
Theoretical Computer Science 410 (2009) 1589–1598

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Coordination mechanisms for selfish scheduling
Nicole Immorlica a,∗, Li (Erran) Li b, Vahab S. Mirrokni c, Andreas S. Schulz d
a Northwestern University, Evanston, IL, United States
b Bell Labs, Murray Hill, NJ, United States
c Google Research, New York, NY, United States
dMassachusetts Institute of Technology, Cambridge, MA, United States

a r t i c l e i n f o

Keywords:
Mechanism design
Price of anarchy
Scheduling
Local search

a b s t r a c t

In machine scheduling, a set of jobs must be scheduled on a set of machines so as to
minimize some global objective function, such as the makespan, which we consider in
this paper. In practice, jobs are often controlled by independent, selfishly acting agents,
which each select a machine for processing that minimizes the (expected) completion
time. This scenario can be formalized as a game in which the players are job owners,
the strategies are machines, and a player’s disutility is the completion time of its jobs
in the corresponding schedule. The equilibria of these games may result in larger-than-
optimal overall makespan. The price of anarchy is the ratio of the worst-case equilibrium
makespan to the optimal makespan. In this paper, we design and analyze scheduling
policies, or coordination mechanisms, for machines which aim to minimize the price of
anarchy of the corresponding game. We study coordination mechanisms for four classes of
multiprocessor machine scheduling problems and derive upper and lower bounds on the
price of anarchy of these mechanisms. For several of the proposed mechanisms, we also
prove that the system converges to a pure-strategy Nash equilibrium in a linear number of
rounds. Finally, we note that our results are applicable to several practical problems arising
in communication networks.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

With the advent of the Internet, large-scale autonomous systems have become increasingly common. These systems
consist of many independent and selfishly acting agents, all competing to share a common resource such as bandwidth in a
network or processing power in a parallel computing environment. Practical settings range from smart routing among stub
autonomous systems in the Internet [20] to selfish user association in wireless local area networks [7]. In many systems of
this kind, it is infeasible to impose some centralized control on the users. Rather, a centralized authority can only design
protocols a priori and hope that the independent and selfish choices of the users – given the rules of the protocol – combine
to create socially desirable results.
This approach, termed mechanism design, has received considerable attention in the recent literature (see, for example,

[30]). Its goal is to design system-wide rules which, given the selfish decisions of the users, maximize the total social
welfare. The degree to which these rules approximate the social welfare in a worst-case equilibrium is known as the price
of anarchy of the mechanism. This concept was introduced in 1999 by Koutsoupias and Papadimitriou [26] in the context of
selfish scheduling games (see below for details). This seminal paper has spawned a series of results which attempt to design

∗ Corresponding author.
E-mail address: nickle@eecs.northwestern.edu (N. Immorlica).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.12.032

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:nickle@eecs.northwestern.edu
http://dx.doi.org/10.1016/j.tcs.2008.12.032

1590 N. Immorlica et al. / Theoretical Computer Science 410 (2009) 1589–1598

mechanisms with minimum price of anarchy for a variety of games. One approach for achieving this goal is to impose
economic incentives on users in the form of tolls; i.e., the disutility of a user is affected by a monetary payment to some
central authority for the use of a particular strategy such as a route in a network [6,11,17] . Another approach assumes that
the central authority is able to enforce particular strategies upon some fraction of the users, which might help to influence
the decisions of the other users in the desired way [5,25,31,34].
A drawback of the above approaches is that many of the known algorithms assume global knowledge of the system and

thus have high communication complexity. In many settings, it is important to be able to compute mechanisms locally. A
third approach, which we follow here, is called coordination mechanisms, first introduced by Christodoulou, Koutsoupias,
and Nanavati [10]. A coordination mechanism is a local policy that assigns a cost to each strategy s, where the cost of s is a
function of the agents that have chosen s. Consider, for example, a selfish scheduling game in which there are n jobs owned by
independent agents,mmachines, and a processing time pij for job i on machine j. Each agent selects a machine on which to
schedule its job with the objective of minimizing its own completion time. The social objective is tominimize themaximum
completion time. A coordination mechanism for this game is a local policy, one for each machine, that determines how to
schedule jobs assigned to that machine. It is important to emphasize that a machine’s policy is a function only of the jobs
assigned to that machine. This allows the policy to be implemented in a completely distributed fashion.
Coordination mechanisms are closely related to local search algorithms. A local search algorithm iteratively selects a

