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Kinematics in spacetime

6.1 Transforming velocities

With what we’ve done so far, we’ve started to develop a good understanding of length, time,
and geometry in spacetime. This is a good start for us to begin understanding physics in
special relativity, but it’s just a start.

In this lecture, we start examining kinematics — the properties of moving bodies, and
how these properties transform between different reference frames. Let’s begin by looking
at velocity. Consider frame T , tied to a train, and consider someone walking inside that
train. This train is moving with velocity v = vex as seen by an observer who is at rest in
the station frame S. The person is seen to walk with speed uxT , also in the x direction, by
an observer at rest in frame T . (Comment: we will try as much as possible to use the letter
u to stand for speeds inside a particular frame; we will try to use v to describe the speeds
and velocities between two different frames.)

v

T

S
ux

T

What is the speed uxS that observers in frame S measure? In Newtonian physics, we
would just add the velocities in frame T to the velocity that frame T has relative to S. To
get uxS in a world in which all observers agree that light moves at speed c, we work this
out using the Lorentz transformation. On the train, we know that in a time interval ∆tT
observer T moves through a distance ∆xT = uxT∆tT . Both the time interval and the space
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interval are affected by the transformation:

uxS =
∆xS
∆tS

=
γ(∆xT + v∆tT )

γ(∆tT + v∆xT/c2)

=
(∆xT/∆tT + v)

(1 + v∆xT

c2∆tT
)

=
uxT + v

1 + uxTv/c
2
. (6.1)

This formula has an interesting consequence: using it, we can prove that we can never add
sub-light speeds to get a speed that exceeds the speed of light. You will work this out in
detail on a problem set, but to see the general idea, imagine that uxT = v = 0.9c. Then,

uxS =
0.9c+ 0.9c

1 + (0.9c)(0.9c)/c2
=

1.8c

1.81
= 0.9945c . (6.2)

How do components of the velocity perpendicular to the frames’ relative motion trans-
form? Imagine that the person on the train has motion along the y direction as well, so that
in ∆tT they move through ∆yT = uyT∆tT . Then,

uyS =
∆yS
∆tS

=
∆yT

γ(∆tT + v∆xT/c2)

=
uyT

γ(1 + uxTv/c
2)
. (6.3)

(Note that the factor γ = 1/
√

1− v2/c2 — it only depends on the relative speed v of the
two frames, it does not involve the velocity u.) If the person on the train has velocity along
the z direction, then it transforms like Eq. (6.3) as well, replacing uy with uz.

6.2 Momentum I: Uh oh ... did we break physics?

A lesson of the previous section is that how velocities add is “weird” as compared to Newto-
nian expectations. These expectations follow the logic of Galilean relativity, so it should not
too surprising that things change when we impose the rule that c is the same to all observers.
However, our laws of classical mechanics have implicitly assumed Galilean relativity. What
happens to important principles like conservation of momentum when we “update” our laws
for how velocities add?

Let us first review how conservation of momentum works in Newtonian physics. Suppose
that we have Ni bodies that come together in some fashion, interact, and then have Nf

bodies in the final state. Conservation of momentum tells us that

Ni∑
j=1

minitial
j uinitial

j =

Nf∑
j=1

mfinal
j ufinal

j . (6.4)

As long as
Ni∑
j=1

minitial
j =

Nf∑
j=1

mfinal
j , (6.5)
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this relation holds in all Galilean reference frames.
Let’s take a look at what happens when we examine this law in Lorentzian reference

frames. Let’s consider something really simple: two particles, A and B, of identical mass
that collide and rebound elastically. First, examine this situation in the center of momentum
frame, i.e. the frame in which the net momentum of the system is zero:

Before

uinit
A

uinit
B

After

ufin
B

ufin
A

Figure 1: Elastic collision of identical bodies in the center of momentum frame.

