
PROJECT ATHENA TECHNICAL PLAN

Section E.2.3

Hesiod Name Service
by Stephen P. Dyer and Felix S. Hsu

Hesiod: 8th century B.C. Greek farmer and poet. His Theogony was the first work that
systematically recorded the names of the gods and the myths surrounding them.

Status

This document describes the technical plan for Hesiod, the Athena Name Service. As of
this writing, the initial implementation of the Hesiod name resolution library has been
integrated into several production network applications (remote disk, remote file, printer
service, login service, and post office service) in anticipation of campus-wide deployment in
Fall, 1987.

1. Purpose

Hesiod, the Athena name server, provides access to services in a distributed environment,
allowing centralized administration of information via the Athena Service Management
System (SMS) or other sources of authoritative information. More specifically, it replaces
databases which heretofore have had to be duplicated on each workstation and timesharing
machine (rvdtab, clustertab, printcap, services) and is a flexible mechanism to provide new
information to services as the need arises. It also allows subsidiary organizational entities
under Athena to manage their own information. The Athena Name Server is NOT the
Athena SMS, although it may obtain much of its information from the SMS. In brief, it
provides a content-addressible memory where certain strings can be mapped to others
depending on the type of query made. The name server has no knowledge about the data it
stores, meaning that queries and responses are simple key/content interactions; ad-hoc,
generalized queries are not supported.

2.Scope

The Hesiod name service is logically distinct from the Internet name service which
provides host name and internet address lookup, as well as other information related to
mail handling. However, in the present implementation, both services are provided by a
version of BIND, the Berkeley Internet Name Daemon, with Hesiod provided by a layer of
routines which invoke BIND. This document discusses only the Hesiod name service and
the manner in which BIND supports it. A detailed description of the Internet Name Server
and the BIND implementation in particular can be found in ARPANET Request For
Comments numbers RFC882, RFC883, and RFC973, the Bind Operations Guide and
UCBerkeley reports UCB/CSD 84/177 and 84/182.

Heslod Name service July 22, 1987, Version 1.9
Copyright @ 1987 by the Massachusetts Institute of Technology

Page 2, Section E.2.3 Athena Technical Plan

3. Heslod Names

Hesiod. is layered on top of BIND, and hence may use a naming syntax which is not
identical to BIND if greater expressiveness is needed, provided that the names which are
ultimately passed to the BIND package are valid BIND strings. There are two problems
when relying on standard Internet domain notation to refer to objects named by Hesiod.
First, the desire to have objects whose relative names contain the'.' character conflicts with
Internet domain notation, where a name which contains any'.' is considered fully resolved.
Second, the standard BIND implementation of the Internet domain server has no provision
for deciding the proper domain suffix to use when resolving a relative name, since there
was only one possibility when handling Internet queries. In considering these problems, we
came up with the following scheme:

A name given to the Hesiod. name server for resolution looks like:

HESIODNAME => LHS
HESIODNAME => LHS@RHS
LHS => [Any ASCII character, except NUL and'@']*

{ 0 or more characters from thi.s a~phabet
RHS => [Any ASCII character, except NUL and'@']+

{ 1 or more characters from thi.s a~phabet

In other words, a hesiodname consists of

[LHS] [@RHS]

where either [LHS] or [@RHS] need not be present.

The LHS of a Hesiod name is uninterpreted; although it may be modified according to the
rules described by the information in I etc I hesiod.conf (see below), it is not itself a domain
name.

We define a set of routines known as the Hesiod library which takes a Hesiod name and a
user-supplied key, known as a HesiodNameType, converts it to a fully-qualified domain
name, calls the BIND library, and returns the result to the original caller. In the current
design, translation of the result is null, but the option is available in future refinements to
do some translation if it should be required. The HesiodNameType is a well-known string
which is provided by an application which uses the Hesiod library. It is used directly in the
expansion of a Hesiod name to a BIND name (see below) without further indirection or
translation. A new HesiodNameType comes into existence simply by being used by an
application; no libraries or configuration files need to be modified. Naturally, there has to
be appropriate data stored by the name server which is associated with that
HesiodNameType.

To provide an example, one of the routines in the Hesiod library takes a Hesiod name and
returns a fully-qualified name to be handed to BIND:

char*
hes_to_bind{BesiodNam., BesiodNameType)
char *BesiodName, *BesiodNameType;

The HesiodNameType identifies the query to make to BIND, and the proper expansion
rules to use with the LHS and RHS of the name. This would be chosen by the application,
and could be application-specific.

