which need to manually
/// drop their data, should use this function to avoid unnecessarily
/// trying to drop all their contents when they are destroyed. This might not
/// make a difference in release builds (where a loop that has no side-effects
/// is easily detected and eliminated), but is often a big win for debug builds.
///
/// Note that `ptr::drop_in_place` already performs this check, so if your workload
/// can be reduced to some small number of drop_in_place calls, using this is
/// unnecessary. In particular note that you can drop_in_place a slice, and that
/// will do a single needs_drop check for all the values.
///
/// Types like Vec therefore just `drop_in_place(&mut self[..])` without using
/// needs_drop explicitly. Types like HashMap, on the other hand, have to drop
/// values one at a time and should use this API.
///
///
/// # Examples
///
/// Here's an example of how a collection might make use of needs_drop:
///
/// ```
/// use std::{mem, ptr};
///
/// pub struct MyCollection<T> {
/// #   data: [T; 1],
///     /* ... */
/// }
/// # impl<T> MyCollection<T> {
/// #   fn iter_mut(&mut self) -> &mut [T] { &mut self.data }
/// #   fn free_buffer(&mut self) {}
/// # }
///
/// impl<T> Drop for MyCollection<T> {
///     fn drop(&mut self) {
///         unsafe {
///             // drop the data
///             if mem::needs_drop::<T>() {
///                 for x in self.iter_mut() {
///                     ptr::drop_in_place(x);
///                 }
///             }
///             self.free_buffer();
///         }
///     }
/// }
/// ```
#[inline]
#[stable(feature = "needs_drop", since = "1.21.0")]
pub fn needs_drop<T>() -> bool {
    unsafe { intrinsics::needs_drop::<T>() }
}

/// Creates a value whose bytes are all zero.
///
/// This has the same effect as allocating space with
/// [`mem::uninitialized`][uninit] and then zeroing it out. It is useful for
/// [FFI] sometimes, but should generally be avoided.
///
/// There is no guarantee that an all-zero byte-pattern represents a valid value of
/// some type `T`. If `T` has a destructor and the value is destroyed (due to
/// a panic or the end of a scope) before being initialized, then the destructor
/// will run on zeroed data, likely leading to [undefined behavior][ub].
///
/// See also the documentation for [`mem::uninitialized`][uninit], which has
/// many of the same caveats.
///
/// [uninit]: fn.uninitialized.html
/// [FFI]: ../../book/first-edition/ffi.html
/// [ub]: ../../reference/behavior-considered-undefined.html
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let x: i32 = unsafe { mem::zeroed() };
/// assert_eq!(0, x);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn zeroed<T>() -> T {
    intrinsics::init()
}

