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Abstract

The LIGO (Laser Interferometer Gravitational-Wave Observatory) detectors have just

completed their first science run, following many years of planning, research, and develop-

ment. LIGO is a member of what will be a worldwide network of gravitational-wave observa-

tories, with other members in Europe, Japan, and—hopefully—Australia. Plans are rapidly

maturing for a low frequency, space-based gravitational-wave observatory: LISA, the Laser

Interferometer Space Antenna, to be launched around 2011. The goal of these instruments

is to inaugurate the field of gravitational-wave astronomy: using gravitational waves as a means

of listening to highly relativistic dynamical processes in astrophysics. This review discusses the

promise of this field, outlining why gravitational waves are worth pursuing, and what they are

uniquely suited to teach us about astrophysical phenomena. We review the current state of the

field, both theoretical and experimental, and then highlight some aspects of gravitational-wave

science that are particularly exciting (at least to this author).

� 2002 Elsevier Science (USA). All rights reserved.

1. Motivation

The current state of gravitational-wave science is very similar to the state of neu-

trino science circa 1950 [1]: we have a mature theoretical framework describing this

form of radiation; we have extremely compelling indirect evidence of the radiation�s
existence; but an unambiguous direct detection has not yet happened. Unlike the
case of neutrinos, however, it is unlikely that a bright laboratory source of gravita-
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tional radiation (analogous to the Savannah river nuclear reactor) will be con-

structed (though see [2] for an alternative view). The only guaranteed sources of

gravitational waves bright enough to be measurable will arise from violent astro-

physical events. Though perhaps somewhat frustrating on the one hand—we must

remain patient while we wait for nature to supply us with a radiation source bright
enough for our fledgling detectors—it offers a great opportunity on the other. Grav-

itational radiation promises to open a unique window onto astrophysical phenom-

ena that may teach us much about ‘‘dark’’ processes in the universe. Once these

detectors have met their ‘‘physics goal’’ of directly and unambiguously detecting

gravitational waves, they will grow into observatories that—we hope!—will be rich

sources of data on violent astrophysical events.

The properties of gravitational radiation and the processes that drive its emission

are quite different from the properties and processes relevant to electromagnetic ra-
diation. Consider the following differences:

• Electromagnetic waves are oscillations of electric and magnetic fields that propa-

gate through spacetime. Gravitational waves are oscillations of spacetime itself.

Formally, this is an extremely important difference, and historically has been a

source of some controversy regarding the validity of certain computation schemes

in gravitational-wave theory (with some members of the relativity community

worrying that analogies to electromagnetic radiation were used without sufficient

justification). This difference can make it difficult to define what exactly a gravita-
tional wave is. One must identify an oscillating contribution to the curvature of

spacetime that varies on a lengthscale k=2p much shorter than the lengthscales

over which all other important curvatures vary. In this sense, gravitational waves

are more similar to waves propagating over the ocean�s surface (varying on a

length-scale much smaller than the Earth�s radius of curvature) than they are to

electromagnetic radiation.

• Astrophysical electromagnetic radiation typically arises from the incoherent su-

perposition of waves produced by many emitters (e.g., electrons in the solar co-
rona, hot plasma in the early universe). This radiation directly probes the

thermodynamic state of a system or an environment. Gravitational waves are co-

herent superpositions arising from the bulk dynamics of a dense source of mass-

energy. These waves directly probe the dynamical state of a system.

• Electromagnetic waves interact strongly with matter; gravitational waves do not.

This follows directly from the relative strength of the electromagnetic and gravi-

tational interactions. The weak interaction strength of gravitational waves is both

blessing and curse: it means that gravitational waves propagate from emission to
observers on the Earth with essentially zero absorption, making it possible to

probe astrophysics that is hidden or dark—e.g., the coalescence and merger of

black holes, the collapse of a stellar core, the dynamics of the early universe. This

also means that the waves interact very weakly with detectors, necessitating a

great deal of effort to ensure their detection. Also, because many of the best

sources are hidden or dark, they are very poorly understood today—we know very

little about what are likely to be some of the most important sources of gravita-

tional waves.
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• The direct observable of gravitational radiation is the waveform h, a quantity that

falls off with distance as 1=r. Most electromagnetic observables [3] are some kind

of energy flux, and so fall off with a 1=r2 law. This means that relatively small im-

provements in the sensitivity of gravitational-wave detectors can have a large im-

pact on their science: doubling the sensitivity of a detector doubles the distance to
which sources can be detected, increasing the volume of the universe to which

sources are measurable by a factor of 8. Every factor of two improvement in

the sensitivity of a gravitational-wave observatory should increase the number

of observable sources by about an order of magnitude.

• Electromagnetic radiation typically has a wavelength smaller than the size of the

emitting system, and so can be used to form an image of the source, exemplified by

the many beautiful images observatories have provided over the years. By con-

trast, the wavelength of gravitational radiation is typically comparable to or larger
than the size of the radiating source. Gravitational waves cannot be used to form

an image. Instead, gravitational waves are best thought of as analogous to sound:

the two polarizations carry a stereophonic description of the source�s dynamics.

Many researchers in gravitational-wave physics illustrate their work by playing

audio encodings of expected gravitational-wave sources and of detector noise.

Some source examples from this author�s research can be found at [4]; I leave it

to the reader to judge whether they are beautiful or not.

• In most cases, electromagnetic astronomy is based on deep imaging of small fields
of view: observers obtain a large amount of information about sources on a small

piece of the sky. Gravitational-wave astronomy, by contrast, will be a nearly all-

sky affair: gravitational-wave detectors have nearly 4p steradian sensitivity to

events over the sky. A consequence of this is that their ability to localize a source

on the sky is not good by usual astronomical standards; but, it means that any

source on the sky will be detectable, not just sources towards which the detector

is ‘‘pointed.’’ The contrast between the all-sky sensitivity but poor angular resolu-

tion of gravitational-wave observatories, and the pointed, high angular resolution
of telescopes is very similar to the angular resolution contrast of hearing and sight,

strengthening the useful analogy of gravitational waves with sound.

These differences show why we believe that gravitational-wave astronomy will open a

radically new observational window for astrophysics, and motivate the efforts to

construct sensitive gravitational-wave detectors. The last two points in particular

explain why we have chosen to describe gravitational-wave astronomy as ‘‘listening

to the universe.’’ (Marcia Bartusiak similarly expanded on this theme in her very

engaging book ‘‘Einstein�s Unfinished Symphony’’ [5].) Gravitational-wave astro-
physics can be thought of as learning to speak the language of gravitational-wave

sources so that we can understand and learn about the sources that the new detectors

will measure.

This paper surveys the current state of this field. Sections 2 and 3 are review ma-

terial—Section 2 discusses the major background concepts associated with gravita-

tional radiation and gravitational-wave detectors, and Section 3 surveys

astrophysical sources and detection methods, categorizing them by the frequency

band in which they primarily radiate. We then focus on several aspects of gravita-
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tional-wave astronomy involving black holes that are of particular interest to this au-

thor. Section 4 discusses the importance of binary black hole systems as sources of

gravitational waves, and what can be learned from such observations from the stand-

point of astrophysics and physics generally. Section 5 discusses in detail a special

kind of binary black hole system—extreme mass ratio binaries, in which one black
hole in the binary is far more massive than the other. We discuss the particularly

powerful and interesting analyses that measurement of these waves can make possi-

ble, and then review the challenges that must be overcome to understand the lan-

guage of these sources.

2. Major concepts of gravitational-wave physics

The idea that radiation of some sort might be associated with the gravitational

interaction has a surprisingly long pedigree. As early as 1776, Laplace [6] suggested

that an apparent secular acceleration in the Moon�s orbit (deduced by Edmund Hal-

ley from a study of medieval solar eclipses recorded by Al-Batanni and of still older

eclipses recorded by Ptolemy [7]) could be explained by requiring that the gravita-

tional interaction propagate at finite speed. (The correct explanation of this effect

turned out to be tidal transfer of the Earth�s rotational angular momentum to the

Moon�s orbit [7].) Poincar�ee somewhat tentatively resurrected this idea in 1908 in
an attempt to explain the anomalous perihelion shift of Mercury [8]. (This effect

was eventually explained by the nonlinear ‘‘post-Newtonian’’ effect of relativistic

gravity [9].)

Gravitational waves finally and (almost) unambiguously entered the lexicon of

physics as a natural consequence of general relativity. Soon after general relativity

was introduced, Einstein [10] predicted the existence of gravitational waves in a

1916 paper. This analysis was flawed by a few important algebraic errors, which were

corrected in a 1918 paper [11]. Einstein showed that gravitational radiation arises
from variations in a source�s quadrupole moment, and derived (with a factor of 2

error) what has come to be called the ‘‘quadrupole formula’’ for the rate at which

the radiation carries energy away from the source. This is what one expects intui-

tively—gravitational waves ‘‘arise from the acceleration of masses in a manner sim-

ilar to the generation of electromagnetic radiation from the acceleration of charges.

At lowest order, electromagnetic waves come from the time changing charge dipole

moment, and are thus dipole waves; monopole EM radiation would violate charge

conservation. We expect (at lowest order) gravitational waves to come from the time
changing quadrupolar distribution of mass and energy, since monopole gravitational

waves would violate mass-energy conservation, and dipole waves would violate mo-

mentum or angular momentum conservation.

The parenthetical ‘‘almost’’ at the beginning of the preceding paragraph refers to

a rather lengthy controversy over the formal underpinnings of gravitational radia-

tion calculations. These controversies mostly came to an end in the 1980s, thanks

in large part to the careful, rigorous calculations of Thibault Damour and collabo-

rators (cf. [12] and references therein) and the excellent correspondence to observa-
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tions of the Hulse–Taylor binary pulsar [13,14]; see [7] for extended discussion. It is

now generally accepted that Einstein�s original quadrupole formula (corrected for

the factor of 2 error) properly describes at lowest order the energy flow from a radi-

ating source (even if that source has strong self gravity, a major issue contributing to

the aforementioned controversy), and we are likewise confident that theory can go
well beyond this lowest order (see, e.g., the review by Blanchet [15] and references

therein).