Thus, the following are valid Hesiod names:

Heslod Name Service July 22, 1987, Version 1.9

Athena Technical Plan

14.21
default-pri.nter
default-pri.nter@SIPB
@heracles
@heracles.MIT.edu
fi.nqer-server@Berkeley.MIT.edu

Section E.2.3, page 3

I etc I hesiod.conf contains two tables specifying the treatment of LHS and RHS components
of a Hesiod name. In the translation of a Hesiod name to a valid BIND name, the LHS is
expanded by concatenating together the Hesiod name, the separator '.', the
HesiodNameType, and the LHS entry found in /etc/hesiod.conf. If the RHS is null, the
RHS entry in /etc/ hesiod.confis used. If the RHS is a fully qualified domain name already,
it is used directly. Else, if a RHS is present, it is used as a Hesiod name for further
resolution against the HesiodNameType, rhs-extension. If this query succeeds, the flrst
reply is used as the RHS, otherwise an error is returned. The fully-expanded LHS and
RHS are then concatenated together, separated by a'.', and this value is passed to BIND.

With the definition of I etc I hesiod.conf given below, a call to hes_to_bind("e40", "printer")
would produce a LHS of "e40.printer.ns" and a RHS of ".Athena.MIT.edu", and the
resulting BIND name would be "e40.printer.ns.Athena.MIT.edu".

The following is a typical copy of /etc/hesiod.conf:

#fi.le /atc/hesi.od.con£
#comment li.nes baqi.n wi.th a '#' i.n column 1
#LBS tabl.e
lhs • .ns
#RBS table
rhs = .Athena.MIT.edu

In C pseudo-code, we would have the following productions:
hes_to_bi.nd(14.21, fi.lasys)

=> 14.21.£i.lasys.ns.Athena.MIT.adu
hes_to_bi.nd(e40, pri.nter)

=> e40.pri.nter.ns.Athana.MIT.edu
hes_to_bi.nd(SIPB, rhs-extensi.on)

=> SIPB.rhs-extensi.on.ns.Athena.MIT.edu
hes_to_bi.nd(default@SIPB, pri.nter)

=> default.pri.nter.ns.SIPB.MIT.adu
(a••~• that previ.ous producti.on resolved to "SIPB.MIT.adu")
has_to_bi.nd(fi.nqer-server@Berkeley.EDU, sarvi.caloc)

=> fi.nqar-server.sloc.ns.Barkal.ey.EDO

4. Heslod and BIND

4.1. BIND requirements
A version of BIND which supports the locally added C_HESIOD query class and

T_UNSPECA query type is required to support the Hesiod name service. The standard
Athena release of BIND has been modified to support this. The changes will also be
forwarded to Berkeley to be included as the standard BIND release. We have asked Paul
Mockapetris to make C_HESIOD and T_UNSPECA official so that other sites might be able
to use Hesiod, and he seems amenable to this.

Heslod Name Service July 22, 1987, Version 1.9

Page 4, Section E.2.3 Athena Technical Plan

4.2. BIND's view of the Heslod Name Space

The name space within Project Athena is structured as follows: workstations and
timesharing machines will be moved from the MIT.edu domain to the domain,
Athena.MIT.edu. All internet name server queries, e.g., host-to-address lookup, are made
relative to the Athena.MIT .edu domain. Hesiod name server queries will be made relative
to the NS.Athena.MIT.edu domain. This arrangement allows internet address assignment
for Athena.MIT.edu to continue to be handled by MIT Telecommunications with its own
authoritative name server and database, while the data for the Athena name service can be
administered by Athena operations. However, other administrative entities may choose
other naming arrangements, for example, the DU fraternity could run its own name service
for local queries with a domain suffix of DU .Athena.MIT .edu. The current implementation
of BIND and Hesiod allows any administrative group to run a name server which is
authoritative for its own domain.

During the design phase, a number of approaches were considered; a "flat" name space
where all objects could be named by an atomic string, and a hierarchical name space,
roughly reflecting the organization of clusters out in the field, where a name consisted of a
hierarchy of domain-style names. Both cases would ultimately terminate in a qualifying
domain string such as "NS.Athena.MIT.edu". For example, a system library might be
named "sys.rt.e40.NS.Athena.MIT.edu", where "sys" reflected the fact that it was a system
RVD pack, "rt" indicated that it was an RVD pack for the RT, found in cluster "e40".
Although the hierarchy appears to specify a series of separate domains, the presence of a"."
need not indicate a separate zone of authority, This scheme allowed for simple composition
of names at the expense of a somewhat more complicated naming scheme. The current
technical plan assumes a flat name space.

4.3. BIND Queries

Every BIND query and resource record is qualified by a class and a type. In the scheme
described in RFC882 and RFC883, the class is intended to loosely identify the contents of
the resource record returned by the name server. The two "official" classes recognized by
the NIC are "internet" and "chaos", with small integer values 1 and 3, respectively. The
class "any", value 255, is ·used as a wild-card in a query, indicating that the class of a
resource record does not matter. To this, we add the class "hesiod", value 4. Resource
records for Hesiod names returned by BIND are tagged with this class. The type specifies
the kind of data in a resource record. A number of standard types have been defined by
RFC883, and the BIND implementors have defined several additional types. Hesiod uses a
newly-defined type, T_UNSPECA, which is a generic type class indicating that a resource
record contains 'unspecified ASCIT data' presumably of interest only to the invoking
application and not meaningful to BIND.