/// Bypasses Rust's normal memory-initialization checks by pretending to
/// produce a value of type `T`, while doing nothing at all.
///
/// **This is incredibly dangerous and should not be done lightly. Deeply
/// consider initializing your memory with a default value instead.**
///
/// This is useful for [FFI] functions and initializing arrays sometimes,
/// but should generally be avoided.
///
/// [FFI]: ../../book/first-edition/ffi.html
///
/// # Undefined behavior
///
/// It is [undefined behavior][ub] to read uninitialized memory, even just an
/// uninitialized boolean. For instance, if you branch on the value of such
/// a boolean, your program may take one, both, or neither of the branches.
///
/// Writing to the uninitialized value is similarly dangerous. Rust believes the
/// value is initialized, and will therefore try to [`Drop`] the uninitialized
/// value and its fields if you try to overwrite it in a normal manner. The only way
/// to safely initialize an uninitialized value is with [`ptr::write`][write],
/// [`ptr::copy`][copy], or [`ptr::copy_nonoverlapping`][copy_no].
///
/// If the value does implement [`Drop`], it must be initialized before
/// it goes out of scope (and therefore would be dropped). Note that this
/// includes a `panic` occurring and unwinding the stack suddenly.
///
/// # Examples
///
/// Here's how to safely initialize an array of [`Vec`]s.
///
/// ```
/// use std::mem;
/// use std::ptr;
///
/// // Only declare the array. This safely leaves it
/// // uninitialized in a way that Rust will track for us.
/// // However we can't initialize it element-by-element
/// // safely, and we can't use the `[value; 1000]`
/// // constructor because it only works with `Copy` data.
/// let mut data: [Vec<u32>; 1000];
///
/// unsafe {
///     // So we need to do this to initialize it.
///     data = mem::uninitialized();
///
///     // DANGER ZONE: if anything panics or otherwise
///     // incorrectly reads the array here, we will have
///     // Undefined Behavior.
///
///     // It's ok to mutably iterate the data, since this
///     // doesn't involve reading it at all.
///     // (ptr and len are statically known for arrays)
///     for elem in &mut data[..] {
///         // *elem = Vec::new() would try to drop the
///         // uninitialized memory at `elem` -- bad!
///         //
///         // Vec::new doesn't allocate or do really
///         // anything. It's only safe to call here
///         // because we know it won't panic.
///         ptr::write(elem, Vec::new());
///     }
///
///     // SAFE ZONE: everything is initialized.
/// }
///
/// println!("{:?}", &data[0]);
/// ```
///
/// This example emphasizes exactly how delicate and dangerous using `mem::uninitialized`
/// can be. Note that the [`vec!`] macro *does* let you initialize every element with a
/// value that is only [`Clone`], so the following is semantically equivalent and
/// vastly less dangerous, as long as you can live with an extra heap
/// allocation:
///
/// ```
/// let data: Vec<Vec<u32>> = vec![Vec::new(); 1000];
/// println!("{:?}", &data[0]);
/// ```
///
/// [`Vec`]: ../../std/vec/struct.Vec.html
/// [`vec!`]: ../../std/macro.vec.html
/// [`Clone`]: ../../std/clone/trait.Clone.html
/// [ub]: ../../reference/behavior-considered-undefined.html
/// [write]: ../ptr/fn.write.html
/// [copy]: ../intrinsics/fn.copy.html
/// [copy_no]: ../intrinsics/fn.copy_nonoverlapping.html
/// [`Drop`]: ../ops/trait.Drop.html
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn uninitialized<T>() -> T {
    intrinsics::uninit()
}

/// Swaps the values at two mutable locations, without deinitializing either one.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let mut x = 5;
/// let mut y = 42;
///
/// mem::swap(&mut x, &mut y);
///
/// assert_eq!(42, x);
/// assert_eq!(5, y);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn swap<T>(x: &mut T, y: &mut T) {
    unsafe {
        ptr::swap_nonoverlapping(x, y, 1);
    }
}

/// Replaces the value at a mutable location with a new one, returning the old value, without
/// deinitializing either one.
///
/// # Examples
///
/// A simple example:
///
/// ```
/// use std::mem;
///
/// let mut v: Vec<i32> = vec![1, 2];
///
/// let old_v = mem::replace(&mut v, vec![3, 4, 5]);
/// assert_eq!(2, old_v.len());
/// assert_eq!(3, v.len());
/// ```
///
/// `replace` allows consumption of a struct field by replacing it with another value.
/// Without `replace` you can run into issues like these:
///
/// ```compile_fail,E0507
/// struct Buffer<T> { buf: Vec<T> }
///
/// impl<T> Buffer<T> {
///     fn get_and_reset(&mut self) -> Vec<T> {
///         // error: cannot move out of dereference of `&mut`-pointer
///         let buf = self.buf;
///         self.buf = Vec::new();
///         buf
///     }
/// }
/// ```
///
/// Note that `T` does not necessarily implement [`Clone`], so it can't even clone and reset
/// `self.buf`. But `replace` can be used to disassociate the original value of `self.buf` from
/// `self`, allowing it to be returned:
///
/// ```
/// # #![allow(dead_code)]
/// use std::mem;
///
/// # struct Buffer<T> { buf: Vec<T> }
/// impl<T> Buffer<T> {
///     fn get_and_reset(&mut self) -> Vec<T> {
///         mem::replace(&mut self.buf, Vec::new())
///     }
/// }
/// ```
///
/// [`Clone`]: ../../std/clone/trait.Clone.html
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn replace<T>(dest: &mut T, mut src: T) -> T {
    swap(dest, &mut src);
    src
}