Gravitational waves act tidally, stretching and squeezing any object that they pass

through. Their quadrupolar character means that they squeeze along one axis while

stretching along the other. When the size of the object that the wave acts upon is

small compared to the wavelength (as is the case for LIGO), forces that arise from

the two GW polarizations act as in Fig. 1. The polarizations are named ‘‘+’’ (plus)

and ‘‘�’’ (cross) because of the orientation of the axes associated with their force
lines.

Interferometric gravitational-wave detectors measure this tidal field by observing

their action upon a widely separated set of test masses. In ground-based interferom-

eters, these masses are arranged as in Fig. 2. The space-based detector LISA arranges

its test masses in a large equilateral triangle that orbits the sun, illustrated in Fig. 3.

On the ground, each mass is suspended with a sophisticated pendular isolation sys-

tem to eliminate the effect of local ground noise. Above the resonant frequency of the

pendulum (typically of order 1Hz), the mass moves freely. (In space, the masses are
actually free floating.) In the absence of a gravitational wave, the sides L1 and L2

shown in Fig. 2 are about the same length L.

Fig. 1. The lines of force associated with the two polarizations of a gravitational wave (from [17]).

Fig. 2. Layout of an interferometer for detecting gravitational waves (from [17]).
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Suppose the interferometer in Fig. 2 is arranged such that its arms lie along the x

and y axes of Fig. 1. Suppose further that a wave impinges on the detector down the

z axis, and the axes of the + polarization are aligned with the detector. The tidal

force of this wave will stretch one arm while squeezing the other; each arm oscillates

between stretch and squeeze as the wave itself oscillates. The wave is thus detectable

by measuring the separation between the test masses in each arm and watching for

this oscillation. In particular, since one arm is always stretched while the other is
squeezed, we can monitor the difference in length of the two arms:

dLðtÞ � L1ðtÞ � L2ðtÞ: ð1Þ
For the case discussed above, this change in length turns out to be the length of the

arm times the + polarization amplitude:

dLðtÞ ¼ hþðtÞL: ð2Þ
The gravitational wave acts as a strain in the detector; h is often referred to as the

‘‘wave strain.’’ Note that it is a dimensionless quantity. Eq. (2) is easily derived by

applying the equation of geodesic deviation to the separation of the test masses and

using a gravitational-wave tensor on a flat background spacetime to develop the

curvature tensor; see [18], Section 9.2.2 for details.

We obviously do not expect astrophysical gravitational-wave sources to align
themselves in as convenient a manner as described above. Generally, both polariza-

tions of the wave influence the test masses

dLðtÞ
L

¼ F þhþðtÞ þ F �h�ðtÞ � hðtÞ: ð3Þ

The antenna response functions F þ and F � weight the two polarizations in a

quadrupolar manner as a function of a source�s position and orientation relative to

the detector; see [18], Eqs. (104a,b) and associated text.

The energy flux carried by gravitational waves scales as _hh2 (where the overdot de-
notes a time derivative). In order for the energy flowing through large spheres to be

conserved, h must fall off with distance as 1=r. As discussed above, the lowest order

Fig. 3. Orbital configuration of the LISA antenna.
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contribution to the waves arises from changes in a source�s quadrupole moment. To

order of magnitude, this moment is given by Q � ðsource massÞðsource sizeÞ2. By di-

mensional analysis, we then know that the wave strain must have the form

h � G
c4

€QQ
r
: ð4Þ

The second time derivative of the quadrupole moment is given approximately by
€QQ ’ 2Mv2 ’ 4Ens

kin; v is the source�s internal velocity, and Ens
kin is the non-spherical

part of its internal kinetic energy. Strong sources of gravitational radiation are
sources that have strong non-spherical dynamics—for example, compact binaries

(containing white dwarfs, neutron stars, and black holes), mass motions in neutron

stars and collapsing stellar cores, the dynamics of the early universe.

Violent events that are likely to be interesting gravitational-wave sources are very

rare—for example, supernovae from the collapse of massive stellar cores appear to

occur in our galaxy once every few centuries. For our detectors to have a realistic

chance of measuring observable events, they must be sensitive to sources at rather

large distances. For example, to have an interesting shot at measuring the coales-
cence of binary neutron star systems, we need to reach out to several hundred mega-

parsecs (i.e., a substantial fraction of 109 light years) [19–21]. For such coalescences,

Ens
kin=c2 � 1 solar mass (� 1M
). Plugging into Eq. (4) gives the estimate

h � 10�21–10�22: ð5Þ

This sets the sensitivity required to measure gravitational waves. Combining this

scale with Eq. (3) tells us that for every kilometer of baseline L we need to be able to

measure a distance shift dL of better than 10�16 cm.

This is usually the point at which people decide that gravitational-wave scientists

are not playing with a full deck. How can we possibly hope to measure an effect that

is �1012 times smaller than the wavelength of visible light? For that matter, how is it
possible that thermal motions do not wash out such a tiny effect?

That such measurement is possible with laser interferometry was analyzed thor-

oughly and published by Weiss in 1972 [22]. (It should be noted that the possibility

of detecting gravitational waves with laser interferometers has an even longer his-

tory, reaching back to Pirani in 1956 [23], and has been independently invented by

Gertsenshtein and Pustovoit in 1962 [24] and Weber in the 1960s (unpublished),

prior to Weiss�s detailed analysis. See Section 9.5.3 of [18] for further discussion.) Ex-

amine first how a laser with a wavelength of 1 lm can measure a 10�16 cm displace-
ment. In a laser interferometer like LIGO, the basic optical layout is as sketched in

Fig. 2. A carefully prepared laser state is split at the beamsplitter and sent into the

Fabry–Perot arm cavities of the detector. The reflectivities of the mirrors in these

cavities are chosen such that the light bounces roughly 100 times before exiting

the arm cavity (i.e., the finesse F of the cavity is roughly 100). This corresponds

to about half a cycle of a 100Hz gravitational wave. The phase shift acquired by

the light during those 100 round trips is

DUGW � 100 � 2 � DL � 2p=k � 10�9: ð6Þ
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This phase shift can be measured provided that the shot noise at the photodiode,

DUshot � 1=
ffiffiffiffi
N

p
, is less than DUGW. N is the number of photons accumulated over the

measurement; 1=
ffiffiffiffi
N

p
is the phase fluctuation in a quantum mechanical coherent state

that describes a laser. We therefore must accumulate �1018 photons over the roughly

0.01 s measurement, translating to a laser power of about 100W. In fact, as was
pointed out by Drever [25], one can use a much less powerful laser: even in the

presence of a gravitational wave, only a tiny portion of the light that comes out of

the interferometer�s arms goes to the photodiode. The vast majority of the laser

power is sent back to the laser. An appropriately placed mirror bounces this light

back into the arms, recycling the light. The recycling mirror is shown in Fig. 2, la-

beled ‘‘R.’’ With it, a laser of �10W drives several hundred watts of input to the

interferometer�s arms.

Thermal excitations are overcome by averaging over many many vibrations. For
example, the atoms on the surface of the interferometers� test mass mirrors oscillate

with an amplitude

dlatom ¼
ffiffiffiffiffiffiffiffiffi
kT

mx2

r
� 10�10 cm ð7Þ

at room temperature T, with m the atomic mass, and with a vibrational frequency

x � 1014 s�1. This amplitude is huge relative to the effect of gravitational radia-

tion—how can we possibly hope to measure the wave? The answer is that atomic

vibrations are random and incoherent. The �7 cm wide laser beam averages over

about 1017 atoms and at least 1011 vibrations per atom in a typical measurement. The

effect is thus suppressed by a factor �
ffiffiffiffiffiffiffiffiffi
1028

p
—atomic vibrations are completely ir-

relevant compared to the coherent effect of a gravitational wave. Other thermal vi-
brations, however, are not irrelevant and in fact dominate LIGO�s noise in certain

frequency bands. For example, the test masses� normal modes are thermally excited.

The typical frequency of these modes is x � 105 s�1 and they have mass m � 10 kg,

so dlmass � 10�14 cm. This, again, is much larger than the effect we wish to observe.

However, the modes are very high frequency, and so can be averaged away provided

the test mass is made from material with a very high quality factor Q—the mode�s
energy is confined to frequencies near x and does not leak into the band we want to

use for measurements. Understanding the physical nature of noise in gravitational-
wave detectors is an active field of current research; see [26–33] and references therein

for a glimpse of recent work. In all cases, the fundamental fact to keep in mind is that

a gravitational wave acts coherently, whereas noise acts incoherently, and thus can be

beaten provided one is able to average away the incoherent noise sources.

3. Gravitational-wave frequency bands and measurement

It is useful to categorize gravitational-wave sources (and the methods for detect-

ing their waves) by the frequency band in which they radiate. Broadly speaking, we

may break the gravitational-wave spectrum into four rather different bands: the ultra

low frequency band, 10�18 HzK f K 10�13 Hz; the very low frequency band,
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10�9 HzK f K 10�7 Hz; the low frequency band, 10�5 HzK f K 1Hz; and the high

frequency band, 1HzK f K 104 Hz.

For compact sources (mass/energy configurations that are of compact support),

the band in which gravitational waves are generated is typically related to the

source�s size R and mass M. R is meant to set the scale over which the source�s dy-
namics vary; for example, it could be the actual size of a particular body, or the sep-

aration of members of a binary. The ‘‘natural’’ gravitational-wave frequency of such

a source is fGW � ð1=2pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
. Because RJ 2GM=c2 (the Schwarzschild radius

of a mass M), we can estimate an upper bound for the frequency of a compact

source:

fGWðMÞ < 1

4
ffiffiffiffiffiffi
2p

p c3

GM
’ 104 Hz

M


M

� �
: ð8Þ

This is a rather hard upper limit, since many interesting sources are quite a bit larger

than 2GM=c2, or else evolve through a range of sizes before terminating their

emission at R � 2GM=c2. Nonetheless, this frequency gives some sense of the types
of compact sources that are likely to be important in each band—high frequency

compact sources are of stellar mass (several solar masses); low frequency compact

sources are of thousands to millions of solar masses, or else contain widely separated

stellar mass bodies; etc. Other interesting sources of waves, particularly in the lower

frequency bands, are not well-described by these compact body rules; we will discuss

them separately in greater depth below.