5. Athena Client Applications of Heslod

The five applications which will immediately use the Hesiod name server are the Hesiod
library itself, RVD utilities, MDQS-derived line printer utilities, a replacement for the
passwd server used by Toehold and modifications to the Kerberos libraries to query the
name server to locate one's Kerberos server. There are many other potential applications,
some of which are sketched out in section 6.5, "Proposed Additional Queries". For each of
these four applications, we identify the form of the queries and the data returned by
Hesiod, what changes needed to be made to the application, and where the authoritative
data will come from.

Heslod Name Service July 22, 1987, Version 1.9

Athena Technical Plan Section E.2.3, page 5

5.1. Cluster Information
Certain services, such as remote system libraries and printers, are best though of a

belonging to a 'service cluster'. The cluster query returns the names of the service clusters
for all such services, which at present consist of the Hesiod name keys, syslib, userlib,
printer and kerberos. Note that the service cluster name is not necessarily a host name, but
a Hesiod name which may be resolved by the application later. The service name which
identifies each service cluster is a literal string representing an environment variable
which will be assigned the service cluster as a value.

General ...

workstationname.cluster.ns.Athena.MIT.edu B:IND name:
out: environment variable to assign; Hesiod name of service cluster

Examples ...

B:IND name:
out:
out:
out:
out:

arktouros.cluster.ns.Athena.MIT.edu
syslib rtsys-e40
usrlib rtusr-e40
printer e40
kerberos e40-kerberos

This information will be stored in a set of environment variables refreshed at boot time.
This would be accomplished by providing an application "getcluster" which queries the
Hesiod database and returns a set of environment variable assignments for the service
clusters which could be directly interpreted by a shell. This information is stored in a fue
I etc I clusterinfo for later "sourcing" by users' .login scripts. If the Hesiod database is
unavailable, or no data is returned for the workstation.cluster query, I etc I clusterinfo is not
modified, which implies that the previous successful query to Hesiod is used. At
installation time, I etc I clusterinfo is hard-wired with a set of defaults, which will eventually
be overwritten at a later boot time by a successful Hesiod query. "Getcluster" would be
invoked in I etc I rc after the start of the Hesiod name server, but before any queries for file
systems. For the use of letclrc, a Bourne shell script, we define a flag, -b, to "getcluster",
indicating that the program's output should be in Bourne shell format.

Applications which require cluster information, such as the RVD and lpr utilities, would
search the user environment for an appropriate environment variable, and retrieve the
service cluster name for further resolution.

5.2. File Systems
At present, Athena uses RVD as its sole remote file system, but the scheme we propose

should be extensible to other distributed flle systems as well, such as NFS, RFS and VICE.

5.2.1. Queries and Data for File Systems.

General ...

B:IND name: filesystem or disk cluster name
out: filesystem type; server name; filesystem name; default mount point;

access mode

Examples ...

BIND name:
class/type:

dyer.filsys.ns.Athena.MIT.edu
C_HESIOD/T_UNSPECA

Heslod Name Service July 22, 1987, Version 1.9

Page 6, Section E.2.3

out:

BIND name:
class/type:
out:

BIND name:
class/type:
out:
out:
out:

RVD Helen L55 /testl x

l.OO.filsys.ns.Athena.MIT.edu
C HESIOD/T UNSPECA
NFS Zarquo~ /usr/courses/1 00 /mnt r

rtsys-e40.filsys.ns.Athena.MIT.edu
C HESIOD/T UNSPECA
RVD agamemnon rtsys /srvd r
RVD helen rtsys /srvd r
RVD achilles rtsys /srvd r

Athena Technical Plan

If more than one flle system is returned from a query, it is assumed that the name
represents a system library, with the semantics that the file systems should be tried in the
order given, stopping at the first success.

No spindle information is returned, on the presumption that better ways to handle this
RVD-specific feature will be forthcoming.

Definitions: filesystem type: character string from {RVD,NFS,RFS,VICE ... }
server name: machine name in internet domain name space
filesystem name: name used by server to identify file system

for example, could be locker name for RVD,
remote mount points for NFS

default mount point: mount point on local maclU.ne
default access mode: read-only (r), exclusive (x) or shared (s)

Note that these semantics are file-system
dependent.

5.2.2. Impact on attach, detach, and rvdflush. Up and down have been replaced with analogous
programs attach and detach which query the Hesiod name server. letclrvdtab no longer
contains a list of all file systems which the host could ever want to mount. Rather,
I etc I rvdtab contains the list of file systems currently mounted by the host. A successful
call to attach appends the file system entries to the contents of letclrvdtab. Before
performing any mount, attach first invokes the VDIOCGETDRIVE ioctl and sends a flush
command to an RVD server if it is not already providing RVD service to this host.

