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Abstract

Given a poset P as a precedence relation on a set of jobs with processing time vector p, the
generalized permutahedron perm(P, p) of P is defined as the convex hull of all job completion
time vectors corresponding to a linear extension of P. Thus, the generalized permutahedron
allows for the single machine weighted flowtime scheduling problem to be formulated as a
linear programming problem over perm(P, p). Queyranne and Wang [8] as well as von Arnim
and Schrader [2] gave a collection of valid inequalities for this polytope. Here we present a
description of its geometric structure that depends on the series decomposition of the poset P,
prove a dimension formula for perm(P, p), and characterize the facet inducing inequalities under
the known classes of valid inequalities.

1. The generalized permutahedron of a poset

The generalized permutahedron perm(P, p) is a polytope associated with the fol-
lowing single machine scheduling problem. A set J = {1,...,n} of n jobs is to be
processed on a single machine that can execute at most one job at a time, i.e., the ma-
chine is disjunctive. Each job v €J has a positive processing time p, and a weight w,.
We impose precedence constraints given by a partially ordered set (poset for short)
P = (J, <p) on the set of jobs, that is we require that a job v can only be started
once all jobs u with u <pv have been finished. Any admissible sequence of jobs cor-
responds to a linear extension L of the ordering P. The completion time Ct is the
time by which job v is finished when the jobs are processed in the order given by L,
ie, CL:=3,.<, Pu Note that we consider only schedules without preemption and
without machine idle time.
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We are interested in finding a linear extension L of P that minimizes the weighted
mean completion time (1/n) 3", ., w,CL (or equivalently > ovey w,CL). This problem is
known to be NP-hard even if all weights w, are one or all processing times p, are
one (cf., [3] or [4]). Forming the convex hull

perm(P, p) := conv{C: € R’: L is a linear extension of P}

of all completion time vectors C that correspond to a linear extension L of P the
single machine scheduling problem can be solved by determining an optimal vertex
of perm(P, p) with regard to the linear programming problem

minimize Zvau
veJ
subject to C € perm(P, p).
Notice that each feasible completion time vector is in fact a vertex of the polytope
perm(P, p). We refer to Pulleyblank [5] for an introduction into the field of polyhe-
dral combinatorics, and to Queyranne and Schulz [7] for an overview on polyhedral
approaches to machine scheduling.

If all job processing times p, are equal to one each completion time vector can be
considered as a permutation itself. The resulting polytope is known as the permutahe-
dron of a poset (cf., for instance, [1] and [12], and [7] for further references).

Queyranne and Wang [8] studied a slightly different full dimensional polyhedron
P(J) associated with the scheduling problem if machine idle time is allowed,

P(J) :=conv(T(J)),
where

T(J):= {CeR’: C, > p, for all minimal elements v € P,
C;,—Cy, =2 p, foru<pr,
CG—-C,zp,or C,—C. = py
for all incomparable elements u,v € P}.

Since T(J) and therefore P(J) is unbounded from above each valid inequality
Y ey @Cy = a for P(J) satisfies ) ., a, > 0. From this it follows that any com-
pletion time vector induced by a schedule with nonzero idle time is contained only in
unbounded faces of P(J). Thus perm(P, p) is exactly the unique bounded face of the
polyhedron P(J) of maximal dimension. Whereas all valid inequalities for P(J) are also
valid for perm(P, p) a facet of P(J) does not necessarily induce a facet of perm(P, p).
In this paper we characterize precisely those inequalitics among the known classes of
valid inequalities for P(J) that induce facets of perm(P, p).

2. Valid inequalities and dimension

The following classes of valid inequalities are known for the generalized permuta-
hedron.
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An ideal (or initial set) of the poset P is a subset / C P that contains with each
vel all ue P with u <pv. For every ideal I we have the ideal constraint (or parallel
inequality)

> pCoz dpUy + 570, . (1)
vel

Here p(/) denotes Y ., p, and p*(/) stands for Y ., p?. The complement P\ of
an ideal [ is a filter (terminal set) of the poset P. Each filter F of P induces a filter
constraint,

Y pCe < TpFY + $pX(F) + p(F)p(P\F).
reF

However, the faces of perm(P, p) induced by the filter constraint of ' and the ideal
constraint of P\F are identical.