3.1. High frequency

The high frequency band, 1HzK f K 104 Hz, is the band targeted by the new gen-

eration of ground-based laser interferometric detectors, such as LIGO. (It also cor-

responds roughly to the audio band of the human ear: when converted to sound,

LIGO sources are human audible without any frequency scaling.) The low frequency

end of this band is set by the fact that it is extremely difficult to isolate against

ground vibrations at low frequencies, and probably impossible to isolate against

gravitational coupling to ground vibrations, human activity, and atmospheric mo-
tions [31–33]. The high end of the band is set by the fact that it is unlikely any inter-

esting gravitational-wave source radiates at frequencies higher than a few

kilohertz—from the arguments sketched above, such a source would have to be rel-

atively low mass but extremely compact.

The operating principles of a ground-based laser interferometric detector have al-

ready been sketched in Section 2 [cf. the text following Eq. (5)]. The curve describing

the sensitivity of such detectors typically takes a shape similar to that shown in Fig.

4. At high frequencies, the detectors� sensitivities rapidly degrade because of photon
shot noise—fluctuations in the number of photons used in the measurement process.

Making a measurement at a frequency f essentially means averaging for a timescale

T ¼ 1=f . As the time T becomes shorter, a smaller number of photons are gathered

in the course of the measurement, and hence the typical fluctuation in the number of

photons is relatively more important. At intermediate frequencies, thermally excited
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normal modes in the test mass mirrors (at the ends of the arms in Fig. 2) and in the

mirrors� suspensions dominate the noise budget. The resonant frequencies of these
modes are carefully chosen to be rather far above the band of greatest interest for

gravitational-wave observation; and, the Q of the masses and suspensions are made

as large as is practical so that the modes� energy bleeds into the gravitational-wave

band as little as possible. Some contamination is of course inevitable. At very low

frequencies, seismic motions dominate the detectors� noise. The test masses are care-

fully suspended on multi-level pendular systems to isolate them from local ground

motions. This makes the masses effectively free falling above the resonant frequency

of the pendulum; below that frequency, however, the noise due to ground motion
dominates the motion spectrum of the masses.

Several interferometric gravitational-wave observatories are either operating or

being completed in the United States, Europe, Japan, and Australia. Multiple obser-

vatories widely scattered over the globe are extremely important, both as checks on

one another for assured detection and to aid in the interpretation of measurements.

For example, position determination and thence measurement of the distance to a

source follows from triangulation of time-of-flight differences between separated de-

tectors. The major interferometer projects are:
• LIGO. The Laser Interferometer Gravitational-Wave Observatory currently con-

sists of three operating interferometers: a single four kilometer interferometer in

Livingston, Louisiana, as well as a pair of interferometers (four kilometers and

Fig. 4. Sensitivity goals of the initial LIGO interferometers, and facility limits on the LIGO sensitivity

(taken from [16]).
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two kilometers) in the LIGO facilities at Hanford, Washington. The sites are sep-

arated by 3000 km and are situated to support coincidence analysis of events.

• Virgo. Virgo is a three kilometer French-Italian detector under construction near

Pisa, Italy [34]. In most respects, Virgo is quite similar to LIGO. A major differ-

ence is that Virgo employs a very sophisticated seismic isolation system that prom-
ises extremely good low frequency sensitivity.

• GEO600. GEO600 is a six hundred meter interferometer constructed by a Ger-

man-English collaboration near Hannover, Germany [35]. Despite its shorter

arms, GEO600 is expected to achieve sensitivity comparable to the multi-kilometer

instruments by incorporating advanced interferometry techniques from the begin-

ning. This will make it an invaluable testbed for technology to be used in later gen-

erations of the larger instruments, as well as enabling it to make astrophysically

interesting measurements.
• TAMA300. TAMA300 is a three hundred meter interferometer operating near To-

kyo. It has been in operation for several years now [36]; the most recent run

achieved a displacement sensitivity 10�16 cm=
ffiffiffiffiffiffiffi
Hz

p
[37] at frequencies near

1000Hz. The TAMA team is currently designing a three kilometer interferometer

[38], building on their experiences with the three hundred meter instrument.

• ACIGA. The Australian Consortium for Interferometric Gravitational-Wave As-

tronomy is currently constructing an eighty meter research interferometer near

Perth, Australia [39], hoping that it will be possible to extend it to multi-kilometer
scale in the future. Such a detector would likely be a particularly valuable addition

to the worldwide stable of detectors, since all the Northern Hemisphere detectors

lie very nearly on a common plane. An Australian detector would be far outside

this plane, allowing it to play an important role in determining the location of

sources on the sky.

All of these detectors have or will have sensitivities similar to that illustrated in Fig. 4

(which shows, in particular, the sensitivity goal of the first generation of LIGO in-

terferometers). This figure also shows the ‘‘facility limits’’—the lowest noise levels
that can be achieved even in principle within an interferometer facility. The low level

facility limits come from gravity-gradient noise: noise arising from gravitational

coupling to fluctuations in the local mass distribution (such as from seismic motions

in the earth near the test masses [31], human activity near the detector [32], and

density fluctuations in the atmosphere [33]). At higher frequencies, the facility limit

arises from residual gas (mostly hydrogen) in the interferometer vacuum system.

Stray molecules of gas effectively cause stochastic fluctuations in the index of re-

fraction, a source of noise as we try to make ever more precise measurements.
There is a great deal of room for improvement between the sensitivity goals of the

first detectors and the facility limits. Much active research and development work is

geared towards developing improved interferometers which will have greater astro-

physical reach than the first generation of detectors. The first detectors have been de-

signed somewhat conservatively, ensuring that they can be operated for several years

without requiring too much technology development. Upgraded detectors will have

the seismic ‘‘wall’’ pushed down to lower frequencies and will have noise curves that

are moderately ‘‘tunable,’’ shaping the detector response to chase down signals that
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are particularly interesting or important [29,30,40,41]. We should emphasize that, at

present, much effort is being put into reaching the initial sensitivity goals. The LIGO

detectors have made enormous strides in improving their sensitivity recently (gaining

several orders of magnitude over the course of 2002), but are still some distance from

the design goals. Seismic noise in particular has proven to be a greater problem than
was anticipated (largely because of increased human activity near the two LIGO

sites), so improvements to the test masses� isolation systems will be implemented

quite quickly.

In the remainder of this section, we take a quick tour of some of the more well-

understood possible sources of measurable gravitational waves in the high-frequency

band. We emphasize at this point that such a listing of sources can in no way be con-

sidered comprehensive: we are hopeful that some gravitational-wave sources may

surprise us, as has been the case whenever we have studied the universe with a
new type of radiation. If we regard gravitational-wave astrophysics as learning to

speak the language of gravitational-wave sources, then surprise sources will be some-

what akin to discovering a lost language written in an unknown script—interpreting

and understanding their message will be quite difficult.

3.1.1. Compact binaries

Compact binaries—binary star systems in which each member is a collapsed, com-

pact stellar corpse (neutron star or black hole)—are currently the best understood
sources of gravitational waves. Double neutron stars have been studied observation-

ally since the mid 1970s; three such systems [20] tight enough to merge within a few

108 or 109 years have been identified in the galaxy (two in the galactic field, one in a

globular cluster). Detailed studies of these systems currently provide our best data on

gravitational-wave generation [42–44], and led to the 1993 Nobel Prize for Taylor

and Hulse. Extrapolation from these observed binaries in the Milky Way to the uni-

verse at large [19–21] indicates that gravitational-wave detectors should measure at

least several and at most several hundred binary neutron star mergers each year (fol-
lowing detector upgrades; the rates for initial detectors suggest that detection is plau-

sible but not very probable—the expected rate is of order one per decade).

Population synthesis (modeled evolution of stellar populations) indicates that the

measured rate of binaries containing black holes should likewise be interestingly

large (perhaps even for initial detectors) [45–49]. The uncertainties of population

synthesis calculations are rather large, however, due to poorly understood aspects

of stellar evolution and compact binary formation; data from gravitational-wave de-

tectors is likely to have a large impact on this field.
We will revisit and discuss in greater depth this class of sources in Section 4.

3.1.2. Stellar core collapse

Core collapse in massive stars (the engine of Type II supernova explosions) has

long been regarded as likely to be an important source of gravitational waves; see,

for example, [50] for an early review. Stellar collapse certainly exhibits all of the

necessary conditions for strong gravitational-wave generation: large amounts of

mass (1–100M
) flow in a compact region (hundreds to thousands of kilometers)
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at relativistic speeds (v=c � 1=5). However, these conditions are not sufficient to

guarantee strong emission. In particular, the degree of asymmetry in collapse is

not particularly well understood [cf. the text following Eq. (4), arguing that non-

spherical dynamics drives gravitational-wave emission]. If stellar cores are rapidly

rotating, instabilities can develop that are certain to drive strong gravitational-wave
emission. An example of such an instability is the development of a rapidly rotating

bar-like mode in the dense material of the stellar core [51–53]. Such an instability has

a rapidly varying quadrupole moment and potentially generates copious amounts of

gravitational waves.

Fryer et al. [54] recently surveyed the status of core-collapse simulations with an

eye to understanding whether such collapses are likely to produce interesting and

measurable waves. They find that stellar cores in fact are quite likely to have enough

angular momentum to be susceptible to secular or dynamical instabilities such as the
bar mode. The detectability of the waves from these modes will depend quite

strongly on the coherence of the emission mechanism: detectable waves arise from

modes that hold together long enough to radiate several tens of gravitational-wave

cycles without changing their peak frequency too strongly. Even in this case, observ-

ers will need to wait for upgrades before such detection is likely to become common-

place (unless we get lucky and a star collapses relatively close by). Future theoretical

progress in this field will come from detailed three-dimensional simulations of core-

collapse processes. We note that significant progress has been made on this problem
recently [55], and are confident that we will have a grasp of core collapse wave emis-

sion robust enough to enable the design of useful detection algorithms and astro-

physical studies by the time that the upgraded detectors are likely to be operating.