The syntax of attach and detach is:

attach filesystemname [-xJ-•J-r]
detach filesystemname

By default, attach will mount a file system with the mode returned by Hesiod; the -r, -x,
and -s flags request read-only, exclusive read-write, and shared read-write access,
respectively. Attach fails if the server disallows attachment in the requested mode. To
attach a private locker, merely give its name:

attach dyer-teat-~ocker -x

A system library can be attached in the same manner:

attach e40-rtaya

However, more frequently, the system and user system libraries will be accessed using
cluster information previously obtained from Hesiod.

Heslod Name Service July 22, 1987, Version 1.9

Athena Technical Plan Section E.2.3, page 7

4t in /etc/rc
4t this assigns (at 1east) the fo11owinq
4t environment variab1es: usrlib, sys1ib, kerbaros, printer
eva1 '/etc/qetcluster -b'
#sometime 1ater ...
attach $usr1ib
attach $syslib

Also within /etc/rc, before any RVD packs have been mounted, the contents of I etc I rvdtab
will be examined using a sed or awk script, and an rvdflush command will be performed on
each RVD server which had been active during the time the system was last up. Following
this, /etc/rvdtab will be truncated.

Future versions of attach and detach which may need to deal with file systems other than
RVD packs will make similar queries of the name server.

5.2.3. Source of Authoritative Data. Initially, this data will be hand-entered, being manually
transferred from the individuals' locker information maintained by the Athena account
administrator as well as from current copies of /etclrvdtab. Eventually, RVD and other file
system information will be maintained by the SMS, and the name server information will
be extracted from the SMS and then distributed to the authoritative name servers provided
by Hesiod.

5.3. Line Printer Service
The present line printer service within Project Athena is a version of the Berkeley 4.2BSD

line printer system adapted for use with the Athena clustertab database. A redesign of the
entire printer system based on the BRL MDQS system is presently underway, and we
discuss the MDQS system here.

5.3.1. MDQS Printer Information.

General ...

BIND name:
out:

printername, queuename or service cluster name
printername queuename serverhost ability hardwaretype
printername queuename serverhost ability hardwaretype
(possibly many resource records returned)

out:

Example ...

Hesiod queries:

hes_resolve(printername, "printer") OR
hes_resolve(queuename, "printer") => 0 or more resource records

of the form:
printername queuename serverhost ability hardwaretype

hes _resolve ("woodchuck" , "prinfo") =>
woodchuck woodchuck-text Castor.~T.edu postscript lps-40
woodchuck woodchuck-ps Castor.~T.edu text lps-40

hes_resolve ("woodchuck-text", "printer") =>
woodchuck woodchuck-text Castor.~T.edu postscript lps-40

Heslod Name Service July 22, 1987, Version 1.9

Page 8, Section E.2.3 Athena Technical Plan

Hesiod print c1usters may a1so be reso1ved with the same HesiodNameType,
and reso1ve to a 1ist of a11 printers for that print c1uster, e.g.,

hes reso1ve("e40", "printer") => 0 or more resource records
woodchuck woodchuck-ps Castor.MIT.edu postscript 1ps-40
woodchuck woodchuck-text Castor.MIT.edu text 1ps-40
homer homer-ps Castor.MIT.edu postscript scout
homer homer-text Castor.MIT.edu text scout
watson watson-text Castor.MIT.edu text 3812
watson watson-dump Castor.MIT.edu 3812wd 3812

5.3.2. Impact on Line Printer Software. As distributed by BRL, the MDQS system deals with
"print queues", not printers. A queue is a uniquely named object associated with one or
more printers. A printer may have more than one queue associated with it, usually to
accomodate different ways of using the printer, e.g., text versus graphics dumps, etc. We
wish to extend MDQS so that a user can specify the printer, a more general concept than a
queue, and add intelligence to the print queuer so that it can itself determine on what
particular queue for a printer the file should be placed. In addition, we wish to incorporate
the Hesiod name server into the distributed version of MDQS so that configuration
information regarding the location and capabilities of printers within Athena can be
managed centrally, without the use of replicated configUration files on each workstation.

In our proposed naming scheme for printers, clustertab-derived abbreviations are thrown
out. All printer names are global, (i.e., there can be only one printer named 'ln03') although
a single printer may have several unique nicknames, or aliases. In the absence of a
specified printer, the Hesiod print cluster name made available at boot time is resolved to
obtain a list of printers available in that cluster.

The choice of what queue to place the file on (if it is not otherwise specified) is based on
the type of data being printed. We assume that all such data is self-identifying (this needs
to be verified); logic will be added to the "qpr" spooling program to choose a particular
queue based on the first few bytes of a file. The queue types, or 'abilities', are as follows:
text, postscript, windowdump (wd), ln03windowdump (ln03wd), 3812windowdump
(3812wd) and x9700. These can also be specified on the command line as an argument to
the '-A' flag (see below.)

If no printer or queue is specified, the Hesiod print cluster name for the workstation is
resolved to obtain a list of all printers in the cluster, and a printer queue is chosen from the
list depending on the type of data being printed. If no printer in the cluster satisfies the
criterion, an error message will be produced. If more than one printer in the cluster
satisfies the criterion, the printer is chosen randomly from the set of matches.

qpr [-q queuename] [other options] fi1el [fi1e2 ... fi1eN]

Additiona1 arguments suggested:

-P printername - specifies a particu1ar printer (or set of
printers.) This is different from the
'-q' switch, in that a printername might
specify a number of different queues.

