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2.1 An aside ... why not accelerated reference frames?

We certainly could include accelerations between reference frames. Doing so requires that we
introduce non-inertial forces in order for Newton’s laws, in particular F = ma, to work. The
main reason we are not doing this is simplicity — including accelerations makes the analysis
somewhat more cumbersome, and is a diversion from the main thrust of our discussion.

What if, however, all frames experience the same acceleration? In such a case, one could
imagine defining a transformation that takes us from one frame accelerating with a to another
frame that is also accelerating with a. Indeed, in this circumstance it is not hard to see that
the Galilean transformations we discussed in the previous lecture work perfectly, translating
quantities from one accelerating frame to the other.

This suggests a question: If everything experiences the same acceleration, does that
acceleration mean anything interesting? Given that all things in all frames we consider
experience the same acceleration, perhaps we could just define this as a somewhat peculiar
notion of “rest.”

This question in fact gets at the heart of the issues and concepts which lie at the core of
Einstein’s general relativity, hinting at the principle of equivalence. We will return to a very
similar discussion in several weeks in a more Einsteinian context.

2.2 Galileo meets Maxwell

In our previous discussion, we noted that wave equations have an interesting property: the
physics of the wave introduces a special speed, which we labeled w. This describes the
speed with which the wave propagates with respect to the medium that supports the wave.
An observer moving with respect to the medium will observe the wave propagating with a
different speed, in accordance with how velocities add in Newtonian mechanics.

This made perfect sense until roughly the late 1800s. To see what started confusing the
situation, consider Maxwell’s equations:

∇ · E = ρ/ε0 , ∇ ·B = 0 , (2.1)

∇× E = −∂B
∂t

, ∇×B = µ0J + µ0ε0
∂E

∂t
. (2.2)

Let us consider the vacuum limit (ρ = 0, J = 0), and let us take the curl of the curl
equations. Using some vector calculus identities, this is straightforward. Look at the curl of
the left-hand sides of the curl equations first:

∇× (∇× E) = ∇ (∇ · E)−∇2E ,

∇× (∇×B) = ∇ (∇ ·B)−∇2B ; (2.3)
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then, the right-hand sides:

∇×
(
−∂B
∂t

)
= − ∂

∂t
(∇×B) = −µ0ε0

∂2E

∂t2
, (2.4)

∇×
(
µ0ε0

∂E

∂t

)
= µ0ε0

∂

∂t
(∇× E) = −µ0ε0

∂2B

∂t2
. (2.5)

Putting the right-hand and left-hand sides together, using ∇ · B = 0 and ∇ · E = 0 when
ρ = 0, we see that E and B each obey wave equations:

∂2E

∂t2
− 1

µ0ε0
∇2E = 0 , (2.6)

∂2B

∂t2
− 1

µ0ε0
∇2B = 0 . (2.7)

Further, we see that the parameter w which characterizes the speed of the wave is given by
1/
√
µ0ε0. This speed is given the label c (which comes from celeritas, meaning swiftness),

and takes the value

c = 2.99792458× 108 meters/second

' 3× 108 meters/second

' 1 foot/nanosecond . (2.8)

The equality on the first line is exact; as we’ll discuss a bit more later, we now actually use
this value to define the meter. The near equality on the second line is good enough for the
vast majority of calculations that we do in this class. The final near equality is amusing for
those of us educated in parts of the world that still use inches and feet as their common
measurement unit, and can be surprisingly useful in a number of practical situations.

If we imagine that E and B only depend on t and x, then the wave equations reduce to

∂2E

∂t2
− 1

µ0ε0

∂2E

∂x2
= 0 , (2.9)

∂2B

∂t2
− 1

µ0ε0

∂2B

∂x2
= 0 , (2.10)

which have solutions of the form E(x± ct), B(x± ct).
When an analysis of this form was first done in the late 19th century, it was regarded as

something of a triumph. In particular, the fact that the equations predicted c = 1/
√
µ0ε0 was

somewhat stunning. Bear in mind that ε0 was an empirically measured parameter that played
a role in determining the capacitance of a conductive system; µ0 was a similar parameter
that played a role in determining a system’s inductance. The fact that parameters that were
determined from static or very slowly varying fields could be so intimately related to the
speed of light (whose value had been known to fairly good accuracy for quite some time,
and was certainly known to be incredibly fast) was regarded as amazing. This association
cemented the connection between light and electromagnetic fields.