/// Disposes of a value.
///
/// While this does call the argument's implementation of [`Drop`][drop],
/// it will not release any borrows, as borrows are based on lexical scope.
///
/// This effectively does nothing for
/// [types which implement `Copy`](../../book/first-edition/ownership.html#copy-types),
/// e.g. integers. Such values are copied and _then_ moved into the function,
/// so the value persists after this function call.
///
/// This function is not magic; it is literally defined as
///
/// ```
/// pub fn drop<T>(_x: T) { }
/// ```
///
/// Because `_x` is moved into the function, it is automatically dropped before
/// the function returns.
///
/// [drop]: ../ops/trait.Drop.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let v = vec![1, 2, 3];
///
/// drop(v); // explicitly drop the vector
/// ```
///
/// Borrows are based on lexical scope, so this produces an error:
///
/// ```compile_fail,E0502
/// let mut v = vec![1, 2, 3];
/// let x = &v[0];
///
/// drop(x); // explicitly drop the reference, but the borrow still exists
///
/// v.push(4); // error: cannot borrow `v` as mutable because it is also
///            // borrowed as immutable
/// ```
///
/// An inner scope is needed to fix this:
///
/// ```
/// let mut v = vec![1, 2, 3];
///
/// {
///     let x = &v[0];
///
///     drop(x); // this is now redundant, as `x` is going out of scope anyway
/// }
///
/// v.push(4); // no problems
/// ```
///
/// Since [`RefCell`] enforces the borrow rules at runtime, `drop` can
/// release a [`RefCell`] borrow:
///
/// ```
/// use std::cell::RefCell;
///
/// let x = RefCell::new(1);
///
/// let mut mutable_borrow = x.borrow_mut();
/// *mutable_borrow = 1;
///
/// drop(mutable_borrow); // relinquish the mutable borrow on this slot
///
/// let borrow = x.borrow();
/// println!("{}", *borrow);
/// ```
///
/// Integers and other types implementing [`Copy`] are unaffected by `drop`.
///
/// ```
/// #[derive(Copy, Clone)]
/// struct Foo(u8);
///
/// let x = 1;
/// let y = Foo(2);
/// drop(x); // a copy of `x` is moved and dropped
/// drop(y); // a copy of `y` is moved and dropped
///
/// println!("x: {}, y: {}", x, y.0); // still available
/// ```
///
/// [`RefCell`]: ../../std/cell/struct.RefCell.html
/// [`Copy`]: ../../std/marker/trait.Copy.html
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn drop<T>(_x: T) { }

/// Interprets `src` as having type `&U`, and then reads `src` without moving
/// the contained value.
///
/// This function will unsafely assume the pointer `src` is valid for
/// [`size_of::<U>`][size_of] bytes by transmuting `&T` to `&U` and then reading
/// the `&U`. It will also unsafely create a copy of the contained value instead of
/// moving out of `src`.
///
/// It is not a compile-time error if `T` and `U` have different sizes, but it
/// is highly encouraged to only invoke this function where `T` and `U` have the
/// same size. This function triggers [undefined behavior][ub] if `U` is larger than
/// `T`.
///
/// [ub]: ../../reference/behavior-considered-undefined.html
/// [size_of]: fn.size_of.html
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// #[repr(packed)]
/// struct Foo {
///     bar: u8,
/// }
///
/// let foo_slice = [10u8];
///
/// unsafe {
///     // Copy the data from 'foo_slice' and treat it as a 'Foo'
///     let mut foo_struct: Foo = mem::transmute_copy(&foo_slice);
///     assert_eq!(foo_struct.bar, 10);
///
///     // Modify the copied data
///     foo_struct.bar = 20;
///     assert_eq!(foo_struct.bar, 20);
/// }
///
/// // The contents of 'foo_slice' should not have changed
/// assert_eq!(foo_slice, [10]);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn transmute_copy<T, U>(src: &T) -> U {
    ptr::read(src as *const T as *const U)
}

/// Opaque type representing the discriminant of an enum.
///
/// See the `discriminant` function in this module for more information.
#[stable(feature = "discriminant_value", since = "1.21.0")]
pub struct Discriminant<T>(u64, PhantomData<fn() -> T>);

// N.B. These trait implementations cannot be derived because we don't want any bounds on T.