-A abi1ity - specifies what "abi1ity" printer you are
searching for, e.g., "postscript", "text"
"wd", "1n03wd", "3812wd", "x9700"

Heslod Name Service July 22, 1987, Version 1.9

Athena Technical Plan Section E.2.3, page 9

-T hardwaretype - specifies a particu~ar hardware type to be
chosen in preference to others. Note that
this pr~ri~y a~~ows one to choose between
different

5.4. Toehold Passwd Server

5.4.1. UNIX /etc/passwd information; other user information.

Genera~ ...

BIND name:
out:

Examp~e ...

BIND name:
out:

athena username
standard /etc/passwd entry

sa~tzer.passwd.ns.Athena.~T.edu

Sa1tzer:QwtFRKLKqig:994:64:Jerome B Sa1tzer,,E40-391AM,3-6016,:
/mit/Sa1tzer:/bin/csh

Password and group information is only useful if a community specified by a domain (as in
NS.Athena.MIT.edu) shares the same user-id and group-id space, not to mention the
assumptions that all names resolve to UNIX-specific information. This is the current policy
within Athena, although it is subject to change.

5.4.2. Impact on Toehold Software. Toehold presently asks the passwd s~rver for a password
entry for a user. The changes needed to have it query the Hesiod name server are minimal
and localized.

5.4.3. Source of Authoritative Data.' The database maintained by Athena_Reg is presently the
source of letclpasswd information provided by the passwd server. Already, copies of
letclpasswd are distributed regularly to the timesharing hosts. A program has been
written which converts a I etc I passwd file to a database file used by Hesiod at boot time.
When this file is distributed by cron to the hosts on which the ns.Athena authoritative
name server resides, the name server can be signalled to indicate that its initial database
should be reread into its virtual memory.

5.5. RHS Heslod Expansion

This query is used internally within the Hesiod library to expand an unqualified RHS of a
Hesiod name. Storing RHS mappings within the name server itself allows frequently
named objects in other Hesiod domains to be conveniently abbreviated: e.g,

attach my~ak@aipb

instead of

attach my~ak@aipb.MXT.edu

to mount a filesystem located at SIPB.

Genera~ ...

BIND name:
c~ass/type:

RHS.rhs-extension.ns.Athena.~T.edu

C_HESIOD/T_UNSPECA

Heslod Name Service July 22, 1987, Version 1.9

Page 1 0, Section E.2.3

out:

Example ...

BIND name:
class/type:
out:

BIND name:
class/type:
out:

replacement string

SIPB.rhs-extension.ns.Athena.MIT.edu
C_HESIOD/T_UNSPECA
SIPB.MIT.edu

DU.rhs-extension.ns.Athena.MIT.edu
C_HESIOD/T_UNSPECA
DU.MIT.edu

5.6. Service host location

General ...

Athena Technical Plan

BIND name:
class/type:
out:

advertised service name or service cluster name
C_HESIOD/T_UNSPECA

BIND name:
class/type:
out:

BIND name:
class/type:
out:
out:

Definitions:

server hostname

olc.sloc.ns.Athena.MIT.edu
C_HESIOD/T_UNSPECA
rinqworld.Athena.MIT.edu

e40-kerberos.sloc.ns.Athena.MIT.edu
C_HESIOD/T_UNSPECA
Kerberos.Athena.MIT.edu
Kerberos-backup.Athena.MIT.edu

server hostname: hostname in internet domain space.

Many resource records may be returned, indicating that several hosts provide this service.

5. 7. Proposed Addnlonal Queries

Ideally, the queries and the data formats of their resource records would be decided upon
by the designers of the applications which use Hesiod in consultation with the designers of
the name server. Because many of the programs which could profitably use the name
server have already been written and lack a design team, we have come up with queries
which make sense for many applications. These should be taken as working suggestions,
not cast in stone, and developer input is welcome.

For each query we describe its format and the contents of the resource records returned.

5.7.1. Post Office Box•.

General ...

BIND name:
class/type:
out:

Example ...

BIND name:
class/type:

athenausername.pobox
C_H!SIOD/T_UNSPECA
postoffice type; servername; postboxname

ler.man.pobox.ns.Athena.MIT.edu
C_HESIOD/T_UNSPECA

Heslod Name Service July 22, 1987, Version 1.9

Athena Technical Plan

out:

BIND name:
class/type:
out:

BIND name:
class/type:
out:

POP E40-PO.MIT.edu ler.man

saltzer.pobox.ns.Athena.MIT.edu
C_HESIOD/T_UNSPECA
repository Heracles.MIT.edu jhsmail2

fhsu.pobox.ns.Athena.MIT.edu
C_HESIOO/T_UNSPECA
timesharing Heracles.MIT.edu fhsu

Section E.2.3, page 11

Presumably a user agent for reading mail (MH, Gnu Emacs, etc.) could use the 'pobox'
query to locate and access the user's mailbox.