solution ‘‘close’’ to the current solution that improves the global objective. It selects the new solution from among those
within some search neighborhood of the current solution. Given a coordination mechanism, we can define a local search
algorithm whose search neighborhood is the set of best responses for each agent. Similarly, given a local search algorithm,
it is sometimes possible to define a coordination mechanism whose pure-strategy equilibria are local optima with respect
to the search neighborhood. The locality gap of the search neighborhood, i.e., the approximation factor of the local search
algorithm, is precisely the price of anarchy of the corresponding coordination mechanism, and vice versa. In particular,
designing new coordination mechanisms may lead to the discovery of new local search algorithms.
In this paper, we are primarily interested in the properties of pure-strategy Nash equilibria for the selfish scheduling

games we consider. A pure-strategy Nash equilibrium is an assignment of jobs to machines such that no job has a unilateral
incentive to switch to another machine. Although a non-cooperative game always has a mixed-strategy equilibrium [29],
it may in general not have a pure-strategy equilibrium. However, pure-strategy Nash equilibria are arguably more natural
and, when they exist, they may better predict game play. We also bound the rate of convergence of the mechanism. That is,
if the jobs, starting from an arbitrary solution, iteratively play their best-response strategies, how long does it take for the
mechanism to reach a Nash equilibrium?1 Guarantees of this sort are important for the applicability of bounded price-of-
anarchy mechanisms in a practical setting.

Preliminaries. In parallel machine scheduling, n jobs must be processed on m machines. Job i has processing time pij on
machine j. A schedule µ is a function mapping each job to a machine. The makespan of a machine j in schedule µ is
Mj =

∑
i:j=µ(i) pij. The goal is to find a schedule µ which minimizes the maximum makespan Cmax = maxjMj. Different

assumptions regarding the relationship between processing times yield different scheduling problems, ofwhichwe consider
the following four: (i) identicalmachine scheduling (P ‖ Cmax) in which pij = pik = pi for each job i andmachines j and k; (ii)
uniform or relatedmachine scheduling (Q ‖ Cmax) in which pij = pi/sj, where pi is the processing requirement of job i and
sj is the speed of machine j; (iii) machine scheduling for restricted assignment or bipartitemachine scheduling (B ‖ Cmax) in
which each job i can be scheduled on a subset Si of machines only, i.e., pij is equal to pi if j ∈ Si and is equal to∞ otherwise;
and (iv) unrelatedmachine scheduling (R ‖ Cmax) in which the processing times pij are arbitrary positive numbers.
In selfish scheduling, each job is owned by an independent agent whose goal is to minimize the completion time of its

own job. To induce these selfish agents to take globally near-optimal actions, we consider the notion of a coordination
mechanism [10]. A coordination mechanism is a set of scheduling policies, one for each machine. A scheduling policy for
machine j takes as input a set of jobs on machine j along with their processing times on machine j and outputs an ordering
in which they will be scheduled. The policy is run locally at each machine, and so it does not have access to information
regarding the global state of the system (e.g., the set of all jobs). A coordinationmechanism defines a gamewith n agents. An
agent’s strategy set is the set of possiblemachines {1, ...,m}. Given a strategy profile, the disutility of agent i is the (expected)
completion time of job i in the schedule defined by the coordination mechanism. We study four coordination mechanisms.
In the ShortestFirst and LongestFirst policies, we sequence the jobs in non-decreasing and non-increasing order of their
processing times, respectively. In the Randomized policy, we process the jobs in random order.2 In theMakespan policy, we
process all jobs on the same machine in parallel, and so the completion time of a job on machine j is the makespan Mj of
machine j.
We are interested in the properties of the solutions resulting from the agents’ selfish behavior, in particular, in the price of

anarchy. In our setting, the price of anarchy is the worst-case ratio (over all instances) of the maximummakespan in a Nash
equilibrium to the optimal makespan. For each policy and each scheduling problem, we prove upper and lower bounds on
the price of anarchy. Some of these bounds are already known as the approximation factor of some local search algorithms
or the price of anarchy in some selfish load balancing games. All bounds, known and new, are summarized in Table 1.

