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Lecture 9
Some more math: The metric tensor, dual vectors,

and tensors more generally

9.1 The scalar product revisited

Similar to Lecture 5, this lecture again largely focuses on mathematical issues. We have
introduced you to 4-vectors, and have shown how they can be used to organize a Lorentz
covariant presentation of some of the laws of physics. In this lecture, we expand the “vocab-
ulary” of mathematical objects that we use to describe quantities in relativistic physics.

We begin by revisiting the the scalar product between two 4-vectors,

~a ·~b = −a0b0 + a1b1 + a2b2 + a3b3 . (9.1)

It is not difficult to show that ~a ·~b is invariant. Indeed, “scalar product” refers to the fact
that a “scalar” in relativistic physics is a quantity that is invariant across Lorentz frames.

As written, there is nothing wrong with Eq. (9.1); indeed, we used it in this form to
help understand invariants associated with relativistic energy and momentum. However,
from a certain perspective Eq. (9.1) is somewhat “distasteful.” It’s necessary to write the
whole expression out; there’s no nice shorthand that let’s you write this expression in index
notation if we follow this form.

To correct for these shortcomings, we introduce a new mathematical object called the
metric. The metric is a tensor, a mathematical object that we define more completely below.
For now, you can regard it is an object with two indices that is represented in a particular
Lorentz frame by a matrix. The metric has components ηαβ given by

ηαβ
.
=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (9.2)

As in the previous lecture, we use the symbol “
.
=” to stand for “the object on the left-hand

side has the components on the right-hand side.” Using the metric, you should be able to
convince yourself quite easily that Eq. (9.1) is equivalent to

~a ·~b =
3∑

α=0

3∑
β=0

ηαβa
αbβ = ηαβa

αbβ . (9.3)

The second form, using the Einstein summation convention, is how the invariant scalar
product is most commonly written out.

Let’s see what the invariance of the scalar product tells us about how the components of
the metric transform between reference frames. Suppose that observer O measures ~a and~b to
have components aα and bβ, and they use ηαβ for metric components. Observer O′ measures
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these vectors to have components aµ
′

and bν
′
, and they use ηµ′ν′ for metric components.

The components of the vectors are related in the usual way by the Lorentz transformation
matrix:

aα = Λα
µ′a

µ′ (9.4)

bβ = Λβ
ν′b

ν′ . (9.5)

How do we compute the metric components used by O′? We figure this out by enforcing
invariance:

~a ·~b = ηαβa
αbβ

= ηαβ

(
Λα

µ′a
µ′
)(

Λβ
ν′b

ν′
)

=
(
ηαβΛα

µ′Λ
β
ν′
)
aµ

′
bν

′
. (9.6)

This quantity is an invariant provided we transform the components of the metric via the
rule

ηµ′ν′ = ηαβΛα
µ′Λ

β
ν′ . (9.7)

Notice that this is basically just the “line up the indices” rule that we discussed when
we introduced index notation. CAUTION: if you want to do this analysis using matrix
multiplication techniques that you learned in linear algebra, you must be very careful — it
is quite easy to go awry. See my comment in the final section of these lecture notes.

I’ve gone through the calculation of how the metric transforms with some care because I
want to make clear the principle behind how we transform these components. In a few pages,
we are going to apply the ideas discussed here to tensors in general; indeed, the behavior of
quantities under transformation is central to our definition of what a tensor is. That said,
it must be noted that for the metric the final result is so simple that all the calculation
presented above surely will feel like distressing overkill: ηαβ is represented by the matrix

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (9.8)

in all Lorentz frames. This can be proved by computing Eq. (9.7).
One last detail: you might be wondering what happened, in Eq. (9.3), with the unit

vectors which go into the vectors ~a and ~b. After all, if ~a = aα~eα and ~b = bβ~eβ, shouldn’t it
also be the case that

~a ·~b =
(
aαbβ

)
(~eα · ~eβ) (9.9)

is exactly equivalent to the form we wrote down in involving ηαβ?
The answer is certainly yes. Comparing Eqs. (9.3) and (9.9) shows us that for these

forms to be equivalent, then we must have

~eα · ~eβ = ηαβ . (9.10)

This, at last, allows us to see how the geometric objects ~eα are, in fact, unit vectors: the
scalar product of any two unit vectors is zero if α 6= β; the scalar product is 1 when α = β
and correspond to one of the spatial directions; and the scalar product is −1 when α = β = t.