5.7.2. !etc/services replacement.

General ...

BIND name:
class/type:
out:

Example ...

BIND name:
class/type:
out:

name of service
C_HESIOO/T_UNSPECA
protocol decimal port number

smtp.service.NS.Athena.MIT.edu
C_HESIOD/T_UNSPZCA
TCP 25

6. The Heslod Library

The Hesiod library is a set of routines which interfaces with the BIND resolver library to
provide a means to translate Hesiod names into data which can be used by the applications.
In addition to hes_to_bind, defined above, the most frequent interface to the library will be
through the routine:

char **
hes_reso1ve(BesiodNam., BesiodNam.Type)
char *BesiodNam., *BesiodNam.Type;

This routine takes a Hesiod name and its associated name type, translates it (via a call to
hes_to_bind), and passes the resulting strings to the BIND resolver library. The returned
value is a pointer to an array of character pointers or NULL in the case of an error. The
array is terminated with a NULL pointer. Each character pointer in the array represents
one of the data fields returned in the resource records by the name server.

If hes_resolve or hes_to_bind return NULL, it will be possible to examine a Hesiod
specific error code by invoking the following function:

:i.nt
he a_ error ()

Hes_error returns 0 where there is no error; otherwise one of the following manifest
constants defined in I usr I include I hesiod.h:

Heslod Name Service July 22, 1987, Version 1.9

Page 12, Section E.2.3 Athena Technical Plan

#define BES ER OK
#define BES ER NOTFOUND
#define BES ER CONFIG
#define BES ER NET

0 I* no error *I
l I* Besiod name not found by server *I
2 I* local problem; (no confiq file?) *I
3 I* network problem *I

7. Deployment

I* can't reach network, no response *I
I* from servers *I

7.1. Deployment of Name Servers

Following the recommendations for the deployment of domain name servers, there should
be multiple hosts which are authoritative for the ns.Athena.MIT.edu domain. This will be
satisfied by placing a primary Hesiod name server on each of the backup server machines,
namely, jason, zeus, apollo, clio and ringworld. The parent domain, presently MIT.edu,
which will include the Athena workstations, will been informed of which hosts are the
authoritative server.

7.2. Distribution of Authoritative Data

BIND has the concept of both primary and secondary authoritative servers for a domain.
A primary server reads its authoritative data from an ASCII file in a standard format
specified by RFC973 when it first starts up. Primary servers can also be made to reread
this file on receipt of a signal. A secondary server receives its data from a primary server
via a zone transfer through a TCP connection, which transfers resource records one at a
time between the master and secondary server. A zone transfer occurs at start-up time and
periodically during the time the secondary server runs. With large amounts of data in the
database, a zone transfer can take a long time. In addition, during the time of the zone
transfer, the server is not available to respond to queries. Within Athena, secondary BIND
servers have not been widely used due to bugs in the early versions, instead using multiple
primary servers. Until more experience has been gained with the use of secondary servers,
Hesiod will follow Athena's present method of running independent primary servers. Note
that the distinction between primary and secondary servers has been introduced by BIND,
and is not relevant to client programs which access the name server.

Each of the primary authoritative servers for the ns.Athena.MIT.edu domain will be
distributed a new copy of the database regularly from Hector, or whatever other machine
we choose to be responsible for maintaining all authoritative data. Roughly speaking, the
method of distribution would be:

Extract data from Athen&Req, other authoritative sources
of information, and place in an ASCII file in
UC973 "Standard Resource Record Format." We
call this the BrND authoritative database for
ns.Athena.MIT.edu.

For each authoritative server:
Copy this file to server.
Signal name daemon on server that it should
reread its database.

This could be accomplished by nmning two crontab scripts: one on Hector which would
periodically create a new ASCII database file in much the same was that passwd and group
files are now created, and on each machine running a primary server, a script would copy
the file from Hector and then signal the server to reread the file. The cron scripts on the

Heslod Name Service July 22, 1987, Version 1.9

Athena Technical Plan Section E.2.3, page 13

primary servers could be synchronized with the distribution of the authoritative data from
Hesiod, or they could wake up regularly and check if the modification date has changed.

7.3. Origin of Authoritative Data
As mentioned above, the first utilities which will rely on Hesiod require that the data they

use now be translated into a form suitable for input to the name server. There is already a
program which formats the full Athena /etc/passwd file extracted from Athena_reg into a
file which is RFC973 compatible. The primary copy of I etc I rvdtab which lists all the
system and user RVD libraries and as well as all the RVD private lockers has also been
converted to RFC973 format. Remaining to be done are the contents of clustertab and
printcap for use with the Berkeley lpr line printer service, as well as the assignment of
individual workstations to service clusters. Appendix A is an example of the RFC973-
conformant data flies which are used by the Hesiod name server.