Since we do not allow machine idle time the ideal constraint holds with equality
for I = P,

> pCo=1p(PY + 1 P(P). (2)

veP

In the absence of precedences between jobs inequalities (1) and Eq. (2) are neces-
sary and sufficient to describe the generalized permutahedron (see Queyranne [6] for
sufficiency, Schulz [10] for necessity, or Queyranne and Schulz [7] for both).

A poset P is series decomposable if P = Q UR with Q,R#0 and g <pr for all
g€ Q and all r € R. We write P = QR if P admits such a decomposition. A convex (or
intermediate) set of P is a subset C C P such that for u,x,v € P with u <px <prv and
u,v € C also x € C. For every convex set C that is series decomposable into C = 4+ B
the convex set constraint (series inequality) is valid for perm(P, p), expressing that
all jobs in A have to be scheduled before all jobs in B,

pA)Y " pCo— p(B)Y pCe
tEB r€A
> 3 p(A) p(B) p(4) + p(B)) + § p(4) p*(B) — 3 p(B) p*(4). 3)
Let the specific ordering N on {u,us,u3,us} be given by the relations u; <y us,
Uy <yug, and up <y u3 (cf, Fig. 1). A subset SCP is called a spider if it admits a
decomposition S = N > R, defined on N UR, with the ordering
u<yt and u,vEN,
) u<gpr and u,vER,
u<puv if for u,v€S.
#=u; and vER,

v=u; and u€R,

Here RC P\N is any subposet and <jp denotes the restriction from P to R.
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Fig. 1. Hasse diagram of the ordering N and of a spider ¥ < R.

Every spider S = N va R together with a filter F of the suborder R gives rise to a
spider constraint (S, F),

PO [(PF) + p)Ci = Y peCo— BCu |+ 8D peCe

r€FU{u } res
= pSW3(P(FY+ pu ) (P(FY+ pu +2p0) — $(PHF) + pl) — Bpu:]

+ 3BLp(S): + PA(S)I, (4)

where ff = p(R\F) + p,.. Likewise an ideal / C R induces a spider constraint (S,1),

p(S) Z pz'Cv - (P(]) =+ Pu, )Cu: + ?’Cu; -7 Z pl‘Cr
velU{us} teS

= pS5(pUI) + pu P + 2PN + P21+ SIp(S) — pA(S)), (5)

where 7 = p(R\]) + p,,.

A proof of the validity of inequalities (1) through (5) can be found in [2]. Queyranne
and Wang [8] prove the validity of the constraints (1) and (3) as well as (4) in case
F = R, and (5) for I = R, for their polyhedron P(J). They also show that for
series—parallel orderings P(J) is characterized by (1) and (3). Likewise the polytope
perm(P, p) is completely described by (1), (2), and (3) in case of series—parallel
orderings (see [1] for the permutahedron and [2] for the general case). Series—parallel
orders are orderings in which no four points induce the suborder N. If more generally
any five points of P induce at most one N these orderings are called N-sparse (or
Py-sparse). Their associated generalized permutahedron is completely characterized by
(1) through (5), see [2].

Let us assume that P decomposes serially into P = P * P,. Combining the convex
set constraint for Py x P, and Eq. (2) gives the ideal inequality for P, with reverse
inequality sign. Hence we must have equality for P,

Y pCo=5p(P) +1p%P)).
rEPy
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Note that every poset P has a unique series decomposition P = Py x - - - x P, where the
nonempty suborders Py, ..., P, are not further series decomposable. We can iterate the
above argument to obtain for this decomposition

pCo=3p(PLU---UPY +LpXPiU---UP) fori=1,.. k (6)
2 2

vEP U---UP;
Theorem 1. Let P be a poset with series decomposition P, - --xPy. Then the system

Y pCo=3p(PiY + 1P+ p(PIP(P U---UP)), i=1,... .k
repP;

is a maximal irredundant linear equation system for perm(P, p).

