Comprehenders aggregate over speakers

when adapting to the noise in the input
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Results

Proportion of responses of each type

|| Inferred deletion (participant added a word during re—typing)

L | Inferred insertion (participant deleted a word during re—typing)

B Inferred exchange (participant exchanged two words during re—typing)
B Inferred no error (participant made no changes during re—typing)

B Inferred other (participant made other change during re-typing)

(1) When correcting test sentences for Speakers A & B, participants were most likely to infer that there had been an exchange.
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(2) When correcting test sentences for Speaker A, participants were more likely infer that there had lbeen an exchange, insertion, or deletion when
Speaker A was Iin the exchange, insertion, or deletion exposure condition respectively, relative to the mixed exposure condition
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(3) When correcting test sentences for Speaker A - mixed exposure condition, participants were most likely to infer that there had been an exchange,
insertion, or deletion when Speaker B was in the exchange, insertion, or deletion exposure condition respectively.

Conclusions

» On test sentences for Speaker A, participants’ corrections were adapted to the types of errors that Speaker A was
producing (replicating Ryskin et al., 2018), but were also affected by the errors produced by Speaker B.

» Ps tune their noise model to the distribution of errors in the input but, here, they aggregate input statistics over speakers.
» Benefit of greater context/speaker-specificity — more accurate noisy-channel correction — may be outweighed by the cost
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