The bodies’ velocities are given by uinit
A = uxex − uyey, uinit

B = −uxex + uyey before the
collision. Afterwards, we have ufin

A = uxex + uyey, u
init
B = −uxex− uyey. Because mA = mB,

we can see that momentum is clearly conserved: It is zero both before and after the collision.
Let’s examine this from another frame of reference. Suppose we examine this collision

from a frame that moves with velocity v = −uxex with respect to the center of momentum
frame. In this frame, the horizontal motion of particle B is canceled out. What are the
velocity vectors in this frame? We can find out by using the velocity addition formulas we
just worked out. Let’s do the x components first:

ux
′

A =
ux + ux

1 + (ux)2/c2
=

2ux

1 + (ux)2/c2
, (6.6)

ux
′

B =
ux − ux

1− (ux)2/c2
= 0 . (6.7)

Notice that the horizontal component of momentum is no longer zero. That is not surprising:
we’ve moved into a frame in which the entire system is moving in the +x direction, so we
expect the system to have momentum along x.

Next, look at the y components:

uy
′

A = − uy

γ(1 + (ux)2/c2)
= −

uy
√

1− (ux)2/c2

1 + (ux)2/c2
, (6.8)

uy
′

B =
uy

γ(1− (ux)2/c2)
=

uy√
1− (ux)2/c2

. (6.9)

(We’ve used γ = 1/
√

1− (ux)2/c2 here.) Notice that the velocity components in the vertical
direction are no longer equal and opposite. If the vertical component of a particle’s momen-
tum is given by computing muy

′
, we have a problem: The system appears to have acquired

momentum in the y direction by moving into a new frame that is moving in the −x direction
with respect to the center of momentum frame.

Our hypothesis that c is the same to all observers, which led to our new velocity addition
rules, appears to have broken momentum.
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6.3 Momentum II: No, physics isn’t broken, but Newtonian ex-
pectations are incomplete

This appears disturbing. However, as we have seen, our hypothesis of the invariance of c is
approximately consistent with Galilean coordinate transformations; perhaps the root cause
of our issue is that Newtonian momentum (which respects Galilean relativity) is itself an
approximation to a more fundamental quantity.

Let us postulate that momentum is defined by

p = α(u)mu . (6.10)

The function α(u) is some kind of scalar which corrects the magnitude of momentum, and
only depends on the magnitude of the body’s velocity u. Let us re-examine the collision
from the Lorentz frame in which particle B has no horizontal motion:

Before collision, frame in 
which B only moves vertically

uv,A
uv,B

uh

To simplify some of the analysis which will follow later, we’ve introduced new labels for
the velocity components of these bodies. Referring to Eqs. (6.6), (6.8), and (6.9) using the
original center-of-momentum frame velocity components, we have

uh =
2ux

1 + (ux)2/c2
, uv,A = −

uy
√

1− (ux)2/c2

1 + (ux)2/c2
, uv,B =

uy√
1− (ux)2/c2

. (6.11)

These velocity components turn out to be nicely related to one another. Notice that

uv,A = −uv,B
(

1− (ux)2/c2

1 + (ux)2/c2

)
. (6.12)

The factor in parentheses turns out be related to uh in an interesting way:

γ(uh) =
1√

1− (uh)2/c2
=

(
1− 4(ux)2/c2

(1 + (ux)2/c2)2

)−1/2

=

(
1− 2(ux)2/c2 + (ux)4/c4

1 + 2(ux)2/c2 + (ux)4/c4

)−1/2

=
1 + (ux)2/c2

1− (ux)2/c2
. (6.13)

This tells us that
uv,A = −uv,B/γ(uh) . (6.14)
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Let’s take advantage of this to redo the figure of the collision in this frame using only the
velocity components uh and uv,B:

If momentum is conserved, then we expect the situation after the collision to look as follows:

The logic by which we have sketched this is that the horizontal components of the bodies’
motion cannot be affected by the collision, so body A continues moving to the right with
speed uh, and body B continues to have no horizontal motion. The vertical motions reverse
in direction, and we leave open the possibility that the magnitudes associated with the
vertical speed might be affected.