Proof. The validity of the equation system follows by considering the differences of 6)
for i and i — 1. It is obvious that the associated matrix has full row rank. Thus, we
only have to show that for any valid equation > uep duCy = e of perm(P, p) there
exist 4;, i = 1,...,k, such that 4;p, = d, for all ueP,.

Let P; be an arbitrary component of the series decomposition of P with |P;| > 2.
We claim d,/p, = d./p. for all u,v€ P, that is 2; = d,/p,. Let us distinguish the
cases (i) u and v incomparable and (ii) # and v comparable.

(i) If u, v are incomparable, there exists a linear extension L of P such that v follows
immediately after u. Let L’ be the linear extension obtained from L by interchanging
u and v. We write C = C? and €' = C* for the associated completion time vectors.
By construction we have C, = C} for x€ P\{u,v} and C! = C, + p, as well as
C! = C, — p,. Considering the difference > vep(dCy — d,C}) then gives the claim.

(i) We may assume u <pv. Let M(x):= {y € P\{x}: y is not comparable with x}
denote the set of elements that are incomparable with x. Assume first that ¢ covers
u and distinguish two cases. If there exists an element x € M(u) N M(v) we obtain
du/py = di/px = di/p, using (i). If M(u) N M(v) = 0 there exist X €M(u) and
Yy €M(v) such that x and y are incomparable, since otherwise P; splits into two series
components. Hence we have d,/p, = d./p. =d,/p, = d,/p, using (i) again. If v does
not cover u, there is a chain of elements between u and v covering each other. Hence
using the same arguments for the covering elements finally gives d,/ pu=d/p.. O

As a corollary we obtain a formula for the dimension of the generalized permutahe-
dron.

Corollary 2. Let P be a poset with series decomposition Py % - - - x Py. Then
dim(perm(P, p)) = |P| — k.

In fact, there is the following structural analogy between the decomposition of the
poset P and its associated generalized permutahedron perm(P, p). The series composi-
tion for posets carries over to the Cartesian product of polytopes. Recall that each face
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F of a polytope O = Q) x 0, is itself the Cartesian product F; x F, of faces F) C O,
and F, C O, and dim(F) = dim(F;) + dim(F>).

Theorem 3. Let P be a poset with series decomposition Pyx- - -xPy. Then perm(P, p) is
the Cartesian product of the polytopes perm’(Py, p'),...,perm/(Py, p*¥) where
perm’(P;, p') arises from perm(P;, p') through translation by p(P; U ---UP;_ )1,

perm(P, p) = perm'(Py, p') x - - x perm'(Px, p*).

Here p' denotes the restriction of the vector p of job processing times to the jobs
n P,‘.

Proof. Denote by perm’(P, p) the Cartesian product perm’(Py, p')x- - - x perm’(Py, p*).
Let C* be the completion time vector of a linear extension L of P. Since L is the series
composition of linear extensions L; of P;, i = 1,...,k, we obtain C* = (CY',Cl +
Pys---,CH + py_,). Here p, denotes a vector of appropriate dimension with all entries
equal to p(P;U---UP;). Thus perm(P, p) C perm’(P, p). In order to show the reverse
inclusion we observe that each vertex of perm’(P, p) is the Cartesian product of vertices
of the polytopes perm’(Py, p'),...,perm’(P;, p*). The rest of the proof is obvious. [

The union of minimal linear descriptions of polytopes Q) and Q, leads to a minimal
linear description of the Cartesian product Q) x ;. Therefore we obtain the following
result.

Corollary 4. Let P be a poset with series decomposition Py x- - -xPy. Assume, for i =
l,...,k, that the system

Y pCo=1p(P) + 1P,
tEP;

Zaithv > o forl=1,....n
LEP;
is a complete and minimal description for perm(P;, p'). Then a complete and minimal

description for perm(P, p) is given by the system

> peCo=3pPY + PP+ p(PYp(PLU---UP_y) fori=1,..k
veEP;

Za{:[CU > o+ d(PHYP(PY U UP_y) fori=1,... kandl=1,.. . n,.
vEP;

3. Facets

We tumn to characterize which of the constraints (1), (3), (4), and (5) define facets
of the generalized permutahedron. In view of Corollary 4 it is sufficient to characterize
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the facets for components of P that are not series decomposable to obtain a complete
and minimal linear description for perm(P, p).

