
PROJECT MAC February 14, 1973 

Computer Systems Research Division Request for Comments No. 35 

The "PRINCIPLE OF LEAST PRIVILEGE" AND MULTICS 

by J. H. Saltzer 

A necessary, but not sufficient, condition for progress in 

developing a certifiably secure version of the Multics system is 

identification and following of some applicable design principles. This 

note briefly discusses a design principle suggested by David J. Edwards, 

of the National Security Agency and a former member of Project MAC: the 

"principle of least privilege". The principle simply states that every 

program should be granted the least privilege necessary to get its job 

done. 

It is clear that in a complex system, all unnecessary inter­

connections must be eliminated. The principle of least privilege would 

go a step farther: even potential unnecessary interconnections should 

be made impossible. The desirability of eliminating potential inter­

connection is clear: the job of certification is made easier by reducing 

the number of potential defects for which auditing must be systematically 

provided. 

A survey of Multics immediately turns up many examples in which 

the principle of least privilege has been followed, at least to some 

extent. For example, the ring structure has been used to place the 

command processor outside the central ring_zero supervisor; it does not 

need supervisor privileges. As a result, a certification of, say, the 

traffic controller need not even inquire as to whether or not the command 

processor writes directly into the Active Process Table. Similarly, the 

message segment facility is implemented entirely within ring one; again, 

traffic controller certification does not need to involve the programs of the 

message segment facility. 

This note is an informal working paper of the Project MAC Computer Systems 
Research Division. It should not be reproduced without the author's per­
mission, and it should not be referenced in other publications. 



Probably more interesting than listing points which follow the 

principle of least privilege is to identify points which don't. Ring 

zero is a good place to start. Although it is apparent that all proce­

dures in a single ring must depend on one another's integrity, the po­

tential inter-dependence currently found in ring zero could probably be 

greatly reduced by applying the principle of least privilege. At the 

language level, a single PL/I program has access only to declared 

variables -- unless those variables include pointers, in which case the 

program has immediate access to any data item anywhere in ring zero. 

Thus, to certify correctness of the traffic controller, one should 

-2-

inspect every ring-zero program which uses pointer variables, and verify 

that there is no way in which those other programs can possibly affect the 

Active Process Table. This example suggests that unnecessary use of pointer 

variables is a violation of the principle of least privilege. 

Note that in the discussion of "accessing privileges" of a PL/I 

program we are not talking about hardware enforced privileges, but rather 

on the linguistic constraints placed on the programmer. Forbidding 

unnecessary use of pointer variables does not by itself guarantee the 

principle of least privilege; it does seem to be moving in the correct 

direction, though. 

So far, I have discovered no examples in which the principle of least 

privilege is in serious conflict with either functional goals or other 

design principles. Most violations seem to occur in the name of short-term 

programming convenience, or in cases which no other goal or principle 

offers design guidance. It is likely that further discussion and auditing 

of the system with this design principle in mind may yield much more 

insight. 