3.1.3. Periodic emitters

Periodic sources of gravitational waves radiate at constant or nearly constant

frequency, like radio pulsars. In fact, the prototypical source of continuous gravi-

tational waves is a rotating neutron star, or gravitational-wave pulsar. A non-
axisymmetric neutron star (caused, for example, by a crust that is somewhat oblate

and misaligned with the star�s spin axis) will radiate gravitational waves with char-

acteristic amplitude

hc �
G
c4

If 2�

r
; ð9Þ

where I is the star�s moment of inertia, f is the wave frequency, and r is the distance

to the source. The crucial parameter � characterizes the degree to which the star is

distorted; it is rather poorly understood. Various mechanisms have been proposed to

explain how a neutron star can be distorted to give a value of � interesting as a

gravitational-wave source; see [56,57] for further discussion. Examples of some in-

teresting mechanisms include misalignment of a star�s internal magnetic field with the

rotation axis [58] and distortion by accreting material from a companion star [59,60].
Whatever the mechanism generating the distortion, it is clear that � will be rel-

atively small, so that hc � 10�24 or smaller—rather weak. (Note that if these

sources were not weak emitters, the backreaction of gravitational-wave emission
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would make their frequencies change more quickly—they would not be periodic

emitters.) Measuring these waves will require coherently tracking their signal for

a large number of wave cycles—coherently tracking N cycles boosts the signal

strength by a factor �
ffiffiffiffi
N

p
. This is actually fairly difficult, since the signal is

strongly modulated by the Earth�s rotation and orbital motion, ‘‘smearing’’ the
waves� power across multiple frequency bands. Searching for periodic gravitational

waves means demodulating the motion of the detector, a computationally intensive

problem since the modulation is different for every sky position. Unless one knows

in advance the position of the source, one needs to search over a huge number of

sky position ‘‘error boxes,’’ perhaps as many as 1014. One rapidly becomes compu-

tationally limited. (Note that radio pulsar searches face this same problem, with the

additional complication that radio pulses are dispersed by the interstellar medium.

However, in this case, it is known in advance which sky position is being examined,
so the computational cost is usually not as great.) For further discussion, see [66];

for ideas about doing hierarchical searches that require less computer power, see

[67].

Finally, we note that the r-mode instability (a source of waves from a current

instability in rotating neutron stars) would generate waves that are nearly periodic

[61–65]. Although the physics of this source is rather different from the physics of

bumpy neutron stars, the character of the waves is quite similar, at least as far as de-

tection goes. We note, though, that recent results [68,69] indicate that the r-mode is
suppressed rather more robustly than previously appreciated. Conventional wisdom

currently suggests that r-mode waves are unlikely to be important sources from iso-

lated neutron stars, though r-modes driven by accretion from a companion may turn

out to be quite important [70]. See [71] for further discussion.

3.1.4. Stochastic backgrounds

Stochastic backgrounds are ‘‘random’’ gravitational waves, arising from a large

number of independent, uncorrelated sources that are not individually resolvable.
A particularly interesting source of backgrounds is the dynamics of the early uni-

verse—an all-sky gravitational-wave background, similar to the cosmic microwave

background. Backgrounds can arise from amplification of primordial fluctuations

in the universe�s geometry, phase transitions as previously unified interactions sepa-

rated, or the condensation of a brane from a higher dimensional space. These waves

can actually spread over a wide range of frequency bands; waves from inflation in

particular span all bands, from ultra low frequency to high frequency. We will dis-

cuss such inflationary waves in greater detail in Section 3.3; here, we briefly discuss
how these backgrounds are characterized at higher frequencies, and the sensitivity to

them that LIGO should achieve.

Stochastic backgrounds are described by their contribution to the universe�s en-

ergy density, qgw. In particular, one is interested in the energy density as a fraction

of that needed to close the universe, over some frequency band

Xgwðf Þ ¼
1

qcrit

dqgw

d ln f
; ð10Þ
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where qcrit ¼ 3H 2
0 =8pG is the critical density needed to close the universe. (H0 is the

value of the Hubble constant today.) Different cosmological sources produce dif-

ferent levels of Xgwðf Þ, centered in different bands. In the high frequency band, waves

produced by inflation are likely to be rather weak: estimates suggest that the spec-

trum will be flat across LIGO�s band, with magnitude Xgw � 10�15 at best [72].
Waves from phase transitions can be significantly stronger, but are typically peaked

around a frequency that depends on the temperature T of the phase transition [73,74]

fpeak � 100Hz
T

105 TeV

� �
: ð11Þ

The temperature required to enter the LISA band, f � 10�4–10�2 Hz, is

T � 100–1000GeV, nicely corresponding to the electroweak phase transition. Waves

arising from extradimensional dynamics should peak at a frequency given by the

scale b of the extra dimensions [75,76]

fpeak � 10�4 Hz
1mm

b

� �1=2

: ð12Þ

For the waves to be in LIGO�s band, the extra dimensions must be rather small,

b � 10�15 m. LISA�s band is accessible for a scale similar to those discussed in

modern brane-world work [77,78].

Because of their random nature, stochastic gravitational waves look just like

noise. Ground-based detectors will measure stochastic backgrounds by comparing

data at multiple sites and looking for ‘‘noise’’ that is correlated [79,80]. For compar-
ing to a detector�s noise, one should construct the characteristic stochastic wave

strain,

hc / f �3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xgwðf ÞDf

q
: ð13Þ

(For further discussion and the proportionality constants, see [79].) Note that this

strain level grows sharply with decreasing frequency. As we will discuss in Section

3.4, observations in the very low frequency band are likely to provide the best

constraints on stochastic waves in the near future.

Early LIGO detectors will have fairly poor sensitivity to the background, con-

straining it to a level Xgw � 5 � 10�6 in a band from about 100 to 1000Hz. This is
barely more sensitive than known limits from cosmic nucleosynthesis [73]. Later up-

grades will be significantly more sensitive, able to detect waves with Xgw � 10�10,

which is good enough to place interesting limits on cosmological backgrounds.

3.2. Low frequency

There is no hope of measuring gravitational waves in the low frequency band,

10�5 HzK f K 1Hz, using a ground-based instrument: even if it were possible to

completely isolate one�s instrument from local ground motions, gravitational cou-

pling to fluctuations in the local mass distribution ultimately limits the sensitivity

to frequencies f J 1Hz. As we shall discuss below, however, many extremely inter-
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esting gravitational-wave sources radiate in this band. The only way to measure

these waves is to build a gravitational-wave observatory in the quiet environment

of space, far removed from low-frequency noise sources.

Such an instrument is currently being designed jointly by NASA in the United

States and ESA, the European Space Agency: LISA, the Laser Interferometer Space
Antenna. If all goes well, LISA would be launched into orbit in or near 2011. Like

LIGO, LISA will be a laser interferometer—changes in the distance between widely

separated test masses will be monitored to find variations consistent with the action

of gravitational waves. However, the scale of LISA is vastly different from that of

LIGO, and so details of its operations are quite different. In particular, LISA has

armlengths L ’ 5 � 106 km, vastly larger than LIGO and all other ground-based de-

tectors. The three spacecraft which delineate the ends of LISA�S arms are placed into

orbits such that LISA forms a triangular constellation orbiting the sun, inclined 60�
with respect to the plane of the ecliptic and following the Earth with a 20� lag. This

configuration is sketched in Fig. 3. Since it essentially shares Earth�s orbit, the con-

stellation orbits the sun once per year, ‘‘rolling’’ as it does so. This orbital motion

plays an important role in pinpointing the position of gravitational-wave sources

by modulating the measured waveform — the modulation encodes source location

and makes position determination possible.

Each spacecraft contains two optical assemblies, each of which houses a 1W laser

and a 30 cm telescope. Because of the extreme lengths of the interferometer�s� arms,
Fabry–Perot interferometry as in LIGO is not at all possible: diffraction spreads the

laser beam over a diameter of about 20 km as it propagates the 5 � 106 km from one

spacecraft to the other. With this much spread, multiple bounces in LISA�S arms ob-

viously are not feasible. Instead, a portion of that 20 km wavefront is sampled with

the telescope. That light is then interfered with a sample of light from the on-board

laser. Each spacecraft thus generates two interference data streams; six signals are

generated by the full LISA constellation. From these six signals, we can construct

the time variations of LISA�s armlengths and then build both gravitational-wave po-
larizations. More information and details can be found in [81–84].

It is worth noting at this point that the LISA armlengths are not constant—as the

constellation orbits, the distances between the various spacecraft vary by about 1%

(including effects such as planetary perturbations). This is far larger than the effect

produced by gravitational waves, which is of order picometers. However, these vari-

ations occur over timescales of order months, and are extremely smooth and well

modeled. It will not be difficult to fit out these very low frequency variations, leaving

clean data in the interesting low-frequency gravitational-wave band. Note also that
these picometer scale variations are not too difficult to measure in this frequency

band: measuring in this band entails gathering photons for a time 10sK T K 1

day. Even though the bulk of the laser�s emitted power is lost due to diffraction, en-

ough photons are gathered on this timescale that the phase shift due to the gravita-

tional-wave can be determined [cf. the argument outlined in and near Eq. (6)].

The gravitational-wave signals are actually read out by monitoring the position of

the so-called ‘‘gravitational sensor’’ on each optical assembly; in particular, the posi-

tion of a ‘‘proof mass’’ which floats freely and constitutes the test mass for the LISA
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antenna is monitored. Because it is freely floating, the proof mass responds solely to

gravitational forces (or, in relativistic language, follows a geodesic of the spacetime).

Micronewton thrusters keep the bulk spacecraft centered on these proof masses,

forcing the craft to follow the average trajectory of the two proof masses. In this

way, LISA is isolated from low frequency noises that could impact the ability to
measure gravitational waves (e.g., variations in solar radiation pressure). This is

called a drag-free system, since such systems were first used to reduce the effect of

Earth�s atmospheric drag on low altitude satellites.