#[stable(feature = "discriminant_value", since = "1.21.0")]
impl<T> Copy for Discriminant<T> {}

#[stable(feature = "discriminant_value", since = "1.21.0")]
impl<T> clone::Clone for Discriminant<T> {
    fn clone(&self) -> Self {
        *self
    }
}

#[stable(feature = "discriminant_value", since = "1.21.0")]
impl<T> cmp::PartialEq for Discriminant<T> {
    fn eq(&self, rhs: &Self) -> bool {
        self.0 == rhs.0
    }
}

#[stable(feature = "discriminant_value", since = "1.21.0")]
impl<T> cmp::Eq for Discriminant<T> {}

#[stable(feature = "discriminant_value", since = "1.21.0")]
impl<T> hash::Hash for Discriminant<T> {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        self.0.hash(state);
    }
}

#[stable(feature = "discriminant_value", since = "1.21.0")]
impl<T> fmt::Debug for Discriminant<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_tuple("Discriminant")
           .field(&self.0)
           .finish()
    }
}

/// Returns a value uniquely identifying the enum variant in `v`.
///
/// If `T` is not an enum, calling this function will not result in undefined behavior, but the
/// return value is unspecified.
///
/// # Stability
///
/// The discriminant of an enum variant may change if the enum definition changes. A discriminant
/// of some variant will not change between compilations with the same compiler.
///
/// # Examples
///
/// This can be used to compare enums that carry data, while disregarding
/// the actual data:
///
/// ```
/// use std::mem;
///
/// enum Foo { A(&'static str), B(i32), C(i32) }
///
/// assert!(mem::discriminant(&Foo::A("bar")) == mem::discriminant(&Foo::A("baz")));
/// assert!(mem::discriminant(&Foo::B(1))     == mem::discriminant(&Foo::B(2)));
/// assert!(mem::discriminant(&Foo::B(3))     != mem::discriminant(&Foo::C(3)));
/// ```
#[stable(feature = "discriminant_value", since = "1.21.0")]
pub fn discriminant<T>(v: &T) -> Discriminant<T> {
    unsafe {
        Discriminant(intrinsics::discriminant_value(v), PhantomData)
    }
}


/// A wrapper to inhibit compiler from automatically calling `T`’s destructor.
///
/// This wrapper is 0-cost.
///
/// # Examples
///
/// This wrapper helps with explicitly documenting the drop order dependencies between fields of
/// the type:
///
/// ```rust
/// use std::mem::ManuallyDrop;
/// struct Peach;
/// struct Banana;
/// struct Melon;
/// struct FruitBox {
///     // Immediately clear there’s something non-trivial going on with these fields.
///     peach: ManuallyDrop<Peach>,
///     melon: Melon, // Field that’s independent of the other two.
///     banana: ManuallyDrop<Banana>,
/// }
///
/// impl Drop for FruitBox {
///     fn drop(&mut self) {
///         unsafe {
///             // Explicit ordering in which field destructors are run specified in the intuitive
///             // location – the destructor of the structure containing the fields.
///             // Moreover, one can now reorder fields within the struct however much they want.
///             ManuallyDrop::drop(&mut self.peach);
///             ManuallyDrop::drop(&mut self.banana);
///         }
///         // After destructor for `FruitBox` runs (this function), the destructor for Melon gets
///         // invoked in the usual manner, as it is not wrapped in `ManuallyDrop`.
///     }
/// }
/// ```
#[stable(feature = "manually_drop", since = "1.20.0")]
#[allow(unions_with_drop_fields)]
#[derive(Copy)]
pub union ManuallyDrop<T>{ value: T }

impl<T> ManuallyDrop<T> {
    /// Wrap a value to be manually dropped.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::mem::ManuallyDrop;
    /// ManuallyDrop::new(Box::new(()));
    /// ```
    #[stable(feature = "manually_drop", since = "1.20.0")]
    #[inline]
    pub fn new(value: T) -> ManuallyDrop<T> {
        ManuallyDrop { value: value }
    }