We call Ct consecutive for QCP if for all u <, x <, v with u,v€ Q also x€ Q,
that is Q is a convex subset of L. The following necessary condition for a constraint
to be tight can be proved by revisiting the proofs of validity.

Lemma 5. Let Q CP be an ideal, a series decomposable convex set, or a spider. If
the corresponding ideal, convex set, or spider inequality is tight for the completion
time vector C* then Ct is consecutive for Q. Furthermore, in case that Q is an ideal,
Q is an ideal of L as well.

First we study ideal constraints.

Theorem 6. Let P be a non series decomposable poset and I be an ideal of P. If
fyx---xl, and Fyx---xF are the series decompositions of I and P\I, respectively, then
the face of perm(P, p) defined by the ideal constraint > ver PoCo = % pI) + % )
is of dimension n — (r + ).

Proof. The main observation is that the face induced by an ideal 7 is itself the gen-
eralized permutahedron of an appropriate poset. More precisely, let Q be the poset
defined by Q := 1 x (P\I). Then {C € perm(P, p): > ves PvCo = %p([)2 + %pz(l)} =
perm(Q, p). The inclusion C follows from Lemma 5, D being trivial. The claim now
follows from Corollary 2. [

Corollary 7. Let P be a non series decomposable poset. A nonempty ideal I < P
induces a facet of perm(P, p) if and only if both I and P\I are not series decompos-
able.

Next we consider convex set constraints. A convex set C = 4 x B is called bipartite
if neither 4 nor B is series decomposable. First we show that in the case that P is not
series decomposable all facet inducing series decomposable convex subsets of P are
bipartite. We denote by F,,5 the face induced by the convex set 4  B.

Lemma 8. Let A x B be a convex set of P, and suppose A or B are in turn series
decomposable into A = A, x A, or B= B, % B,, respectively. Then

FA*B:FAMAngA;*B or FA*B:FA*&OFB]*B;-

Proof. We show only Fy.p C Fy,, 4, NF4,.3. The other inclusions are proved similarly.
Let C be a feasible completion time vector that satisfies the convex set constraint
induced by 4 * B with equality. If we multiply this equation with p(4;) and subtract
p(B) times the convex set constraint induced by A4y * A; we obtain C € F4,.5. On the
other hand subtracting p(4) times the convex set constraint of Ay x B gives C € Fy,.4,.

O
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To give a complete characterization of facet defining series decomposable convex
sets and facet defining spiders we need the concept of a contracted ordering. In the
contracted ordering P/Q a convex subset Q & P is replaced by a single element
g /EP, ie., on the set (P\Q) U {q} we define an ordering by distinguishing three
cases: u <pyv if u,v € P\Q with u <pv; g <pjgv if v is greater than some u in Q;
and likewise u <p,g g if u is less than some v in Q. The comparabilities implied by
transitivity have to be added, of course.

The faces induced by ideals could be viewed as generalized permutahedra induced
by an extended ordering of P. For convex sets and spiders we need two generalized
permutahedra.

If Q C P then the situation inside Q is governed by the generalized permutahedron
perm(Q, p?) associated with Q, where p¢ denotes the restriction of the vector p of
job processing times to the jobs in . Every completion time vector C € perm(P, p)
defines an element C¢ eperm(Q p?), as follows. Let L be the linear extension of P
with C = C* then CZ2 Zuegu <0 Pu for v€ Q. Equivalently we could associate
with L the restricted lmear extension Ly of L to Q and set C¢ := C'e. We call C¢
the induced completion time vector (w.r.t. C).

If C is consecutive for Q then the induced completion time vector C¥ equals the
restriction of C to Q plus an offset, i.e., C, = C?+ const. for all v € Q. The jobs of P\Q
are divided into two sequences separated by the jobs of Q. Hence a consecutive C can
be viewed as an element of perm(P/Q, pP 2Y and of perm(Q, p?), where P/Q is the
contracted order, and pf@ is given by p[ = p, for v€ P\Q and pP Q0 — = p(Q). This
idea yields a dimension formula stated in the following theorem.