The sensitivity of LISA to gravitational waves is shown in Fig. 5. At high frequen-

cies, the noise budget is dominated by the accuracy with which laser interferometry can

determine variations in the 5 � 106 km distance between proof masses on distant

spacecraft, which is largely limited by photon shot noise. Wiggles in the sensitivity

curve at this point arise because, in this band, the gravitational wavelength is shorter
thanLISA�s armlength; see [85] for further discussion. At lower frequencies, the instru-

mental noise is dominated by spurious accelerations on the proof mass. LISA requires

that these accelerations be kept at a level below 3 � 10�15 m=s2 Hz�1=2 in this band. This

subsystem will be tested by SMART-2 (Small Mission for Advanced Research and

Technology), to be launched in 2006 by ESA with participation from NASA.

Note in Fig. 5 the curve labeled ‘‘Binary confusion estimate’’ over the band

10�4 HzK f K 3 � 10�3 Hz. In this band, LISA�s ‘‘noise’’ actually comes not from

the instrument itself but from a confused stochastic background of gravitational
waves! It is expected that so many binary star systems (primarily double white dwarf

binaries) in the galaxy will be radiating in this band that we will not have sufficient

information to resolve them—102–104 binaries may contribute to the waves mea-

sured in a single frequency bin of width df � 10�7 Hz [86]. This confused back-

ground of waves is ‘‘noise’’ from the point of view of observers wishing to

Fig. 5. LISA sensitivity, including a few interesting known sources, taken from [16]. Points are the ex-

pected signal amplitude of certain known monochromatic binary stars. ‘‘CWDB’’ stands for close white

dwarf binary.
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measure other sources in this band (though of course it is extremely interesting ‘‘sig-

nal’’ to an astrophysicist interested in close binary populations).

This aspect of LISA�s ‘‘noise’’ budget points to an important difference in sources

in the high-frequency and low-frequency bands: whereas many (though certainly not

all) high-frequency sources are short-lived and comparatively rare (e.g., binary coa-
lescence and stellar collapse), most low-frequency sources are quite long-lived and

may not be so rare. As in Section 3.1, we now take a quick tour through some inter-

esting LISA sources.

3.2.1. Periodic emitters

For LIGO, the source of most periodic gravitational waves is expected to be iso-

lated neutron stars, essentially gravitational-wave pulsars. LISA�s periodic sources

will come primarily from binary star systems in the Milky Way. These systems do
not generate waves strong enough to backreact significantly on the system, so that

their frequencies typically change very little or not at all over the course of LISA ob-

servations. Certain systems are well-known in advance to be sources of periodic

waves for the LISA band; cf. the points in Fig. 5. These sources are understood well

enough that they may be regarded as ‘‘calibrators’’—LISA had better detect them, or

else something is wrong!

Aside from these sources that are known in advance, it is expected that LISA will

discover a good number of binary systems that are too faint to detect with telescopes.
Joint observations by LISA and other astronomical instruments are likely to be quite

fruitful, helping to understand these systems much better than can be done with a

single instrument alone. For example, it is typically difficult for telescopes to deter-

mine the inclination of a binary to the line of sight (a factor needed to help pin down

the mass of the binary�s members). Gravitational waves measure the inclination an-

gle almost automatically, since this angle determines the relative magnitude of the

polarizations hþ and h�.

3.2.2. Coalescing binary black holes

Coalescing binary black hole systems will be measurable by LISA to extremely

large distances; even if such events are very rare, the observed volume is enormous,

so that an interesting measured rate seems quite likely. One class of such binaries

consists of systems in which the member holes are of roughly equal mass. These bi-

naries can form following the merger of galaxies (or pregalactic structures) contain-

ing a black hole in their core. Depending on the mass of the binary, the waves from

these coalescences will be detectable to fairly large redshifts (z � 5–10), possibly
probing an early epoch in the formation of the universe�s structure. (The optimal sys-

tem mass is near 105–106M
—the waves from smaller systems are not so loud, and so

cannot be measured quite as well; the waves from larger systems come out at low fre-

quencies where noise is strong.) The rate at which such events are likely to occur,

however, is extremely uncertain. It seems clear that, following the merger of their

host structures, the black holes will form a bound binary. It is not clear, however,

whether this hole becomes bound tightly enough that gravitational-wave emission

importantly impacts its dynamics: some simulations show that the binary ‘‘stalls’’
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well before gravitational waves become important [87]. It is possible that a later

mechanism drives the holes closer together (see, for example, [88]); some observa-

tions hint that this in fact may be happening [89]. If black hole mergers are ‘‘efficient’’

(there is roughly one binary black hole merger for every merger of host structures),

then the rate at which LISA measures these events could be several per year [90].
The other major class of binary black hole systems consists of relatively small bo-

dies (black holes with mass �10M
, neutron stars, or white dwarfs) that are captured

by larger black holes (M � 105–107M
) such as are found at the cores of many gal-

axies. These extreme mass ratio binaries are created when the smaller body is cap-

tured onto an extremely strong field, highly relativistic orbit, generating strong

gravitational waves. Such systems are measurable to a distance of a few gigaparsecs

if the inspiraling body is a 10M
 black hole, and to a distance of a few hundred

megaparsecs if the body is a neutron star or white dwarf. LISA will measure the
waves that come from the last year or so of the smaller body�s inspiral, probing

the nature of the larger black hole�s gravitational field from deep within the hole�s
potential. The rates for such events are, again, not so well understood, depending

in some detail on the dynamical nature of the cores of galaxies. Extremely conserva-

tive estimates typically find that the rate of measurable events for LISA should be at

least several per year [91,92]. Recent thinking suggests that these rates are likely to be

rather underestimated—black holes (which are measurable to much greater dis-

tances) are likely to dominate the measured rate, perhaps increasing the rate to sev-
eral dozen or several hundred per year.

Both of these types of black hole binaries will be discussed in greater depth in Sec-

tions 4 and 5.

3.2.3. Stochastic backgrounds

As discussed in Section 3.1, ground-based detectors can measure a stochastic

background by correlating the data streams of widely separated detectors. LISA ob-

viously cannot do this, since it consists of a single antenna. However, it can take ad-
vantage of a different trick: by combining its six data streams in an appropriate way,

it can construct an observable that is completely insensitive to gravitational waves,

measuring noise only [93]. This makes it possible to distinguish between a noise-like

stochastic background and true instrumental noise, and thereby to learn about the

characteristics of the background [94].

The sensitivity of LISA will not be good enough to set interesting limits on an in-

flationary gravitational-wave background: LISA will only reach Xgw � 10�11, about

four orders of magnitude too large to begin to say something about inflation [72].
However, as was discussed in Section 3.1, LISA�s band is well placed for other pos-

sible sources of cosmological backgrounds. In particular, waves generated by the

electroweak phase transition at temperature T � 100–1000GeV would generate

waves in LISA�s band; they are likely to be detectable if the phase transition is

strongly first order (a scenario that does not occur in the standard model, but is con-

ceivable in extensions to the standard model [74]). Likewise, LISA is well-positioned

to measure waves that may arise from extradimensional dynamics in the early uni-

verse (depending rather strongly on the scale of the extra dimensions [75,76]).
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3.3. Ultra low frequency

The ultra low frequency band, 10�18 HzK f K 10�13 Hz, is better described by

converting from frequency to wavelength: for these waves, 105H�1
0 K kKH�1

0 , where

H�1
0 � 1010 light years is the Hubble length today. Waves in this band oscillate on

scales comparable to the size of the universe. They are most likely to be generated

during inflation: quantum fluctuations in the spacetime metric are parametrically

amplified during inflation to relatively high amplitude. The rms amplitude to which

the waves are amplified depends upon the energy scale of inflation

hrms /
Einfl

mPlanck

� �2

: ð14Þ

Measuring these inflationary gravitational waves would be a direct probe of infla-
tionary physics. Detection of these waves has been described as the ‘‘smoking gun’’

signature of inflation [95].

During inflation, quantum fluctuations impact both the scalar field which drives

inflation itself (the inflaton /) and the metric of spacetime. These scalar and tensor

perturbations, d/ð~rr; tÞ and habð~rr; tÞ, each satisfy a mass-less Klein–Gordon equation.

The Fourier modes of each perturbation, d ~//ð~kk; tÞ and ~hhabð~kk; tÞ, are thus describable

as harmonic oscillators in the expanding Universe [96]. Each mode undergoes zero-

point oscillations in the harmonic potential. However, the potential itself is evolving
due to the expansion of the universe. The evolution of this potential parametrically

amplifies these zero-point oscillations, creating quanta of the field [73]. During infla-

tion, the scale factor grows faster than the Hubble length H�1, and so each mode�s
wavelength likewise grows faster than the Hubble length. Amplification of each

mode occurs while its wavelength is smaller than H�1; when the scale factor has

grown such that kJH�1, the crests and troughs of each mode are no longer in cau-

sal contact and the fluctuation ceases to grow, becoming frozen at its amplified mag-

nitude [96]. Fluctuations in the inflaton seed density fluctuations, dqð~rrÞ ¼
d/ð~rrÞðoV =o/Þ [where V ð/Þ is the potential that drives the inflaton field]. Fluctua-

tions in the spacetime metric are gravitational waves.

Both density fluctuations and gravitational waves imprint the cosmic microwave

background (CMB). First, each contributes to the CMB temperature anisotropy.

However, even a perfectly measured map of temperature anisotropy cannot really

determine the contribution of gravitational waves very well because of cosmic vari-

ance: since we only have one universe to use as our laboratory experiment, we are

sharply limited in the number of statistically independent influences upon the
CMB that we can measure. Large angular scales are obviously most strongly affected

by this variance, and these scales are the ones on which gravitational waves most im-

portantly impact the CMB [97].

Fortunately, the scalar and tensor contributions also impact the polarization of

the CMB. These two contributions can be detangled from one another in a mod-

el-independent fashion. This detangling uses the fact that the polarization tensor

Pabðn̂nÞ on the celestial sphere can be decomposed into tensor harmonics. These har-

monics come in two flavors, distinguished by their parity properties: the ‘‘gradient-
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type’’ harmonics Y G
ðlmÞabðn̂nÞ [which pick up a factor ð�1Þl

under n̂n ! �n̂n], and the

‘‘curl-type’’ harmonics Y C
ðlmÞabðn̂nÞ [which pick up a factor ð�1Þlþ1

under n̂n ! �n̂n].