1 In this paper, we use the term Nash equilibrium for pure-strategy Nash equilibrium.
2 The Randomized policy is also known as the batch model [26].

N. Immorlica et al. / Theoretical Computer Science 410 (2009) 1589–1598 1591

Table 1
The price of anarchy for four different policies and scheduling problems. All upper and lower bounds hold
for pure Nash equilibria. The upper bounds of the Randomized policy for R ‖ Cmax and Q ‖ Cmax are valid
for the maximum of the expected load on any machine in mixed Nash equilibria. The results marked by *
are proved in this paper or follow from the correspondence of certain greedy schedules with equilibrium
schedules, established in this paper.

Makespan ShortestFirst LongestFirst Randomized

P ‖ Cmax 2− 2
m+1 [16,32] 2− 1

m [21]*
4
3 −

1
3m [22,10] 2− 2

m+1 [16,32]

Q ‖ Cmax Θ(
logm
log logm) [12] Θ(logm) [1], * 1.52 ≤ P ≤ 1.59 [14,18]* Θ(

logm
log logm) [12]

B ‖ Cmax Θ(
logm
log logm) [19,2] Θ(logm) [1], * Θ(logm) [4], * Θ(

logm
log logm) [19,2]

R ‖ Cmax Unbounded [32] logm ≤ P ≤ m [23,9]* Unbounded Θ(m) *

In order to avoid subtle difficulties arising from ties between processing times of jobs, we assume that all deterministic
policies (especially ShortestFirst and LongestFirst) and greedy algorithms resolve ties in a consistent manner. Moreover,
we require the tie-breaking rule to be deterministic and independent of irrelevant alternatives; i.e., the resolution of a tie
between jobs i and i′ is not affected by the presence or absence of job i′′. One such tie-breaking rule is the alphabetically first
rule. When there is a tie between the processing times of two jobs, the alphabetically first rule always chooses the one with
the smaller identifier. In fact, we may assume w.l.o.g. that we always use the alphabetically first rule because we can easily
relabel jobs such that in a tie job i is considered before i′ whenever i < i′.

Our contribution. We present upper and lower bounds on the price of anarchy for the Randomized, the ShortestFirst, and
the LongestFirst policies. We give a proof that the price of anarchy of any deterministic coordination mechanism (including
ShortestFirst and LongestFirst) for Q ‖ Cmax and B ‖ Cmax is O(logm). This result is also implied by earlier results on greedy
algorithms for these scheduling problems [1,4] becausewe show that—in certain situations—a schedule is aNash equilibrium
if andonly if it can beproducedby these algorithms.Wealso prove that the price of anarchy of anydeterministic coordination
mechanism (such as ShortestFirst and LongestFirst) isΩ(logm) for B ‖ Cmax. In addition, we analyze the Randomized policy
for R ‖ Cmax and prove a bound of Θ(m) on its price of anarchy. We further study the convergence to and the existence of
pure Nash equilibria for the ShortestFirst and LongestFirst policies. In particular, we show that the mechanism based on the
ShortestFirst policy for R ‖ Cmax is a potential game, and any sequence of best responses converges to a Nash equilibrium
after at most n rounds. We also prove fast convergence of the LongestFirst policy for Q ‖ Cmax and B ‖ Cmax.

Relatedwork. TheMakespanpolicy is perhaps the best knownpolicy among the abovepolicies; see, e.g., [2,12,19,26]. Czumaj
and Vöcking [12] gave tight results on the price of anarchy for theMakespan policy for mixed Nash equilibria and Q ‖ Cmax.
Gairing et al. [19] and Awerbuch et al. [2] obtained a tight bound for the price of anarchy of the Makespan policy for pure
Nash equilibria and B ‖ Cmax. In addition, Gairing et al. [19] presented a polynomial-time algorithm for computing a pure
Nash equilibrium with makespan at most twice the optimal makespan.
Coordination mechanism design was introduced by Christodoulou, Koutsoupias, and Nanavati [10]. In their paper,