Theorem 9. Le! P be a non series decomposable poset, Q C P a convex set, and F be
a face of perm(Q, p2). Let T be the set of completion time vectors C € perm(P, p)
that are consecutive for Q and such that C2 € F. Then there exists a bijection ¢
between T and the set of ordered pairs (6,5 ). where C is a vertex of perm(P/Q, p*/?)
and C is a vertex of F. Furthermore dim(T) = dim(perm(P/Q, p©/2)) 4 dim(F).

Proof. First we establish the claimed bijection ¢. Let C be a consecutive vertex
of perm(P, p) with C2 € F and let L be the linear extension with C* = C, then ¢(C) :=
(C,C9) is defined by C, = C, for v P\Q and C, ZteP\QKLu po + p(Q) with
u € Q. Observe that since C is consecutive C is well defined, and C € perm(P/Q, p©/?).
The inverse mapping ¢~ —1 is given by qo_l(C C) C with C, = C, for v € P\Q and
C, = =C, + C — p(Q) for ve Q. We leave it to the reader to verify the formula
for ¢~ !.

To prove the dimension formula we will now show that there exist k +/— 1 affinely
independent vectors in 7T if and only if there are k& affinely independent completion
time vectors in perm(P/Q, p*/2) and / affinely independent completion time vectors in
the face F of perm(Q, p?2).

Assume we have x!,...,x* affinely independent completion time vectors of
perm(P/Q, p©'?) and y',...,y' affinely independent completion time vectors of F.
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Using ¢~' we obtain & -/ completion time vectors Z¥ for i = 1,...,k and j=1,...,1
of perm(P, p) with

{ xt if ue P\Q,

Zi=¢""
yo+r, ifueQ,

u
where ' is given by x! — p(Q). Observe that Z¥ = z/! + 7% — Z¥!_ Hence all vectors
ZY are in the affine span of the k +/— 1 vectors Z/!, i = l,...,k,and Z¥ j=2 .. . 1.
We now prove that these vectors are linearly independent.

To do this we think of these vectors as row vectors of a (k + / — 1,|P|)-matrix
and multiply each column u with the processing time p, # 0. The rank of the matrix
remains unchanged. We label the resulting row vectors by z/, that is

i {pl,x;;, if ue P\Q
Zu =

. ; ) fori=1,...,k
Py, +r), ifueQ

A. .
. Xy, ifuepP
Z;:{Pu \Q fori=k+1,....k+1-1.

PV 4R, ifueQ

The sum ), .,z of the components of each z' gives Eq. (2) of perm(P, p) and is
therefore a constant independent of .

Assume the vectors z',...,z¢*/~1 satisfy the equations
k-1
N dz,=0 foruep (7)
=

with 4 € R. We take the sum over all components to obtain

k+i—1
d =0 (8)

On the other hand we sum (7) over the components in Q,

k+i—1

> > i =o.

weQ i=I

Using the definition of z, with € Q and exchanging summation gives

k kti—1
0= A pirl e Y o
=l ueQ i=k+1 ueQ

Since y' € perm(Q, p¥) Eq. (2) for Q yields

k
0=/ GO + pOP) + p(O)

i=1
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k+1—-1
+ 3 AG(PHO)Y + PO + p(O)F)
i=k+1
With the help of (8) we conclude

k+1—1

Z/’r’+rk Z A=0.

i=k+1
Hence we can rewrite those equations of (7) with u€ Q as

k+1-1

0= Z )L"z:;
i=1

k+1-1

—Z/ Py Y+ Y A pT

i=1 i=k+1

k+1—1
((Z}>yu+ +Z /lyl k+l)
i=k+1

Since the vectors ' are affinely independent we can conclude A' = 0 for i = k +

.,k + 1 — 1. Revisiting (7) for the jobs u € P\Q as well as the single job &€ Q
with yl = p(Q), we obtain from the affine independence of the vectors x!,...,x* that
also A =0 for i = 1,...,k. Hence the vectors z’ are linearly independent and therefore
dim(7) > dim(perm(P/Q, p”/€))4+dim(F). It is a not too hard exercise to establish the
reverse inequality by constructing hyperplanes containing 7 from those that describe
the affine hull of perm(P/Q, p/?) and F, respectively. O