67



The negative scalar product is what we expect for timelike vectors, so ~et · ~et = −1 should
make sense, although it looks starkly different from the “modulus squared” you have seen
with unit vectors in previous classes.

As discussed above, ηαβ is represented by the matrix (9.8) in all reference frames. This
means that when we change frames, and then build the unit vectors in the new frame,

~eµ′ = Λα
µ′~eα , (9.11)

we must have ~et′ · ~et′ = −1, ~ex′ · ~ex′ = 1, ~ex′ · ~ez′ = 0, etc. You will test out this expectation
on an upcoming problem set.

We wrap up our discussion of the metric with a few comments:

• Note that writing out that matrix over and over again is tedious and tiring. As short-
hand, we will often write diag(−1, 1, 1, 1) rather than the full 4 × 4 matrix. This is
shorthand for “the matrix which has −1, 1, 1, 1 on the diagonal, and has zero every-
where else.”

• For reasons that will be clearer in the next section, it is useful to define an inverse
metric: we define ηαβ by the rule that

ηαβηβγ = δαγ . (9.12)

Recall that δαγ is known as the Kronecker delta. It equals 1 if α = γ, and equals 0
otherwise [equivalently, we can say δαγ

.
= diag(1, 1, 1, 1).] The matrix representation of

the components ηαβ is exactly the same as the matrix representation of the components
ηαβ — both are given by diag(−1, 1, 1, 1).

• The metric is not always going to be as simple as diag(−1, 1, 1, 1). The metric becomes
more complicated when we start using different coordinate systems; and, it becomes
significantly more complicated when we move from special relativity to general relativ-
ity. In these cases, the components of the metric become functions of the coordinates.
We will denote the metric by gαβ when it becomes necessary for us to make it more
complicated; we will always use ηαβ for the metric that is represented by the matrix
diag(−1, 1, 1, 1). This is the form that we use in special relativity with Cartesian spatial
coordinates. (Such coordinates are often called inertial coordinates, since an observer
at constant Cartesian spatial coordinate moves with constant velocity in all Lorentz
frames.)

• Finally, the word “metric” comes from a root that means to measure. This is because
by using the metric we can write the invariant interval ds2 = ηαβdx

α dxβ — the metric
is the mathematical object which introduces a notion of measurable distance between
two events, one located at xα, the other at xα+dxα. This may seem fairly trivial given
what we have discussed so far, but it becomes substantially less trivial when we move
into more complicated geometries. In those cases, we will write ds2 = gαβdx

α dxβ.
The behavior of gαβ is very important for understanding the distance between two
coordinate points in these more complicated cases.
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9.2 Lowering and raising indices

When we compute ~a ·~b = ηαβa
αbβ, we say that we are contracting the metric with ~a and ~b

on the indices α and β. What do we get if we contract the metric with a single vector, on
only one index? In other words, what is ηαβa

α?
As is the way in mathematics, when we encounter a construction like this, we use it to

define something new. In this case, we define a quantity with an index in the “downstairs”
position:

aβ ≡ ηαβa
α . (9.13)

For reasons that are hopefully obvious, this operation is called lowering the index on the
vector components aα. The components in the “downstairs” position are sometimes called
dual to the components with index “upstairs.”

In special relativity using inertial coordinates, lowering the index flips the sign of the zero
component: a0 = −a0, but a1 = a1, a2 = a2, a3 = a3. Lowering the index gives us another
way to construct the inner product:

~a ·~b = aαb
α = aαbα . (9.14)

If the metric lowers an index, then it is hopefully not too surprising that the inverse metric
raises it:

ηαβaα = ηαβ (ηαµa
µ) =

(
ηαβηαµ

)
aµ = δβµa

µ = aβ . (9.15)

This is why the inverse metric was introduced — it gives us a tool to reverse the lowering
operation which the metric performs.

How do the components aα transform between reference frames? You can probably
guess based on the “line up the indices” rule, but to be sure, let’s carefully compute how
components in the frame of O′ are related to components in the frame of O:

aα′ = ηα′β′aβ
′

= (Λµ
α′Λν

β′ηµν)
(

Λβ′
σa

σ
)

=
(

Λµ
α′Λν

β′Λβ′
σ

)
ηµνa

σ

= Λµ
α′δνσηµνa

σ

= Λµ
α′ηµνa

ν

= Λµ
α′aµ . (9.16)

On the first line, we write the lowering operation with all quantities written using components
in the frame of O′. On the second line, we introduce the Lorentz transformation matrices
that express those O′-frame quantities in terms of O-frame quantities. On the third line, we
rearrange the terms slightly, then on the fourth line we sum over the index β′. This yields
the Kronecker delta by combining the second and third Lorentz transformation matrices.
On the fifth line, we sum over the index σ, which (thanks to the properties of the Kronecker
delta) changes the aσ to aν . On the last line, we lower the index. The end result shows that
to transform “downstairs” components, we indeed just “line up the indices.”