We now demand conservation of our postulated modification to momentum: both com-
ponents of p = α(u)mu must be the same before and after the collision. Let us first look at
the horizontal component, for which the only contribution comes from body A:

α

(√
(uh)2 + (uv,B/γ(uh))2

)
muh = α

(√
(uh)2 + (u′v,B/γ(uh))2

)
muh . (6.15)

The only way that this equation can hold independent of the function α(u) (whose nature we
don’t yet know) is if u′v,B = uv,B. In other words, as measured in this frame, the magnitude
of the vertical components’ of the bodies’ velocities remains the same, those components
simply change direction.
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Let’s now require that the vertical components be conserved:

α(uv,B)muv,B − α
(√

(uh)2 + (uv,B/γ(uh))2

)
muv,B/γ(uh) =

− α(uv,B)muv,B + α

(√
(uh)2 + (uv,B/γ(uh))2

)
muv,B/γ(uh)

−→ α

(√
(uh)2 + (uv,B/γ(uh))2

)
= γ(uh)α(uv,B) . (6.16)

We may safely assume that α(0) = 1 — this is a way of insuring that the formula recovers
the Newtonian limit, which is at the very least a very good approximation. With this in
mind, examine Eq. (6.16) with uv,B → 0:

α(uh) = γ(uh) . (6.17)

In other words, the factor α(u) that we postulated was needed indeed “restores” a notion of
momentum that is conserved provided it is the special relativistic γ factor.

To conclude and summarize, the momentum that is conserved when the universe respects
Lorentz covariance is given by

p = γ(u)mu . (6.18)

6.4 Kinetic energy

In Newtonian physics, the change in kinetic energy is the work done on a body: Integrating
from some initial position xi to a final position xf , we have

Kf −Ki =

∫ f

i

dp

dt
· dx =

∫ f

i

d

dt
(mu) · u dt = m

∫ f

i

u · du

=
1

2
m
(
u2
f − u2

i

)
. (6.19)

Let’s define relativistic kinetic energy in exactly the same way, but replace the Newtonian
formula for momentum with the version we just derived:

Kf −Ki =

∫ f

i

dp

dt
· dx =

∫ f

i

d

dt
[γ(u)mu] · u dt

= m

∫ f

i

u · d

[
u√

1− u2/c2

]
. (6.20)

The final integrand that we have derived can be manipulated further:

u · d

[
u√

1− u2/c2

]
= d

[
u2√

1− u2/c2

]
− u · du√

1− u2/c2
. (6.21)

Using this, we find

Kf −Ki =
mu2√

1− u2/c2

∣∣∣∣f
i

−m
∫ f

i

u · du√
1− u2/c2

=
mu2√

1− u2/c2

∣∣∣∣f
i

+mc2
√

1− u2/c2

∣∣∣∣f
i

. (6.22)
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To write our final answer, let’s assume that the initial velocity ui = 0, and define uf ≡ u.
Since the initial velocity is zero, the initial kinetic energy Ki = 0. We then set Kf ≡ K and
finally obtain for the kinetic energy of the system

K =
mu2√

1− u2/c2
+mc2

√
1− u2/c2 −mc2 , (6.23)

or

K =
mc2√

1− u2/c2
−mc2

= [γ(u)− 1]mc2 . (6.24)

We interpret this quantity by defining the body to have a total energy E = γmc2, and then
write

E = K +mc2 , (6.25)

where mc2 is interpreted as the body’s rest energy — that is, energy which the body
possesses even when it is not in motion.

It’s fair to say that Eq. (6.25) with K = 0 is the most famous physics equation in the
world. Now you can see that it arises as a consequence of the fact that the hypothesis
of c being the same to all observers forced us to replace the Galilean transformation with
the Lorentz transformation. This in turn mandated an adjustment to the definition of
momentum, from which this famous result emerged.

6.5 Aside: “Relativistic mass” and why we generally don’t use it
anymore

In some older texts, you will see the energy and momentum defined as follows:

E = m(u)c2 , p = m(u)u , (6.26)

where they have defined m(u) = γ(u)m, the “relativistic mass” of the body whose rest mass
is m. This definition rarely appears in modern relativity texts. Instead, the only “mass”
used to define a body is its rest mass. The main reason for this is that m is an invariant —
different observers assign a different energy to the body, depending on its speed u in their
rest frame, but they all agree that the body’s mass is m (and its energy is mc2) in its own
rest frame. As we will see in the next lecture, this invariant plays a particularly important
rule in helping us to define a 4-vector which will prove to be extremely useful in helping us
to keep track of energy and momentum in relativistic physics.
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