These harmonics are constructed by taking covariant derivatives on the sphere of

the ‘‘ordinary’’ spherical harmonics Ylmðn̂nÞ; see [98] for details. (An alternative, but

equivalent, formulation labels the gradient-type harmonics ‘‘E-modes’’ and the
curl-type harmonics ‘‘B-modes’’ E [106]: the analogy to electric and magnetic fields

is obvious. Interestingly, the various multipole formalisms used to describe polariza-

tion maps are identical to those used to expand gravitational radiation fields, as in

[107]; see [98] for further discussion.) Because scalar perturbations have no handed-

ness, they only induce gradient-type polarization. Gravitational waves induce both

gradient- and curl-type polarization. Thus, an unambiguous detection of the curl-

type polarization would confirm production of gravitational waves by inflation.

The gradient-type polarization has recently been measured for the first time [99].
These modes are reduced relative to the CMB temperature anisotropy by an order of

magnitude; the curl component should be smaller by an additional order of magni-

tude [100]. Detecting the gravitational-wave component of CMB polarization will be

quite a challenge—aside from the instrumental sensitivity needed to measure this ef-

fect [101], astrophysical foregrounds can cause important complications [102–104],

such as conversion of gradient modes to curl modes [105]. But this is likely to be

the only direct probe of physical processes in the inflationary era.

3.4. Very low frequency

The very low frequency band, 10�9 HzK f K 10�7 Hz, corresponds to waves with

periods ranging from a few months to a few decades. Our best limits on waves in this

band come from observations of millisecond pulsars. First suggested by Sazhin [108]

and then carefully analyzed and formulated by Detweiler [109], gravitational waves

can drive oscillations in the arrival times of pulses from a distant pulsar. The range

encompassed by the very low frequency band is set by the properties of these radio
pulsar measurements: the high end of the frequency band comes from the need to

integrate the radio pulsar data for at least several months; the low end comes from

the fact that we have only been observing millisecond pulsars for a few decades. One

cannot observe a periodicity shorter than the span of one�s dataset!

Millisecond pulsars are very good ‘‘detectors’’ for measurements in this band be-

cause they are exquisitely precise clocks. Lommen [110] has recently performed a

rather massive analysis of the data from several millisecond pulsars that are widely

spaced on the sky. Her analysis extends the data used for a previous analysis [111] so
that nearly 17 years of observations are represented. A detailed description of Lom-

men�s methodology is given in [110]; her punchline is the following limit on the den-

sity of stochastic gravitational waves

XGWh2
100 < 2 � 10�9 ð15Þ

(where h100 is the Hubble constant in units of 100kms�1 megaparsec1). This is the

best observed limit on gravitational waves that has been achieved to date. Though it

is not quite at the level where it can constrain sources of stochastic gravitational-
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wave backgrounds, it is extremely close; with further observations and the inclusion

of additional pulsars in the datasets, it is likely to become interesting quite soon. It is

expected that the background in this band will be dominated by many unresolved

coalescing massive binary black holes [112]—binaries that are either too massive to

radiate in the LISA band, or else are inspiraling towards the LISA band en route to a
final merger several centuries or millenia hence. Constraints from pulsar observa-

tions in this band will remain an extremely important source of data on stochastic

waves in the future—the limits they can set on XGW are likely to be better than can be

set by any of the laser interferometric detectors.

4. Binary black holes

As has been mentioned already in Sections 3.1 and 3.2, one of the most important

sources of gravitational radiation in the high- and low-frequency bands is the coales-

cence of compact objects. One of the reasons for this importance is that this source is

amenable, at least to some degree, to fairly detailed theoretical analysis: for the most

part, the only tools needed to understand the evolution of these systems are the na-

ture of gravitational-wave emission and the manner in which it drives these binaries

to coalesce.

Analysis of binaries becomes considerably more complicated when its members
come close together. Then, the nature of these members can become extremely im-

portant—their finite size and the material of which they are made importantly influ-

ences the binary�s evolution and the character of the waves that it generates. For

binaries that contain neutron stars, the late stages of the ‘‘inspiral’’ (when the mem-

bers of the binary are well separated and evolve primary due to gravitational-wave

backreaction) and the final ‘‘merger’’ (when the bodies come into contact and fuse

into some kind of remnant) will depend in detail on the nature of neutron star matter

[113–117].
The problem remains ‘‘clean,’’ at least in principle, if both members of the binary

are black holes. There is then no matter to complicate the problem—black holes are

vacuum solutions to the Einstein field equations, and so a binary black hole system is

likewise just a vacuum solution. The dynamics of binary black holes can be stated

quite concisely: they are given by the family of dynamical spacetimes, gabðtÞ, which:

(a) satisfy the vacuum Einstein field equations Gab ¼ 0; (b) consist of a pair of widely

separated black holes in the asymptotic past; (c) consist of a single rotating black hole

in the asymptotic future; (d) allow only outgoing radiation to reach distant observers
(who are located at ‘‘outgoing null infinity’’); and (e) allow only ingoing radiation to

propagate down event horizons. [For careful definitions of the Einstein tensor Gab

and outgoing null infinity, see, e.g., [118]. Note that the time parameter t introduced

in the metric gabðtÞ is intended to be any future-directed label that parameterizes the

evolution of the system. For the purposes of gravitational-wave astronomy, a conve-

nient such label is time measured by very distant observers—i.e., us.]

As is often the case in mathematics, the ease with which the problem can be stated

belies the difficulty one has in solving it. The field equation Gab ¼ 0 is shorthand for
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ten coupled nonlinear partial differential equations. The location of event horizons

(upon which one might naively want to place the ‘‘ingoing radiation only’’ boundary

condition) is not known in advance, and as a matter of principle cannot be known

until the full spacetime is built. And, in general relativity one has a great deal of free-

dom to specify coordinates. It is not often clear, for the purposes of a calculation,
what particular choice will turn out to be ‘‘good.’’ Despite their ‘‘clean’’ character,

binary black hole systems are not at all easy to describe.

A useful (albeit very crude) characterization of binary systems breaks their evolu-

tion into three broad epochs. The characterization that we will use here in based on

that presented in [119]; as we will discuss further below, there is a fair amount of ar-

bitrariness associated with this characterization.

The first two epochs have already been mentioned: the inspiral describes the bi-

nary when its members are separated, discrete objects, evolving primarily due to
the backreaction of gravitational-wave emission. The merger which follows describes

the violent dynamics of the two bodies merging into a single body. For binary black

hole systems, this remnant will itself be a black hole. (The remnant most likely will

contain a black hole for binaries with neutron stars as well.) This remnant hole must

‘‘settle down’’ to the Kerr solution [120] which describes all rotating black holes—the

‘‘no hair’’ theorem of general relativity [121] guarantees that the Kerr solution de-

scribes the final state, no matter what conditions describe the binary which produced

it. This ‘‘settling down’’ process has been named the ringdown since the waves gen-
erated in this epoch take the form of damped sinusoids, similar to the sound of a

struck bell. In fact, the quality factor Q of black holes is quite low (QBH � 20 or

so, compared to Qbell � 103–105); when translated into sound, one finds that black

holes don�t ring so much as thud [127]. Ringdown waves ‘‘shave’’ the remnant, en-

suring that all of the ‘‘hairiness’’ characterizing the system right after the merger is

lost, and what remains is a perfectly hairless Kerr black hole [125,126].

Breaking the coalescence process into three broad epochs likewise divides its grav-

itational waves into three broad frequency bands. (This is one reason that this char-
acterization is useful, despite its crudeness—it illustrates what source dynamics are

‘‘audible’’ to the observatories.) Roughly speaking, for inspiral waves we have [119]

f K 400Hz
10M


ð1 þ zÞM

� �
; ð16Þ

where z is the cosmological redshift and M is the total system mass. The ringdown

waves come out at frequency

f � c3

2pGð1 þ zÞM ½1 þ 0:63ð1 � a=MÞ0:3� � ð1200–3200ÞHz
10M


ð1 þ zÞM

� �
: ð17Þ

The parameter a describes the spin of the merged remnant: it is related to the vec-

torial black hole spin ~SS by a � Gj~SSj=Mc, and is in the range 06 a6M . The span in

frequency given in Eq. (17) reflects this range. These ringdown waves are generated

by a bar-like perturbation to the black hole that rotates in the same sense as the

hole�s spin. The ‘‘merger’’ then consists of all waves that come out between these two

frequencies.
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This division into three bands, particularly our definition of the ‘‘merger’’, is

rather crude and ad hoc. The notion of ‘‘inspiral’’ is wholly defensible when the holes

which comprise our binary are widely separated. The binary�s dynamics are then well

described using the post-Newtonian approximation to general relativity [15]: the

lowest order dynamics are described by Newtonian gravity, and corrections to this
motion are given in terms of a power series in x � ðGM=rc2Þ1=2, where r is orbital sep-

aration. The parameter x is roughly orbital speed over c. This expansion works well

when x is small. Late in the inspiral, when x � 0:2–0:4, the convergence of this power

series is not so good. The frequency given in Eq. (16) corresponds roughly to this x.

(Further discussion and caveats can be found in Section III of [119].) Likewise, the

notion of ‘‘ringdown’’ is quite rigorous and defensible as a means of describing the

last waves that flutter out of the merged system—the remnant of the binary can be

treated as a Kerr black hole plus some distortion; perturbation theory accurately de-
scribes the waves generated in this state [128,129]. This is in fact how Eq. (17) was

found [129,130].

Difficulties come in themiddle: what we have called ‘‘merger’’ sweeps together all of

the poorly understood physics associated with the end of the inspiral and the complex

gravitational dynamics describing the transition of our binary into a single black hole.

Note that, for binaries of several tens of solar masses, the frequencies associated with

these poorly understood waves lie very near the most sensitive frequencies of ground-

based gravitational-wave detectors. These waves, which we currently understand least
well, may be perfectly suited for gravitational-wave observatories to measure!