As mentioned in a previous lecture, “upstairs” components are often called contravariant,
and downstairs ones are called covariant. We now see that the metric and inverse metric are
the tools we use to flip between the two forms. This holds up in general, including when the
metric becomes more complicated than diag(−1, 1, 1, 1).
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The 4-vectors we have discussed so far (spacetime displacement, 4-momentum, 4-velocity)
are most “naturally” presented with their indices up. This is largely because they descend
from the spacetime displacement vector, ∆~x = ∆xα~eα, in which the physical quantity we
care about is the set of coordinate displacements ∆xα. There are some quantities which
are most “naturally” expressed using indices down. The prototypical example of this is the
spacetime gradient. Suppose that φ(~x) is a scalar field — that is, it is a field whose value
at the event located ~x away from the origin is the same to all inertial observers. Then we
define its gradient by

Aα =
∂φ

∂xα
≡ ∂αφ . (9.17)

On a problem set, you will show that if xµ
′

= Λµ′
αx

α, then Aα′ = Λµ
α′Aµ — under Lorentz

transformations, the gradient behaves like a “downstairs” index quantity.
The metric lets us define a variation on the gradient. Let us define

xα = ηαµx
µ . (9.18)

The components of this “downstairs” variant of xµ are identical, except for the time-like
piece, which picks up a minus sign:

x0 = −x0 = −ct ; x1,2,3 = x1,2,3 . (9.19)

We define our variant of the gradient using derivatives with respect to xα:

Aα =
∂φ

∂xα
≡ ∂αφ . (9.20)

It’s not hard to show that this quantity transform like an “upstairs” index quantity, hence
our association of it with Aα.

One of the places where this is really useful is that we can combine and contract the
two notions of gradient to produce a combination of second derivatives that is a Lorentz
invariant operator. Let’s look at what happens when we act both notions of gradient with
the indices contracted onto scalar field φ:

∂α∂αφ = − 1

c2
∂2φ

∂t2
+
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
≡ �φ . (9.21)

You may recognize this combination of derivatives as exactly what we have for quantities
that obey a wave equation. Indeed, the combination ∂α∂α, often denoted with the “box”
symbol �, is called the wave operator. Notice that it has no free indices.

9.3 Tensors

The metric is an example of a family of mathematical objects called tensors which are used
in many places in physics. They are particularly important in both special and general
relativity.

Tensors are geometric objects whose components are represented by quantities with in-
dices on them. The metric tensor is the first example we have seen of a tensor with two
indices, but this generalizes — tensors can have an arbitrary number1 of indices. Their

1In my research, I use a tensor with 4 indices more or less daily, and have done work that involves tensors
with 5 and 6 indices.
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defining characteristic is the transformation law: a quantity is a tensor if it transforms with
a transformation matrix “correcting” each of its indices. For example, suppose physics tells
us that we care about a quantity with 4 indices, one in the up position and three down:
Rµ

αβγ. This quantity is a tensor if it transforms between reference frames with the rule

Rµ′
α′β′γ′ = Rµ

αβγΛ
µ′
µΛα

α′Λβ
β′Λγ

γ′ . (9.22)

The number of indices used for a tensor’s components (and hence the number of transfor-
mation matrices used to transform it) tells us the tensor’s rank. The example (9.22) is a
rank-4 tensor. The metric is a rank-2 tensor. Vectors are rank-1 tensors; they transform
using one transformation matrix. Scalars — Lorentz invariants — are often considered to
be rank-0 tensors; they transform with no transformation matrices, since they are the same
in all frames. Note that the wave operator we defined in the previous section acts like a
scalar (more properly, a “scalar operator,” because it defines a combination of derivatives
that operate in the same way in all frames).