Like most wave equation analyses, this calculation picked out a special speed. But, in
what frame did we do this analysis?
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2.3 The Michelson-Morley experiment

The consensus of the late 19th century was that electromagnetic waves are a disturbance in
the so-called “luminiferous ether” (aka the “ether”), and that c = 1/

√
µ0ε0 is the speed of

propagation with respect to that ether. In this framework, the ether defines a preferred rest
frame, and the speed of light should only be c if we are in that preferred rest frame.

This line of reasoning tells us that if we measure light propagating across a laboratory
that moves relative to the ether, then we should find that it moves with a speed that is not
c. Our labs are on the surface of the Earth; the Earth spins on its axis, and orbits the Sun.
Even if our lab is at rest with respect to the ether at some moment, it will no longer be at
rest later in the day, or later in the year.

Albert Michelson and Edward Morley carried out an ingenious experiment in 1887 to test
this hypothesis. Their idea was to use the wave nature of light to build an interferometer.
The basic experimental setup is sketched in Fig. 1.

light 
source

beam splitter
mirror

mirror

L1

L2

Figure 1: Basic layout of the interferometer used in the Michelson-Morley experiment. A
beam of light enters from the source at left, and is split into two by the beam splitter (a piece
of partially silvered glass which reflects half of the light up, and allows half to transmit to the
right). Both of these beams are reflected at the mirrors at the ends of the arms, return to the
beam splitter, and then recombine. Exactly what happens when they recombine depends on
the optical phase difference they experience going along their two travel paths.

What happens when the light returns to the beam splitter? The answer depends on the
details of the paths that the light takes in the two arms. To analyze this, let’s make some
definitions:

• Let t1 be the travel time for light to go from beam splitter to mirror to beam splitter
in arm 1 (of length L1)
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• Let t2 be the travel time in arm 2

• Define ∆t ≡ t2 − t1.

The quantity c∆t is known as the optical path difference; it measures the difference in distance
traversed by light as it back and forth through the two arms. Dividing this by λ, the
wavelength of the light, yields1 the optical phase difference.

Because light is a wave, the optical phase difference is an extremely important quantity
for understanding what happens when it recombines at the beam splitter. If c∆t/λ =
0,±1,±2, . . ., then the light constructively interferes: Peaks and troughs in the wave from
one arm line up with peaks and troughs in the wave from the other:

+ =

1Strictly speaking, the optical phase difference is 2π times this quantity.
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On the other hand, if c∆t/λ = ±1
2
,±3

2
,±5

2
, . . . then the light destructively interferes:

Peaks in the wave from one arm line up with troughs in the other:

+ =

In general, we expect c∆t/λ to be some value between an integer multiple of 1 and an
(odd) integer multiple of 1

2
. Michelson and Morley used white light as their light source,

which means that their measurement had a wide range of wavelengths present. As such, we
expect the light read out of the beam splitter (where the eye is placed in Fig. 1) to show an
interference fringe pattern, with constructive interference for some wavelengths, destructive
interference for others, and many values in between.

Figure 2: Example of a fringe pattern from readout of a Michelson-type interferometer.
Image credit:
https://commons.wikimedia.org/wiki/File:MichelsonCoinAirLumiereBlanche.JPG
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With this background in mind, let us compute what optical phase difference we expect
if c is the speed of light with respect to the ether, and if the Michelson-Morley apparatus
moves with speed v with respect to the ether. More specifically, let’s imagine that the lab’s
velocity v is parallel to arm 1. The time it takes for light to travel up arm 1 and the back
to the beamsplitter is

t1 =
L1

c− v
+

L1

c+ v
=

2L1

c

(
1

1− v2/c2

)
. (2.11)

The asymmetry between the two terms is because of the asymmetry in the light’s motion
relative to the apparatus along the two legs: in the first term, the mirror is “running away”
from the light, so relative to the apparatus the light’s speed is c − v; in the second term,
the light switches direction, and the beam splitter is now “running toward” the light, with
a relative speed c+ v.