This is the vanguard of current research in binary systems in general relativity,

motivated quite a bit by the likely observational importance of the late inspiral

and merger waves. Much of the community�s efforts to understand strong-field bi-

nary black hole dynamics use numerical relativity, direct solution of the Einstein field

equations by large scale computations. In principle, numerical relativity should be

able to provide, in detail, a description of the binary�s dynamics as a function of

the two black holes� masses and spins, and thus the gravitational waveforms pro-
duced by these dynamics. These waveforms should depend uniquely on these masses

and spins since they are the only parameters that can describe the binary�s holes.

Comparison of the numerically generated waveform with those measured by gravi-

tational-wave observatories is arguably the most stringent test of general relativity

imaginable, probing what are probably the strongest and most violently varying

gravitational fields produced by nature since the big bang.

Numerical solution of the two black hole problem has proven to be quite difficult.

Unanticipated problems have slowed the rate of progress in this field to the point
that astrophysically relevant binary solutions are just beginning to be produced to-

day. Some idea of how unanticipated these problems were can be inferred from the

following statement by Kip Thorne:

. . .numerical relativity is likely to give us, in the next five years or so, a
detailed and highly reliable picture of the final coalescence and the wave

forms it produces, including the dependence on the holes� masses and an-

gular momenta.
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This statement was written in a well-known review article from 1987 (cf. [18], p.

379); clearly, Thorne�s estimate of the timescale needed to get out interesting infor-

mation was optimistic.

Many of the most important problems are beginning to be understood — progress

in numerical relativity has been quite impressive recently. We will just summarize
some of the recent highlights; the interested reader will find more details in the review

by Lehner [131]. One of the fundamental difficulties has been casting Einstein�s equa-

tions into a form that behaves well under numerical integration. Some formulations

which behaved quite well on earlier testbed problems with high degrees of symmetry

have been found to perform extremely badly in general [132]: they allow unphysical

modes (which are seeded by very small scale numerical errors) to grow exponentially

and destroy the physical content of a calculation. Understanding this behavior will

hopefully make controlling it possible, so that we will be able to construct evolution
schemes that are not susceptible to unphysical mode growth [133,134].

Despite the fact that codes currently cannot model the full binary black hole mer-

ger right now, success has been achieved by taking present codes as far as they can go

and then using perturbation theory to carry the evolution still further. This very

pragmatic approach takes the point of view that the ‘‘full’’ codes should only be used

for a limited section of the merger process [135]. Dubbed ‘‘The Lazarus Project’’

(since it works by resurrecting a fallen code), this direction makes it possible to

get some insight into the properties of the waves generated late in the merger process
[136].

Even with good evolution equations and perfect codes, it is necessary to match the

strong-field portion of the coalescence which has been numerically modeled to the

earlier inspiral—the initial data with which one starts the numerical evolution must

latch onto what came before. It now seems likely that such data will be well-devel-

oped fairly soon. A way to approximate an evolution is to consider it to be a se-

quence of initial data snapshots. This works well provided that the evolution of

the system is not too rapid—the binary can be treated as in quasi-equilibrium. Such
techniques were originally developed to study binary neutron star systems [137–141].

Recently an extension to this technique has been developed which goes beyond the

‘‘slices of initial data’’ view, endowing the spacetime with a helical timelike Killing

vector which describes with good accuracy the circular motion of binary black holes

[142,143]. With these tools, it should not be too difficult to go from the earlier inspi-

ral regime into the very strong field merger, covering the full range of binary black

hole coalescence.

In parallel to the recent progress in numerical relativity, techniques have been de-
veloped by Damour and colleagues [144–147] that promise to greatly improve our

analytical understanding of strong-field binary systems. This work is based on com-

bining ‘‘resummation methods’’ to improve the post-Newtonian description of the

binary with a novel recasting of the binary�s dynamics in terms of the motion of a

single body in an ‘‘effective one-body metric’’ (usefully regarded as a deformed black

hole). The resummation techniques are, essentially, Pad�ee approximants that improve

the behavior of the poorly convergent Taylor series form of the post-Newtonian ex-

pansion. The one-body remapping is based on tools that were originally developed to
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describe two-body problems in quantum electrodynamics; further discussion can be

found in [144]. Good agreement has been found between important invariant dy-

namical quantities describing strong-field binary orbits using this effective one-body

technique and numerical relativity [148].

These rapidly maturing approaches to strong field dynamics gives us hope that the-
ory will be able to play an important role aiding and interpreting gravitational-wave

observations of black hole binaries. As has already been mentioned above, comparing

measured binary black hole waves to those predicted by theory is about the most

stringent test of general relativity imaginable. In addition to this ‘‘physics measure-

ment’’, the waves will provide a wealth of astrophysical information. As discussed

in Sections 3.1 and 3.2, we currently know very little about the rate at which these

mergers are likely to take place. Any information about the rate will provide a great

deal of information: observations in the high-frequency band by LIGO-type instru-
ments can strongly constrain the various scenarios (e.g., [45–49]) by which stellar mass

binaries can form; observations with LISA may be able to directly observe the conse-

quences of early hierarchical mergers that were the building blocks of galaxies [90].

Detailed information about the binary that generates a particular signal will be

measurable in cases in which we can fit the data to a model waveform—such fits pro-

vide (with varying degrees of accuracy) certain combinations of the black holes�
masses, information about their spins, the source�s position on the sky, and the dis-

tance to the source (cf. [86,130,150–153] for further discussion). This information
greatly increases the astrophysical value of gravitational-wave measurements. For

example, using LISA it should be possible to survey the evolution of black hole

masses as a function of redshift [153], tracing the development of black holes and

the structures that host them over the evolution of the universe. If an electromagnetic

counterpart can be associated with the gravitational-wave event, the measurement

could provide a standard candle with extraordinarily low intrinsic error [154].

Though much is unknown about binary black holes in the universe, it is clear they

are exquisite gravitational-wave sources—they are intrinsically ‘‘loud’’ radiators,
they are incredible labs for testing gravity under extreme conditions, and they are

powerful probes of astrophysical processes.

5. Bothrodesy

One subset of binary black holes comprises a LISA source with particularly won-

derful characteristics. These are the extreme mass ratio binaries mentioned in Section
3.2—binaries formed by the capture of stellar mass compact objects onto highly rel-

ativistic orbits of massive black holes. (As described in Section 3.2. the captured ob-

ject can be a neutron star or a white dwarf as well as a black hole. Since black holes

are likely to dominate the measured rate, we will consider this source to be a special

case of binary black holes.)

In the general case, the spacetime of a binary black hole is a violently dynamical

entity, varying in a manner that is extremely difficult to model (cf. the discussion in

Section 4). The character of extreme mass ratio binaries is quite different. Because
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the captured body is so much less massive than the large black hole, the binary�s
spacetime is largely that of the black hole plus a perturbation. The major effect of

this perturbation is to create gravitational radiation. The motion of the small body

is essentially an orbit that evolves due to this radiation. The properties of this evolv-

ing orbit—and thus of the waves that it generates—depend almost entirely on just
the large black hole�s spacetime. These waves provide an extremely clean probe of

the black hole�s spacetime.

Einstein�s theory of gravitation predicts that black holes are objects with event ho-

rizons, and whose structure is completely described by two numbers, the massM and

spin parameter a (ignoring the astrophysically uninteresting possibility of a charged

black hole — macroscopic charged objects are rapidly neutralized in astrophysical

environments by interstellar plasma). Extreme mass ratio inspirals provide a way

to test this: the gravitational waves generated as the compact body spirals through
the strong field of the black hole depend upon, and thus encode, the structure of

the hole�s spacetime metric.

The waves that LISA will measure come from the captured body spiraling

through the very strong field of the large black hole—the orbital radius is a few times

the Schwarzschild radius of the hole, so that the captured body is near the hole�s
event horizon. The small body executes many orbits as gravitational-wave backreac-

tion drives it to spiral inwards—it orbits about 105–106 times before it reaches a dy-

namical instability and then plunges into the hole. These orbits happen over a period
of several months to years. By tracking the gravitational wave�s phase evolution over

this time, we will be able to follow the evolution of the smaller body�s orbital fre-

quencies with high precision.

It is these frequencies, or rather the sequence of frequencies that the small body

follows, which encode such information about the black hole spacetime. Consider

for a moment an eccentric, inclined orbit about a spherical body with mass M.

The concept of ‘‘inclination’’ is of course rather artificial in this case—the field will

be spherically symmetric, so the orbits had better not depend on that inclination. Ig-
noring this common sense for a moment, we can define three orbital timescales: Tr is

the time it takes to move through the full range of motion in the radial coordinate; Th

is the time it takes to move through the full range of latitudinal angle; and T/ is the

time it takes to move through 2p radians of azimuth.

For spheres in Newtonian gravity, these three timescales are of course identical

Tr ¼ Th ¼ T/ � T ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffi
R3=M

p
—Newtonian orbits are closed ellipses with semi-ma-

jor axis R. That Th ¼ T/ follows from the spherical symmetry of the gravitational

field. That Tr is equal as well is something of a miracle that follows from the 1=r form
of Newton�s gravitational potential [155]. Now imagine adding some multipolar

structure to the sphere. This changes the character of the potential, and thus the

character of the frequencies. For example, if we add a quadrupolar distortion to

our sphere, the gravitational potential picks up a bit that goes as 1=r3 and that

has an angular dependence

Vgrav ¼ �GM
r

þ QY20

r3
: ð18Þ
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(Q heuristically represents the quadrupolar distortion of the central body; Y20 a

spherical harmonic.) This extra piece changes all of the timescales—we no longer

have T/ ¼ Th for example, because the potential is no longer spherical.

Measuring the orbital frequencies thus maps the shape of a body�s gravitational

field, which in turn maps the body�s structure. Using satellite orbits, we have mea-
sured with high precision quite a few of the multipolar distortions that characterize

the Earth; NASA�s recently launched GRACE mission [156] promises to improve

these measurements quite a bit (see [157] for further discussion). The science of per-

forming these measurements is known as geodesy.