Until the SMS comes into existence, it will be necessary to edit these files manually, with
the exception of the password database, which can be generated from the AthenaReg
database on Hector. For the moment, the interface between Hesiod and the SMS will be
through the RFC973-format data files described in Appendix A.

7.4. The Problem of Independent Living Groups

We envision that independent living groups will want to run their own authoritative
Hesiod name server to manage their own site-specific data. For example, the DU fraternity
will be making requests of the RVD and lpr utilities which should necessarily refer to
services within their own local network. This could be accomplished by giving each of the
ILGs a separate set of cluster resource records, but that would impose the restriction that
the data would be owned and controlled by Athena, and that Hesiod queries would cross the
slow-speed network link even when services and their clients were both located at the ILG.
What's more, if there were ever problems with the link to the main campus, local services
would also be unavailable (or at the minimum, hard to reach.)

Thus, we recommend that each ILG run its own authoritative version of Hesiod, initially
with hand-crafted data files patterned after the main data files from Athena. For example,
to accomplish this, the DU fraternity must customize their own copy of letclhesiod.conf,
and designate to their parent server a server to be authoritative for their Hesiod domain.

#£ile /etc/heaiod.con£ £or the DO fraternity
#comment linea begin with a '#' in column 1
#LBS table
lha • .na
#RBS table
rha • .DO.MIT.edu

One question which has arisen is how to refer to frequently-accessed objects outside one's
own Hesiod domain. As mentioned earlier, the ability of a Hesiod name to contain an
unresolved RHS is a convenient way to accomodate abbbreviations. Thus, if the Hesiod
server for DU contains the mapping:

hea_to_bind("athena", "rha-extenaion") => "Athena.MIT.edu"

then it would be quite easy for someone at DU to mount a remote file system (not that it
would be pleasant, due to the slow speed of the line):

attach 6.001@athena

However, if these queries became very frequent, it would be possible for the system

Heslod Name Service July 22, 1987, Version 1.9

Page 14, Section E.2.3 Athena Technical Plan

administrator at DU to enter CNAME records for locally-named objects which pointed back
into Athena. For example, with the example given above, an entry in the Hesiod data file of
the form:

6.001.fi.1sys BESIOD CNAM:&: 6.001.ns.Athena.MIT.edu

would allow one to execute the command:

attach 6.001

This requires close coordination between both sites because fully-qualified names are now
being exchanged; however, since ILGs interact closely with Athena staff, this is an
attractive shortcut.

7.5. Dynamic Updates to BIND

The BIND system was designed to operate with relatively static data such as is found in
the Internet name/address space, meaning .that updates would be expected to occur
relatively infrequently, once a day or less. This accounts for the ali-or-nothing approach to
refreshing BINDs internal database which requires rereading the database file from disk or
transferring an entire zone. This is feasible when the data in a zone is of moderate size,
but quickly becomes cumbersome when large amounts of data are involved.

People at the University of Washington have provided a compile-time switch in BIND 4.5
to allow unauthenticated updates in the form of new "query" opcode types, but full zone
transfers will still occur between the primary and any secondary servers. Clearly, if we
wished to use this facility as groundwork for a more secure and robust system, we would
have to do the following:

Add authenti.cati.on to the update opcodea.
Thi.s should be able to support lterberoa, but the hooks
should be general enough that a di.fferent ai.te could
run Besi.od wi.thout requiri.ng lterberos.

Arrange for changes to be "journa1ed", so that i.t would be
possi.ble for secondary servers to ask only for the
changes i.n a zone.

Adjust the time to live fi.elda of the data so that cachi.nq
servers wi.11 reflect changes to the master servers
re1ati.ve1y rapi.d1y.

Heslod Name Service July 22, 1987, Version 1.9

Athena Technical Plan Section E.2.3, page 15

Appendix A. Heslod RFC973 Data Flies

RFC973 specifies the format of a domain server data file, and the complete definition can
be found in that report. However, for the purposes of defining the data files used by
Hesiod, data items appear in the flle in a line-oriented, ASCII format of the form:

key CLASS TYPE "data"

where data represents the content to be returned to a domain server query with the 3-
tuple: [key, class, type]. Multiple lines with the same key represent distinct resource
records, all of which would be returned in a query. Hesiod uses the class, C_HESIOD, and
the type, T_UNSPECA. Thus, an entry for a Hesiod name has the form:

Besi.odName .Besi.odNameType BESIOD UNSPECA "data"

It is also possible\ to create aliases for a canonical name using the type CNAME. Thus a
query for namel, name2 and name3 would all return the same data, given the following
lines in the data flle:

namel
nama2
name3

BESIOD
BESIOD
BESIOD

UNSPECA "data"
CNAME namal
CNAME namel

This provides a convenient way for many names to point to the same data object, and is
exploited by the Hesiod cluster queries.

The definition of RFC973 allows auxiliary data files to be included using a directive much
like C language include files. This makes for easy mamtenance and modularity, and is
demonstrated in the examples below.

Note that these data flles are required to be present on all BIND primary master servers
authoritative for a domain. They would not appear on most private workstations or
timesharing systems that were not a primary Hesiod name server.