Arm 2 is a bit more complicated to analyze, as the light is in this case moving perpen-
dicular to the motion of the apparatus in the rest frame of the ether. Figure 3 lays out the
geometry:

Figure 3: Light travel in arm 2 of the Michelson-Morley apparatus, as viewed in the rest
frame of the ether. The light starts at the lower left, travels to the mirror, bounces, and
returns to the upper left. During that time, the beam splitter moves from the position in
the lower left to the position in the upper left. The light takes a total time t2 to travel from
the beam splitter to the mirror and back to the beam splitter. In that time, it covers a
horizontal displacement of L2 twice, and moves through a vertical displacement vt2.

We defined t2 as the time it takes for light to travel from the beam splitter to the mirror
and back. As shown in the figure, in the rest frame of the ether the light moves on a
diagonal path with horizontal displacement L2 twice, and with vertical displacement vt2.
The equation governing t2 is thus given by

ct2 = 2

√
L2
2 +

(
vt2
2

)2

, (2.12)

from which we find

t2 =
2L2

c

1√
1− v2/c2

. (2.13)

Combining this with our result for t1 yields

∆t =
2

c

[
L2√

1− v2/c2
− L1

1− v2/c2

]
. (2.14)
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At this point it is a useful to examine some numbers, in particular what we expect for
v/c. The speed of the lab with respect to the ether is roughly bounded by the orbital speed
of the Earth about the Sun, so v . 2 × 104 meters/second. The speed of light is 3 × 108

meters/second, so
v

c
. 10−4 . (2.15)

The expression we’ve derived for ∆t depends on this ratio squared. This tells us that in our
expressions, it is appropriate to use the binomial expansion, (1 +nx)α ' 1 +αnx for x� 1,
to simplify what we have:

∆t ' 2

c

[
L2

(
1 +

1

2

v2

c2

)
− L1

(
1 +

v2

c2

)]
. (2.16)

Michelson and Morley introduced one more very important factor into their experiment:
They made it possible to rotate the interferometer’s arms, effectively exchanging arms 1 and
2. (They did this by floating their entire optical table, which was built on a very heavy block
of sandstone, on a pool of mercury. This both allowed the apparatus to rotate with very
little friction, and provided significant isolation from vibrations in the building in which they
did the experiment.) Rotating the apparatus, we get new light travel times:

t′1 =
2L1

c

1√
1− v2/c2

' 2L1

c

(
1 +

1

2

v2

c2

)
, (2.17)

t′2 =
2L2

c

1

1− v2/c2
' 2L2

c

(
1 +

v2

c2

)
, (2.18)

∆t′ = t′2 − t′1 =
2

c

[
L2

(
1 +

v2

c2

)
− L1

(
1 +

1

2

v2

c2

)]
. (2.19)

Let us define δt as the change in the difference of light travel times between the two config-
urations:

δt ≡ ∆t′ −∆t

=
2

c

[
L2 +

L2v
2

c2
− L1 −

L1v
2

2c2
− L2 −

L2v
2

2c2
+ L1 +

L1v
2

c2

]
=
L1 + L2

c

(
v2

c2

)
. (2.20)
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With all this laid out, let’s review how this experiment works:

1. We begin with the experiment in a particular configuration. The experimenter monitors
light that recombines at the beam splitter (indicated by the eyeball in Fig. 1), seeing
a fringe pattern much like that shown in Fig. 2.

2. If there exists an ether and the laboratory is moving with respect to this ether, then
light traveling in the two arms experiences the optical path difference c∆t. The initial
fringe pattern the experimenter measures corresponds to the optical path difference
associated with this initial configuration.