In 8.033, we will work almost entirely with tensors of rank 0, 1, and 2. (We will briefly
discuss higher rank tensors when we move from special relativity to general relativity, but
the discussion will be largely qualitative.) Rank-2 tensors are sufficiently important that
they are worth some detailed discussion. Many rank-2 tensors can be regarded as a quantity
that, in essence, points in two directions at once. For example, in a few lectures we will
discuss a quantity called the “stress-energy tensor” which describes the flux of 4-momentum.
Components Tαβ of this tensor describe the flux of 4-momentum component pα in the xβ

direction.
In general, rank-2 tensors in spacetime have 16 components — 4 for each index. How-

ever, many rank-2 tensors have symmetry properties that allows us to relate some of the
components to each other:

• A tensor Sαβ is symmetric if it has the property that Sαβ = Sβα. This reduces the
number of independent components from 16 to 10: the four components on the diag-
onal, plus half of the 12 off-diagonal components. The stress-energy tensor mentioned
above has this property; so does the metric, even in the general form gαβ.

• A tensor Aαβ is antisymmetric if it has the property that Aαβ = −Aβα. This reduces
the number of independent components from 16 to 6. The four components on the
diagonal must be zero (this is the only solution to Aαβ = −Aβα if α = β), and we have
half of the 12 off-diagonal components. We will soon find that an antisymmetric tensor
Fαβ allows us to describe electric and magnetic fields in a covariant formulation.

9.4 Aside: Using matrix multiplication to combine tensors and
matrices

Once we start working with rank-2 tensors, there is a class of mistakes that 8.033 instructors
tend to encounter from students who use their knowledge of linear algebra to work through
equations that involve products of tensors. Let me emphasize again that this can be done
correctly, but it requires that you be very careful to think through how the multiplication of
the different tensors works.

Suppose you need to construct a tensor Aαβ which is given by combining three tensors
together. For instance, suppose we have

Aαβ = BµνD
αµF βν . (9.23)

71



By far the most common mistake we see is that people write this as the following (wrong!)
equation:

AWRONG = B · D · F , (9.24)

where

AWRONG =


A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33


WRONG

, B =


B00 B01 B02 B03

B10 B11 B12 B13

B20 B21 B22 B23

B30 B31 B32 B33

 , (9.25)

with D and F defined similarly.
Why is this wrong? When we represent a rank-2 tensor by a matrix, the first index

corresponds to the row, the second index to the column. We need to make sure that when
we contract on indices, we are correctly linking up rows and columns of the different objects.

With this in mind, let’s carefully examine Eq. (9.23). To produce Aαβ, we first contract
Bµν on its first index with the second index of Dαµ. In matrix form, this means we select
column ν of B, we select row α of D, and we combine:

BµνD
αµ 7→ D · B . (9.26)

We also need to contract the second index of Bµν with the second index of F βν . In other
words, when we put things in matrix form, we select row µ of B and combine it with row
β of F. In the language of matrix multiplication, this means we are multiplying B with the
transpose of F.

The correct translation of Eq. (9.23) into matrix form is thus

A = D · B · FT , (9.27)

where the T superscript denotes matrix transpose. We see that the wrong response is wrong
in two ways: it puts the matrices in the wrong order (and since matrix multiplication does
not commute, that can have serious consequences), and it uses F rather than its transpose
FT . (In some cases, failing to use the transpose may be harmless because the underlying
matrix is symmetric, so the matrix and its transpose are identical. That’s a case of getting
lucky — you can’t count on it working. If the matrix is in fact antisymmetric, you’ll wind
up with a minus sign that could drive you slightly mad.)

Carefully following the logic described here to combine rank-2 tensors via matrix mul-
tiplication will work. However, it must be emphasized that simply working with the index
format always just works. You don’t need to do any of this careful vetting of which index is
combining with which, and writing out the matrices accordingly.

It must also be emphasized that this way of mapping index equations into linear algebra
becomes more or less impossible to use once we move beyond rank-2 tensors. For instance,
as I type up these notes, part of my brain is consumed by a research paper I am writing
with a graduate student that is largely concerned with finding solutions to the equation

Dpµ

dτ
= −1

2
Rµ

αβγu
αSβγ . (9.28)

This equation tells us how a body’s momentum changes as it moves through spacetime if the
body’s 4-velocity has components uα, and the body is itself spinning (the tensor components
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Sβγ describe its spin in relativistic language). The operator D/dτ is a special kind of time
derivative, and the tensor components Rµ

αβγ describe the action of gravitational tides in
general relativity. There is really no way we can put an equation like this into a form
that is matrix-like. Instead, we just run through the indices and combine everything by
straightforward multiplication and summation of the quantities written out index by index.
Using computer algebra tools (we live and breathe with Mathematica), this isn’t so bad, as
long as everything is set up and defined carefully.
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