they analyzed the LongestFirst policy for P ‖ Cmax. As we have mentioned before, the price of anarchy for coordination
mechanisms is closely related to the approximation factor of local search algorithms. Vredeveld surveyed some of the results
on local search algorithms for scheduling problems in his thesis [35]. The ‘‘jump model’’ described therein (see also [32])
is similar to the Makespan policy. (More precisely, any Nash equilibrium under that policy is a jump-optimal schedule,
but not necessarily vice versa.) The ‘‘push model’’ is related to the LongestFirst policy. Cho and Sahni [9] showed that the
approximation factor of the shortest-first greedy algorithm is not better than logm for Q ‖ Cmax. Aspnes et al. [1] and
Azar et al. [4] proved that the greedy list scheduling algorithm is an O(logm)-approximation algorithm for B ‖ Cmax and
Q ‖ Cmax, respectively. Their proofs can be used to bound the price of anarchy of the LongestFirst and ShortestFirst policies
for B ‖ Cmax and Q ‖ Cmax. Ibarra and Kim [23] proved that the shortest-first greedy algorithm is an m-approximation for
R ‖ Cmax. Our lower bound example for the ShortestFirst and the LongestFirst policy is the same as an example in [13]. Davis
and Jaffe [13] also gave a

√
m-approximation for R ‖ Cmax. The best known approximation factor for R ‖ Cmax is obtained by

a 2-approximation algorithm due to Lenstra, Shmoys, and Tardos [27].
Even-Dar et al. [15] considered the convergence time to Nash equilibria for variants of the selfish scheduling problem. In

particular, they studied theMakespan policy and bounded the number of required steps to reach a pure Nash equilibrium.
After the appearance of the conference version of this paper [24], Azar, Jain, and Mirrokni [3] improved on some of

the results presented here. In particular, they provided a matching lower bound of Ω(m) for the price of anarchy of the
ShortestFirst policy and R ‖ Cmax. Moreover, they gave an ordering policy whose price of anarchy is Θ(logm) for R ‖ Cmax.
However, this policy needs to know the minimum processing time of a job on any machine to compute the schedule for a
given machine. Hence, their mechanism is not local, strictly speaking.3 However, they also showed that no deterministic
local ordering policy can achieve a price of anarchy better thanΩ(m) for R ‖ Cmax.

3 In contrast to the terminology used here, Azar et al. call policies that only make use of the processing times of jobs on the samemachine, strongly local,
and policies that consider all characteristics of the jobs to be scheduled on the same machine (and not any information about jobs on other machines),
local.

1592 N. Immorlica et al. / Theoretical Computer Science 410 (2009) 1589–1598

The paper is organized as follows. In Section 2, we prove upper bounds on the price of anarchy, for various coordination
mechanisms and scheduling problems. Corresponding lower bounds are discussed in Section 3. Afterwards, we study the
time it takes to reach a Nash equilibrium (Section 4). Section 5 contains our concluding remarks.

2. Upper bounds on the price of anarchy

2.1. The ShortestFirst policy

We begin by bounding the price of anarchy of the ShortestFirst policy for R ‖ Cmax. We note that there is a
direct correspondence between outputs of the well-known shortest-first greedy algorithm for machine scheduling [23,
Algorithm D] and Nash equilibria of the ShortestFirst policy.

Theorem 1. The set of Nash equilibria for the ShortestFirst policy and R ‖ Cmax is precisely the set of solutions that can be
generated by the shortest-first greedy algorithm.

Proof. Consider a scheduleµ produced by the shortest-first greedy algorithm. On eachmachine, jobs are scheduled in order
of non-decreasing processing times. That is, the ShortestFirst policy is in effect. Suppose it would be beneficial for job i to
switch from its current machine µ(i) to another machine; let j be the machine on which i would complete first. Then the
greedy algorithm would also have scheduled i on j by the shortest-first rule, a contradiction.
We prove the other direction by induction on the number of jobs. For n = 1, there is nothing to prove. So let µ be an

equilibrium schedule with n+ 1 jobs. Let i be a job that determines the makespan; i.e., the completion time of i equals Cmax.
If we remove i from µ, the remaining schedule, let us call it µ′, is still a Nash equilibrium because i is last. Hence, µ′ can be
constructed by using the shortest-first greedy algorithm. Because µ is a Nash equilibrium, i has no incentive to switch to
anothermachine. In particular, the processing time of i on eachmachine j is at least as large as that of any other job currently
assigned to j. It follows that µ can also be interpreted as an output of the shortest-first greedy algorithm. �

The implication is that any bound on the approximation factor of the shortest-first greedy algorithm is also a bound on
the price of anarchy of the ShortestFirst policy for R ‖ Cmax. In particular, Theorem 1 and a result of Ibarra and Kim [23,
Theorem 1] prove that the price of anarchy of ShortestFirst for R ‖ Cmax is at most m. We include a proof for the sake of
completeness.

Theorem 2. The price of anarchy of the ShortestFirst policy for R ‖ Cmax is at most m.

Proof. Fix any Nash equilibrium µ and label the jobs in non-decreasing order of completion times, which, according to
Theorem 1, coincides with the order in which they are scheduled in the shortest-first greedy algorithm. Let M i be the
makespan of the schedule µ restricted to jobs 1 through i. Let pi = minj pij be the shortest possible processing time of
job i. It follows that M i ≤ M i−1 + pi. Using 1m

∑n
i=1 pi as a lower bound on the cost of an optimal solution, we see that the

social cost of the Nash equilibrium isMn =
∑n
i=1(M

i
−M i−1) ≤

∑n
i=1 pi, and thus is at mostm times the cost of an optimal

solution. �

We can further prove that the price of anarchy of the ShortestFirst policy for Q ‖ Cmax isΘ(logm). This also shows that
the approximation factor of the shortest-first greedy algorithm for Q ‖ Cmax is Θ(logm), as was previously observed by
Aspnes et al. [1]. In fact, the bound on the price of anarchy can be derived from their result as well. Our proof of the upper
bound, derived independently, uses ideas from the proof of the price of anarchy for the Makespan policy for Q ‖ Cmax by
Czumaj and Vöcking [12]. The lower bound follows from earlier work by Cho and Sahni [9].
We prove the upper bound for any deterministic coordination mechanism. A coordination mechanism is deterministic

if the scheduling policies do not use randomization to determine the schedules. We prove that the price of anarchy for
deterministic mechanisms, including the ShortestFirst policy, for Q ‖ Cmax is O(logm).

Theorem 3. The price of anarchy of any deterministic policy for Q ‖ Cmax is O(logm). In particular, the price of anarchy of the
ShortestFirst policy for Q ‖ Cmax is O(logm).

Proof. Assume that s1 ≥ s2 ≥ · · · ≥ sm. Let ω be an optimal schedule with makespan OPT. Let µ be a Nash equilibrium
with makespan kOPT ≤ C < (k+ 1)OPT, for some integer k. LetMj be the makespan of machine j in µ.
Let m` (1 ≤ ` ≤ k − 1) be the minimum index of a machine such that the makespan of machine m` + 1 is less than

(k − `)OPT, i.e., for any j ≤ m`, Mj ≥ (k − `)OPT, and Mm`+1 < (k − `)OPT. First, we prove that M1 ≥ (k − 1)OPT and
thus m1 ≥ 1. Suppose that M1 < (k − 1)OPT. Let i be the last job on the machine with the maximum makespan. Thus, i’s
completion time is C ≥ kOPT. It is clear that pi/s1 ≤ OPT as machine 1 is the fastest machine. This shows that job i has an
incentive to switch to machine 1, since its completion time on machine 1 is strictly less than (k − 1)OPT + pi/s1 ≤ kOPT.
This contradicts the fact that µ is a Nash equilibrium. Therefore,M1 ≥ (k− 1)OPT andm1 ≥ 1.
Next, we prove that m` ≥ (`− t − 1)mt for any 1 ≤ t < ` ≤ k− 1. LetW be the set of all jobs with completion times

greater than or equal to (k−`+1)OPT that are scheduled onmachines 1, 2, . . . ,mt inµ. Consider a job i inW . We claim that
job i is scheduled on one of themachines 1, 2, . . . ,m` in the optimal solutionω. If job i is scheduled onmachine j > m` inω,
then pi/sm`+1 ≤ pi/sj ≤ OPT, thus job ihas an incentive to switch tomachinem`+1 as its completion time onmachinem`+1