In a very similar way, by tracking the evolution of the orbital frequencies that de-

scribe black hole orbits through the gravitational waves that they generate, we can

map the shape of a black hole�s spacetime metric. In analogy to geodesy, this science

has been given the name bothrodesy. This name comes from the Greek word ‘‘both-
ros’’ (bohqor), meaning (roughly) ‘‘garbage pit.’’ (In archeology, ‘‘bothros’’ refers to

a sacrificial pit—an appropriate connotation since a black hole is Nature�s ultimate

sacrificial pit!)

Bothrodesy is particularly powerful because black holes have a unique multipolar

structure. As we have already stated, the ‘‘no-hair’’ theorem [121] tells us that the

spacetime of a black hole can only depend on its mass M and spin a. On the other

hand, it is well understood that the spacetime of a compact object can be built from a

multipolar description of that object [107]. The object is fully described by a family
of mass moments Mlm (similar to electric multipole moments) and current moments

Slm (analogous to magnetic multipole moments) given roughly by

Mlm ’
Z

dVrlYlmðh;/Þqðr; h;/Þ; ð19Þ

Slm ’
Z

dVrlYlmðh;/Þqðr; h;/Þvðr; h;/Þ; ð20Þ

q is the mass density at the coordinate ðr; h;/Þ, and qv is the current density. Al-
though a black hole has no matter, its spacetime is also generated by multipole

moments of this form. The moments of a black hole are

Ml0 þ iSl0 ¼ MðiaÞl
; ð21Þ

Mlm ¼ Slm ¼ 0 for m 6¼ 0: ð22Þ

Condition (22) simply enforces the fact that rotating black holes are axisymmetric.

Condition (21) is far more interesting: it enforces the no-hair theorem! For l ¼ 0, it

tells us M00 ¼ M—the zeroth mass moment is the mass, no great surprise. For l ¼ 1
we find S10 ¼ aM . This is the magnitude of the hole�s spin j~SSj ¼ S (in units with

G ¼ 1 ¼ c). All higher multipoles are completely determined by these first two mo-
ments.

This is a remarkably powerful statement. It tells us that measuring three multipole

moments is sufficient to falsify whether an object is a black hole. For example, many

galaxies are known to contain extremely massive, compact gravitating objects in
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their centers. It is most plausible that these objects are black holes, but it is possible

they could be something even more bizarre, such as a gravitational condensation of

bosonic cold dark matter [158–162]. If we measure gravitational waves from inspiral

into one of these massive objects and find that the moment M20 is not consistent with

the measured values of M and S, then that object is not in fact a black hole, but is
indeed something even more bizarre. Conversely, if we can measure a good sized set

of multipoles and find that they are all consistent with Eq. (21) then we have ex-

tremely compelling evidence that the ‘‘black hole’’ is in fact a black hole exactly

as described by general relativity.

How well can LISA perform this kind of measurement in practice? Laying the

foundations to answer this question is an area of very active research right now.

Some guidance can be found from calculations performed by Ryan [163]. Ryan ex-

amined how well one can measure the moment structure of a large body with grav-
itational waves in the context of a toy calculation. In his setup, the inspiraling body

is confined to orbits that lie in the large body�s equatorial plane and are of zero ec-

centricity. These restricted orbits throw away a lot of useful information about the

multipolar structure which would be encoded in the precessional motion of an orbit

that is inclined and eccentric. Ryan�s calculation instead ‘‘weighs’’ the different mul-

tipoles by the fact that each impacts the orbital frequency with a different radial de-

pendence, and so affects the waveform phasing at different rates as the small body

spirals in. Even in the context of this excessively simplified problem, Ryan finds that
at least three and in some cases five multipoles will be measurable by LISA. We are

certain that, due to his restricted orbit families, Ryan�s calculation underestimates

how well LISA will be able to measure these moments.

It is worth noting at this point the accuracy with which some of these moments

can be measured. Ryan finds [163] that the mass of the large object is typically mea-

sured with an accuracy dM=M � 10�4–10�5. This is phenomenal precision—the pre-

cision with which we measure black hole masses today is no better than �10% for the

Milky Way�s black hole, and usually much larger (dM=M � 1 or larger is not uncom-
mon). Ryan finds that the spin can be measured with an accuracy dS=S � 0:01. This

again is extremely precise—presently, we have very little information about black

hole spins, other than indications that the spin must be rapid in some cases

[164,165]. It is worth re-emphasizing that his accuracy estimates are likely to be pes-

simistic owing to his excessively restricted orbit families. Bothrodesy will provide

high precision probes of the nature of black holes.

Preparing for these LISA observations requires that we understand the nature of

the waves that inspiral into black holes will provide. Because of the extreme mass
ratio of inspiral systems, this is a relatively simple task: black hole perturbation the-

ory using the system�s mass ratio as an expansion parameter describes these binaries

very well [168–175]. Although there remain issues of principle that are currently be-

ing worked out (particularly the issue of rigorously computing the perturbation�s
backreaction on the inspiral in full generality [176–183]), this problem is not nearly

as difficult as that of the general binary black hole evolution. Indeed, there are two

special cases in which perturbative codes have already been able to tell us a great deal

about the character of these inspirals. These cases correspond to orbits that are
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‘‘circular’’ but inclined, and orbits that are eccentric but confined to the hole�s equa-

torial plane.

Let us look at the circular inspirals first. Circular orbits would be of constant ra-

dius if radiative backreaction were not shrinking them. Waveforms generated in this

case are influenced by two orbital frequencies, X/ (related to the time required for an
orbit to move through 2p radians of azimuth) and Xh (related to the time required to

span its full range of latitude). These frequencies differ for rotating black holes, in

part because rotation makes black holes oblate [cf. the discussion near Eq. (18)]

and in part because of frame dragging—the tendency of objects near a spinning

source of gravity to be dragged into corotation with that spin. Under the combined

influence of these two effects, X/ > Xh. The difference leads to a modulation of the

gravitational waveform—essentially, there is beating between these two frequencies.

This modulation is illustrated in Fig. 6 (taken from [174]). Here we show an ex-
ample of an inclined, circular inspiral into a rapidly rotating black hole (spin param-

eter a ¼ 0:998M). Segments of the waveform are presented early in the inspiral and

again much later (as the inspiraling body approaches the final plunge orbit). Note

the evolving character of the waveform�s modulation: the amplitude of the modula-

tion is much stronger at the end, and there are many more cycles of the carrier wave

per cycle of the modulation. This is a signature of the black hole�s strong field: near

the event horizon, Xh decreases (a redshifting effect due to the proximity of the event

horizon), whereas X/ grows to a maximum (the body ‘‘locks’’ onto the dragging of
inertial frames and is forced to orbit at a rapid rate [187]). In the physical space near

the hole, the small body appears to whirl very rapidly near the black hole while

slowly moving in its latitude angle. This stamp on the waveform is a clear signature

of a black hole�s strong field nature.

Eccentricity introduces yet another layer of complexity, owing to modulations be-

tween the inspiraling object�s azimuthal motion and its motion in the radial direc-

tion. Strong-field eccentric orbits show what has been named a ‘‘zoom-whirl’’

character [188]. If gravity were purely Newtonian, the inspiraling body would accu-
mulate 2p radians of azimuth while moving through its full range of radius. General

relativity tells us that in fact the body moves through an extra bit of azimuth over the

orbit. This effect is nothing more than perihelion precession, well-known from stud-

ies of Mercury�s orbit in the solar system.

In the case of Mercury, the excess azimuth is rather puny—an extra 43 arcseconds

of azimuth accumulate every century due to general relativity, or about 0.1 arcsec-

ond per orbit. In the strong field of a rapidly rotating black hole, the extra azimuth

can amount to thousands of degrees per orbit! The inspiraling body appears to
‘‘whirl’’ around the black hole many times when it is near peribothron; it then

‘‘zooms’’ out to apobothron and back, to whirl again on the next cycle. An example

of the waveform from such an orbit (taken from [175]) is shown in Fig. 7. Note the

multiple high frequency cycles occurring every t � 700; this is due to the rapid whirl-

ing of the inspiraling body at peribothron.

The ornate character of the waves illustrated in Figs. 6 and 7 gives some sense of

the information that they encode. These figures do not really do the waveform jus-

tice, though—to really get a sense of their harmonic content, one should listen to an
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Fig. 6. The waveform generated by ‘‘circular’’ inspiral, from [174]. Early on, the modulation is small and

happens on a short timescale. This is because the frequencies X/ and Xh describing circular motion are not

very different. The frequencies evolve at different rates, changing the nature of the modulation dramatically

as time proceeds. At late times, the modulation is very strong, and there are many more cycles of ‘‘carrier’’

in each cycle of modulation. Note the different timescales in the top and bottom panels—orbital frequen-

cies are much higher late in inspiral. Audio encodings of this waveform can be downloaded from [4].

Fig. 7. A ‘‘zoom-whirl’’ waveform, generated by an eccentric, equatorial orbit, from [175]. The high fre-

quency peaks near t � 0, t � 700, and t � 1400 are due to the whirling motion of the inspiraling body at

peribothron. This is a relatively gentle zoom-whirl structure—it is not difficult to find cases that exhibit

stronger whirling at peribothron. Audio encodings of waveforms that incorporate this kind of structure

can be heard at [4].
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audio encoding of these waves. The reader is invited to listen to such encodings

which have been placed on the World Wide Web at the URL given in [4]. The sounds

presented there illustrate a variety of extreme mass ratio inspiral signals, and how

their features vary as a function of the system�s parameters.

6. Conclusions

In this paper, we have taken a brief tour of various ways that the Universe pro-
duces gravitational waves, surveying the different bands in which this ‘‘voice’’ oper-

ates, and how we can build—or are building—‘‘ears’’ for listening to what it is

saying. Sections 4 and 5 have focused on the waves produced from black hole

sources, a particular favorite of this author, outlining the challenges in learning to

speak the language of these sources and showing a few snippets of what we have

learned so far.

Before too long, we will hopefully begin to hear these voices directly from Nature,

and not just as output from theorists� computations.
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