If the constraint induced by a set Q is tight for a completion time vector C then
we know from Lemma 5 that C is consecutive for . This implies C, = C 24 const.
for all v€ Q. Let ax > b be a convex set or a spider constraint. Observe that for
those constraints the component sum vanishes, a(P) = 0, and we have for all C with
C = C? + const.1 the equality > a.C, = ZaL.C,.Q . Hence the convex set (spider)
constraint of perm(P, p) induced by Q is tight for C if and only if the convex set
(spider) constraint induced by @ of perm(Q, p?) is tight for C2. We are now in a
position to characterize facets induced by convex sets and spiders, respectively.

Theorem 10. Let P be a non series decomposable poset and A x BC P be a convex
set. Then A x B defines a facet of perm(P, p) if and only if A+ B is bipartite and the
contraction P/(A x B) is not series decomposable.

Proof. From Lemma 8 follows that 4 x B has to be bipartite.

For the face F' in Theorem 9 we choose the generalized permutahedron of the convex
set 4 * B itself. Then the set of all vertices C € perm(P, p) for which the convex set
constraint of 4 x B is tight equals the set 7 defined in Theorem 9. So 4 * B induces
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a facet if and only if dim(7) = dim(perm(P, p)) — 1 = |P| — 2. By Theorem 9 and
Corollary 2 we obtain

dim(T') = dim(perm(P/(4 * B), p?"“*B)y) + dim(perm(4 B, p**£))
=|P|~|4d*B]+1
—+#(components of the series decomposition of P/(4 * B))+|4 x B|-2.

Hence the bipartite convex set 4 x B induces a facet if and only if the number of
components in the series decomposition of P/(4 * B) is one. [

We call a spider S convex if S is a convex set of P. By Lemma 5 only convex
spiders induce nontrivial faces. The following condition is necessary and sufficient for
spiders to induce facets.

Theorem 11. Let P be a poset that is not series decomposable, and let SCP be
a convex spider. A spider constraint (S,F) or (S,1) defines a facet of the general-
ized permutahedron perm(P, p) if and only if the contracted poset P/S is not series
decomposable.

Proof. If the ordering P is a spider itself it is quite easy to construct |[P| — | affinely
independent completion time vectors satisfying a particular spider inequality with equal-
ity. Hence every spider constraint defines a facet.

Therefore in the general case we choose for the face F in Theorem 9 the facet
of perm(S, p%) induced by the spider constraint. Now we continue as in the proof of
Theorem 10. O

We conclude this section with some remarks on the case that P has series decom-
position P = P| % --- x P;. Any ideal I CP has the form J = P; % --- x P; x [ for
some /€ {0,...,k ~ 1} where [ is an ideal of the suborder P;iq. It defines a facet
of perm(P, p) if and only if / defines a facet of perm(P;. 1, p'*!). The conditions
obtained on [ are exactly those stated in Corollary 7.

A bipartite convex set 4 * B defines a facet if and only if

(a) A+ B < P; and P;/(4 * B) is not series decomposable, or

(b) A=P;, B < Py for some ic{l,...,k — 1} and P, \B is not series decom-
posable, or

()4 < Pi, B=P;,, for some i€{l,...,k — 1} and P:\A is not series decompos-
able.

This is seen as follows.

Since A4 is not series decomposable, ANP; # () for some i € {1,...,k} implies A C P;
and the same holds for B. Hence for a bipartite convex set 4 *x B we have either (i)
AxB < P; for some 1 <i<kor(ii)4CP; and BCP;y forsome 1 <i<k—1.1If
A=B is of type (ii) then it follows from Lemma 5 that the set of those C in perm(P, p)
for which the convex set constraint induced by 4 * B is tight equals the permutahedron
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perm(Q, p), where Q is defined as Q := Py - - % (P;\A) * A % B x (P;+1\B) * - - - % Py.
Hence A4 * B defines a facet if and only if dim(Q) = |P| — k — 1. By Corollary 2 we
obtain that this is true if and only if 4 x B has form (b) or (c¢). The proof for case (i)
follows from Theorem 10 and Corollary 4.