3. The entire interferometer is rotated by 90◦. The experimenter (rotating along with it!)
monitors the fringe pattern during the rotation. The expectation is that the optical
path difference will change by cδt during this rotation. This will be visible to the
experimenter by a shifting of the fringe pattern as the apparatus is rotated.

One of the beautiful features of an interferometry experiment is that a shift of fringe can
be measured very precisely; Michelson and Morley were confident that they could measure an
optical phase shift cδt/λ ≈ 0.01. This would have been plenty to detect the effect of motion
with respect to the ether, as can be seen by plugging in some numbers for the experiment:

• Size of the apparatus: L1 + L2 ' 10 meters

• Speed with respect to the ether: (v/c)2 ' 10−8

• Wavelength of light: λ ' 500 nm = 5× 10−7 meters

The expected optical phase shift is thus

cδt

λ
' 0.2 . (2.21)

This is huge: a factor of 20 larger than the effect Michelson and Morley could discern.
The value they measured was zero. Since their pioneering experiment in 1887, measure-

ments of this kind have been repeated. Measurement technology has improved to the point
that we can now measure cδt/λ ' 10−10. No motion of an apparatus relative to the
ether has ever been detected.

2.4 Explanations

In 1887, the Michelson-Morley null result was a surprise (both Michelson and Morley con-
sidered it to be “failed experiment,” and moved on to other things). However, it became
clear that the measurement had been done correctly, and the lack of phase shift was not
experimenter error. This result begged explanation. Over time, four possible explanations
emerged:

1. The ether is dragged along by the Earth, somehow, so that our labs are always locally
at rest with it.

This hypothesis in fact was the consensus view of how things would work at the time of
the Michelson-Morley measurement. Part of what was so confusing about their result
was that it contradicted other experiments at the time which preferred the ether to
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be “partially” dragged by the Earth; Michelson and Morley’s result implied that any
ether must be completely dragged along, so that the lab is always at rest with respect
to it. The ether drag hypothesis does not hold up when we make measurements on
very long baselines (e.g., into space) where the effect of Earth’s ether dragging should
be reduced or negligible.

2. Maxwell’s equations are wrong.

This hypothesis simply does not work: no wrongness has ever been found which can
explain the Michelson-Morley measurements. Electrodynamic effects can be measured
with exquisite precision, and Maxwell’s equations work tremendously well.

3. The ether squashes moving objects just enough to compensate for the travel time shifts.

This works, but raises a new question — how and why do such “length squashings”
occur? Hold this thought!

4. There is no ether; there is no special rest frame for Maxwell’s equations. Light travels
at c = 1/

√
µ0ε0 in ALL inertial reference frames.

The 4th option is where Einstein chose to begin his analysis, and is where we will focus in
our studies.

2.5 Historical note

It should be noted that the historical record is somewhat unclear regarding the extent to
which Einstein was influenced by Michelson and Morley. Some of his statements suggest he
was not influenced by their result, though other statements indicate that he was aware of the
result and that it had some influence. It is clear, though, that he was aware of some similar
experiments (particularly those of Fizeau, whose experiment you will explore on problem set
#1). It is fair to say that Einstein was aware the ether hypothesis was having trouble finding
experimental support.

Einstein’s historical motivations aside, with the benefit of over 130 years of hindsight, the
importance of Michelson and Morley (and of similar experiments done since then) is clear to
us: these measurements clearly demonstrate that the simple picture of Maxwell’s equations
being formulated in the “rest frame of the ether” (whatever that ether might actually be)
cannot be entirely correct. Einstein’s choice of option #4 on the list above appears to be
driven largely by simplicity: there is no ether and no special rest frame referred to anywhere
in our formulation of the Maxwell equations, so why would we introduce them? Why not take
at face value the fact that c emerges as the speed of light with no reference to a particular
rest frame, and see what that implies?

Seeing what this implies will be our focus for the next several weeks.
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