    /// Extract the value from the ManuallyDrop container.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::mem::ManuallyDrop;
    /// let x = ManuallyDrop::new(Box::new(()));
    /// let _: Box<()> = ManuallyDrop::into_inner(x);
    /// ```
    #[stable(feature = "manually_drop", since = "1.20.0")]
    #[inline]
    pub fn into_inner(slot: ManuallyDrop<T>) -> T {
        unsafe {
            slot.value
        }
    }

    /// Manually drops the contained value.
    ///
    /// # Safety
    ///
    /// This function runs the destructor of the contained value and thus the wrapped value
    /// now represents uninitialized data. It is up to the user of this method to ensure the
    /// uninitialized data is not actually used.
    #[stable(feature = "manually_drop", since = "1.20.0")]
    #[inline]
    pub unsafe fn drop(slot: &mut ManuallyDrop<T>) {
        ptr::drop_in_place(&mut slot.value)
    }
}

#[stable(feature = "manually_drop", since = "1.20.0")]
impl<T> Deref for ManuallyDrop<T> {
    type Target = T;
    #[inline]
    fn deref(&self) -> &Self::Target {
        unsafe {
            &self.value
        }
    }
}

#[stable(feature = "manually_drop", since = "1.20.0")]
impl<T> DerefMut for ManuallyDrop<T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        unsafe {
            &mut self.value
        }
    }
}

#[stable(feature = "manually_drop", since = "1.20.0")]
impl<T: ::fmt::Debug> ::fmt::Debug for ManuallyDrop<T> {
    fn fmt(&self, fmt: &mut ::fmt::Formatter) -> ::fmt::Result {
        unsafe {
            fmt.debug_tuple("ManuallyDrop").field(&self.value).finish()
        }
    }
}

#[stable(feature = "manually_drop_impls", since = "1.22.0")]
impl<T: Clone> Clone for ManuallyDrop<T> {
    fn clone(&self) -> Self {
        ManuallyDrop::new(self.deref().clone())
    }

    fn clone_from(&mut self, source: &Self) {
        self.deref_mut().clone_from(source);
    }
}

#[stable(feature = "manually_drop_impls", since = "1.22.0")]
impl<T: Default> Default for ManuallyDrop<T> {
    fn default() -> Self {
        ManuallyDrop::new(Default::default())
    }
}

#[stable(feature = "manually_drop_impls", since = "1.22.0")]
impl<T: PartialEq> PartialEq for ManuallyDrop<T> {
    fn eq(&self, other: &Self) -> bool {
        self.deref().eq(other)
    }

    fn ne(&self, other: &Self) -> bool {
        self.deref().ne(other)
    }
}

#[stable(feature = "manually_drop_impls", since = "1.22.0")]
impl<T: Eq> Eq for ManuallyDrop<T> {}

#[stable(feature = "manually_drop_impls", since = "1.22.0")]
impl<T: PartialOrd> PartialOrd for ManuallyDrop<T> {
    fn partial_cmp(&self, other: &Self) -> Option<::cmp::Ordering> {
        self.deref().partial_cmp(other)
    }

    fn lt(&self, other: &Self) -> bool {
        self.deref().lt(other)
    }

    fn le(&self, other: &Self) -> bool {
        self.deref().le(other)
    }

    fn gt(&self, other: &Self) -> bool {
        self.deref().gt(other)
    }

    fn ge(&self, other: &Self) -> bool {
        self.deref().ge(other)
    }
}

#[stable(feature = "manually_drop_impls", since = "1.22.0")]
impl<T: Ord> Ord for ManuallyDrop<T> {
    fn cmp(&self, other: &Self) -> ::cmp::Ordering {
        self.deref().cmp(other)
    }
}

#[stable(feature = "manually_drop_impls", since = "1.22.0")]
impl<T: ::hash::Hash> ::hash::Hash for ManuallyDrop<T> {
    fn hash<H: ::hash::Hasher>(&self, state: &mut H) {
        self.deref().hash(state);
    }
}

/// Tells LLVM that this point in the code is not reachable, enabling further
/// optimizations.
///
/// NB: This is very different from the `unreachable!()` macro: Unlike the
/// macro, which panics when it is executed, it is *undefined behavior* to
/// reach code marked with this function.
#[inline]
#[unstable(feature = "unreachable", issue = "43751")]
pub unsafe fn unreachable() -> ! {
    intrinsics::unreachable()
}