The facets induced by convex sets of the form (b) and (c) are also induced by
certain ideals. To see this notice that C = P; * B is convex and bipartite with P;,;\B
not series decomposable if and only if / = Py * --- % P; = B is an ideal with B and
P;;1\B not series decomposable. Analogously, C’ = 4 x P;; is convex and bipartite
with P;\4 not series decomposable if and only if I’ = Py x---xP;_; x(P;\A4) is an ideal
and both 4 and P;\A are not series decomposable. It is an easy computation to show
that the facets induced by C and 7 as well as those induced by C’ and I’, respectively,
are identical.

4. N-sparse posets

If the poset P is N-sparse it is proved in [2] that perm(P, p) is completely described
by the linear system (1)-(5). In the case of a non series decomposable poset the facet
inducing ideal, convex set, and spider constraints define mutually distinct facets. Hence
the next theorem follows from Corollary 4, Corollary 7, Theorem 10, and Theorem 11.

Theorem 12. Let P be an N-sparse poset with series decomposition P %---xPy. Then
perm(P, p) is completely and minimally described by the following linear system (in
each case i ranges from 1 to k):

(1) The equations

> peCo= 3 p(PiY + L p*(P) + p(P)p(PyU -+ UPy).
veP;

(1) The ideal inequalities

> peCo = 1pU) + 1 M)
vel

for all ideals I = Py *---xP;_; xI, where the nonempty sets I and P\ are not series
decomposable.
(iii) The convex set inequalities

P p.Co— p(B)Y piCe

vEB vEA
> 3 p(4)p(BY( p(4) + p(B)) + 5 p(4)p*(B) — § p(B) p*(4)

Jor A% B & P; convex and bipartite with P;/(A * B) not series decomposable.
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(iv) The spider inequalities (S,F),

PO |(PF)+ pu)Ci = D pCo—PCu |+ B pCo

vEFU{u, } rteS
> p($)3(PF) + pu ) (PF) + pu +2pu) = 3(P*(F) + pL) — Bpus)

+ 3BLp(S)* + P*(S)),

with B = p(R\F)+ p,,. Here S = N1 RC P; can be any convex spider such that
P;/S is not series decomposable, and F is any filter of R.
(v) The spider inequalities (S,I),

P Y pCo= (P + pu)Cy +7Cu | =73 PGy
velU{us} €S

2 p(S)3(pU) + pu)* + 3P’ + PEI+ 9 p(S): — pPAS)I,

with y = p(R\I) + p.. Again, S = Nxa RC P; can be any convex spider such that
P;/S is not series decomposable, and 1 is any ideal of R.

We note that (i)—(iii) completely and minimally describe the generalized permutahe-
dra of series—parallel orderings. This gives a correction to the statement of Theorem 4.6
in [1] (see also [12]).

5. Concluding remarks

The availability of an explicit complete description of the generalized permutahedron
of an N-sparse poset by means of linear equations and inequalities suggests the related
single machine sequencing problem be solvable in polynomial time. Indeed, this has
been shown by Schulz [11] (see also [10]) who developed an O(n?*) combinatorial
algorithm. This in particular implies that the separation problem associated with the
generalized permutahedron of an N-sparse poset can be solved efficiently. But whereas
we are aware of combinatorial algorithms solving the separation problems restricted to
the family of ideal and spider inequalities, respectively, in polynomial time, even for
arbitrary posets, there is no direct algorithm known for the whole class of convex set
constraints (there is an implicit one, however, for a broader class, see [7] for details).

Here we have shown that several of the known inequalities for the generalized per-
mutahedron of a poset are facet defining. This motivates and justifies in particular their
use in algorithms of cutting plane type to solve scheduling problems. Their usefulness
is confirmed by first computational results (see [9]).
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