The examples here are not authoritative and do not necessarily represent the final data
that will be stored by Hesiod for ns.Athena.MIT.edu. Data here is presented for illustration
only. The class C_HESIOD has been assigned the abbreviation HS by Paul Mockapetris.

7.6. Main Database File - heslod.db

/etc/athena/nameserver/hesiod.db, Mon Mar 1 14:30:37 EST 1987

Authoritative data for NS.Athena.MIT.edu

CLUSTER info

IN
IN
IN

SOA
4.7
1800
300
3600000
7200)
A
NS
NS

HESIOD.MIT.edu. FHSU (
serial - database version number
refresh - sec servers
retry - for refresh
expire - unrefreshed data
mi.n

18.72.0.46
THANATOS. MIT. edu.
HESIOD.MIT.edu.

$INCLUDE /etc/athena/nameserver/cluster.db

Heslod Name Service July 22, 1987, Version 1.9

Page 16, Section E.2.3 Athena Technical Plan

; PRINTER a~iases

$INCLUDE /etc/athena/nameserver/printer.db

; FILE SYSTEM

$INCLUDE /etc/athena/nameserver/fi~esys.db

; PASSWD info

$INCLUDE /etc/athena/nameserver/passwd.db

7. 7. Cluster Information - cluster. db

e40-rtsys.c~uster HS UNSPECA "sys~ib rtsys-e40"
e40-rtsys.c~uster HS UNSPECA "usr~ib rtusr-e40"
e40-rtsys.c~uster HS UNSPECA "printer e40"
e40-rtsys.c~uster HS UNSPECA "kerberos e40-kerberos"
e40-vssys.c~uster HS UNSPECA "sys~ib vssys-e40"
e40-vssys.c~uster HS UNSPECA "usr~ib vsusr-e40"
e40-vs.sys. c~uster HS UNSPECA "printer e40"
e40-vssys.c~uster HS UNSPECA "kerberos e40-kerberos"
arktouros.c~uster HS CNAME e40-rtsys.c~uster

goanna.c~uster HS CNAME e40-rtsys.c~uster

e40-342A-1.c~uster HS CNAME e40-rtsys.c~uster

bitsy.c~uster HS CNAME e40-vssys.c~uster

7.8. File System Information - fllesys.db

rtsys-e40.fi~sys

rtsys-e40.fi~sys

rtsys-e40.fi~sys

rtusr-e40.fi~sys

rtusr-e40.fi~sys

rtusr-e40.fi~sys

vsusr-e40.fi~sys

vssys-e40.fi~sys

vssipb.fi~sys HS
panda.filsys HS
2.40.fi~sys HS
2.40w.filsys HS
10.13.filsys HS
10.13w.filsys HS
dyer-locker.filsys
LSS.filsys HS

HS UNSPECA "RVD agamemnon rtsys /srvd r"
HS UNSPECA "RVD he~en rtsys /srvd r"
HS UNSPECA "RVD achilles rtsys /srvd r"
HS UNSPECA "RVD agamemnon rtusr /urvd r"
HS UNSPECA "RVD helen rtusr /urvd r"
HS UNSPECA "RVD achilles rtusr /urvd r"
HS UNSPECA "RVD andromache vsusr /urvd r"
HS UNSPECA "RVD andromache vssys /srvd r"
UNSPECA "RVD charon vssipb /usr/unsupported/sipb r"
UNSPECA "RVD priam panda /mi.t/p/a/panda/Work x"
UNSPECA "RVD he~en 2.40 /mnt r"
UNSPECA "RVD he~en 2.40w /mnt r"
UNSPECA "RVD helen 10.13 /mnt r"
UNSPECA "RVD helen 10.13w /mnt r"
HS UNSPECA "RVD helen.MJ:T.edu LSS /mnt x"
CNAME dyer-locker.filsys

7.9. Printer Server Information -printer. db

ln03-e40-2.printer
e40-default.printer

HS
HS

7.10. Passwd Information- passwd.db

UNSPECA "ln03-b~dge40-2 e40-printserver-1"
UNSPECA "pp3812-e40-1 e40-315-1"

ddcote.passwd HS UNSPECA "ddcote:ddeDnsY0Av5TY:17358:101:\
David D. Cote,,,, :/mi.t/d/d/ddcote:/bin/csh"
dyer.passwd HS UNSPECA "dyer:zdoZluraJZQF6:17287:64:\
Steve Dyer,Steve,E40-342AM, 0127,4911648:/mi.t/d/y/dyer:/bin/csh"

Heslod Name Service July 22, 1987, Version 1.9

Athena Technical Plan Section E.2.3, page 17

eprei.d.passwd HS ONSP!!CA "eprei.d:epzRhBRgasbac:l7400:lOl:\
J!!ri.c P. Rei.demei.ster,,,, :/mi.t/e/p/eprei.d:/bi.n/csh"

. Heslod Name Service July 22, 1987, Version 1.9

