The value of θ and the behavior of $\alpha(t)$ must be determined from the Einstein field equations, which we will do soon. As a setup, it is useful to examine how light and matter behave in this spacetime.

Begin by asking what happens to observers at rest:

$$u^t = c, \quad u^\nu = u^\theta = u^\phi = 0.$$

Examine geodesics: Find that they remain fixed at coordinate (\vec{r}, θ, ϕ).

However, as they are fixed there, the proper separation of different observers changes as $a(t)$ evolves. These observers "co-move" as the universe's geometry changes—they are "comoving" observers.

Next, examine light—Crucial, since we use it to measure and understand our universe.

For simplicity, focus on $d\epsilon = 0$. (Calculation can be generalized to $d\epsilon = \pm 1$, but it is messy.)

Imagine that light is emitted at some time t, and received by an observer at some later time t'. It's enough to consider light that moves radially, so we'll put $\vec{p} = (p^t, p^\nu, 0, 0)$.
Goal: Compare energy of light when it is emitted to the energy when it is received. To do this, we imagine a comoving observer at emission and reception:
\[E_{\text{emit}} = -\vec{p}_{\text{emit}} \cdot \vec{v}_{\text{emit}} = \vec{p}_{\text{emit}}^+ c \]

Since \(\vec{v} = -c \) for a comoving observer.

Now, let's propagate this across spacetime as a radial geodesic and see what energy it gets at \(t = t_0 \).

Two rules regarding the light:

1. Light-like trajectory, so \(\vec{p} \cdot \vec{v} = 0 \):
 \[-(p^+)^2 + a^2 (t_0) (p^-)^2 = 0 \Rightarrow p^- = p^+ / a(t_0) \]

2. Geodesic, so we extremize

\[L = \frac{1}{2} \sum g_{\mu \nu} \frac{dx^\mu}{dx^\lambda} \frac{dx^\nu}{dx^\lambda} \]

\[= -\frac{c^2}{2} \left(\frac{dt}{dx} \right)^2 + \frac{a^2 (t_0)}{2} \left(\frac{dx}{dx} \right)^2 \]
Let's focus on the $x^0 = ct$ component:

$$\frac{\partial L}{\partial x^0} = \frac{1}{c} \frac{\partial L}{\partial t} = \frac{1}{c} a \dot{a} \left(\rho^2 \right)_t, \quad \ddot{a} = \frac{da}{dt}$$

$$\frac{\partial L}{\partial \frac{dx^0}{dx}} = -c \frac{dt}{dx} = -\rho_t$$

$$\frac{d}{dx} \left[\frac{\partial L}{\partial \frac{dx^0}{dx}} \right] = -\frac{dp^t}{dx}$$

$$\frac{\partial L}{\partial x^0} - \frac{d}{dx} \frac{\partial L}{\partial \frac{dx^0}{dx}} = 0 \quad \rightarrow$$

$$\frac{a}{c} \ddot{a} \left(\rho^2 \right)_t + \frac{dp^t}{dx} = 0$$

$$-\frac{1}{c} \dot{a} \left(\rho^2 \right)_t + \frac{dp^t}{dx} = 0$$

But, $\dot{a} \rho_t = \left(\frac{da}{dt} \right) c \frac{dt}{dx} = c \frac{da}{dx}$

Our equation becomes

$$\frac{da}{dx} \rho_t + \frac{dp^t}{dx} = 0$$

$$-\frac{da}{dx} = -\frac{dp^t}{dx} / \rho_t$$

Integrate both sides from $\lambda = \lambda_e$ (corresponding to $t = t_e$) to $\lambda = \lambda_{re}$ (corresponding to $t = t_{re}$):

$$\ln \left[\frac{\rho_t (t_e)}{\rho_t (t_{re})} \right] = -\ln \left[\frac{a (t_{re})}{a (t_e)} \right]$$
or \[\frac{pt(t_e)}{pt(t_e)} = \frac{a(t_e)}{a(t_e)} \]

We measure with a comoving observer, and so \[E_{\text{rec}} = pt(t_e)c, \] which gives us

\[\frac{E_{\text{rec}}}{E_{\text{emit}}} = \frac{a(t_e)}{a(t_e)} \]

In words, this means that the way energy associated with light behaves gives us a way to directly probe the scale factor of the universe. This is **HUBBLE** important! How do we use it?

Excited atoms and molecules emit light with distinct spectral lines:

\[\lambda_1, \lambda_2, \lambda_3, \lambda_4: \text{Very well characterized by lab measurements.} \]

Each wavelength corresponds to a distinct energy level: \[E = h\nu = \frac{hc}{\lambda}. \] When we measure it, the light has been redshifted due to the scale factor's evolution:
\[
\frac{\lambda_1'}{\lambda_1} = \frac{\lambda_2'}{\lambda_2} = \frac{\lambda_3'}{\lambda_3} = \frac{\lambda_4'}{\lambda_4} = \frac{a(t_e)}{a(t_0)} = 1 + z,
\]

where \(z = \text{"the redshift"} \)

Do this for many sources, build a map of how the scale factor evolves.

Next: How do we get the evolution of the scale factor as a function of time, and how does this relate to the matter content of the universe?