N. Immorlica et al. / Theoretical Computer Science 410 (2009) 1589–1598 1593

is less than (k−`)OPT+pi/sm`+1 ≤ (k−`+1)OPT. Therefore, all jobs inW are scheduled onmachines 1, 2, . . . ,m` inω. The
sum of processing times of jobs inW onmachine q ≤ mt inµ is at least ((k−t)−(k−`+1))OPTsq = (`−t−1)OPTsq. Letw
be the sumof processing times of the jobs inW . Thus,w ≥ (`−t−1)OPT

∑mt
q=1 sq. All this load is onmachines 1, 2, . . . ,m` in

the optimal solutionω, thus the total processing time is atmostw ≤ OPT
∑m`
q=1 sq. Therefore,

∑m`
q=1 sq ≥ (`−t−1)

∑mt
q=1 sq.

Since the machines are indexed in non-increasing order of their speeds, we getm` ≥ (`− t − 1)mt .
In particular,mk−1 ≥ 2mk−4 ≥ 2i ·mk−3i−1 ≥ 2

k−4
3 m1. Usingm ≥ mk−1 andm1 ≥ 1, we get k = O(logm), as required. �

In addition, we can prove that the price of anarchy of any deterministic mechanism for B ‖ Cmax is Θ(logm). For the
ShortestFirst policy, the corresponding upper bound is implied by a result of Azar et al. [4] on the approximation factor of
the greedy algorithm for B ‖ Cmax, but our proof is independent of theirs and uses the ideas of the proof for the Makespan
policy by Gairing et al. [19]. The lower bound is discussed in Section 3.
Theorem 4. The price of anarchy of any deterministic policy for B ‖ Cmax is O(logm). In particular, the price of anarchy of the
ShortestFirst policy for B ‖ Cmax is O(logm).
Proof. Let µ be a Nash equilibrium. We also fix an optimal schedule. Let OPT be its value. Let C be the makespan of µ, and
assume that kOPT ≤ C < (k + 1)OPT. Moreover, let Mj be the makespan of machine j in µ. LetM0 be the set of machines
with makespan greater than kOPT. We exhibit a family of disjoint sets of machinesM0,M3,M4,M5, . . . ,Mk−1 such that
(i) for all 3 ≤ ` ≤ k− 1 , |M`| ≥ (`− 2)|M0| + (`− 5)|M3| + (`− 6)|M4| + · · · + 2|M`−4| + |M`−3| − |M`−1|, and (ii)
for all 3 ≤ ` ≤ k− 1 and ` = 0, for each j ∈M`,Mj ≥ (k− `)OPT.
We construct this family inductively as follows. We first prove that there exists a set M3 of machines, disjoint from

M0, such that the makespan of all jobs inM3 is at least (k − 3)OPT and |M3| ≥ |M0|. Consider all jobs that finish after
time (k − 2)OPT on machines inM0. The total processing time of these jobs is at least 2|M0|OPT. At most |M0|OPT of it is
scheduled on the same machines in the optimal solution, thus at least |M0|OPT of the total processing time of these jobs is
scheduled on other machines in the optimum solution. The number of such machines is at least |M0|. Call this setM3. Thus,
M3∩M0 = ∅, and |M3| ≥ |M0|. For any machine j ∈M3,Mj ≥ (k−3)OPT, since otherwise a job i on a machine inM0 that
finishes after (k−2)OPT could switch tomachine j and its completion timewould be less than (k−3)OPT+pi ≤ (k−2)OPT.
This contradicts the fact that job i finishes after (k−2)OPT inµ andµ is a Nash equilibrium. This proves the desired property
about jobs scheduled on machines inM3.
Now, assuming the induction hypothesis is true forM0,M3,M4, . . . ,M`−1, we prove the existence ofM`. Consider the

total processing requirement of jobs on machines inM0 ∪M3 ∪M4 ∪ . . . ∪M`−1 that finish after time (k− `+ 1)OPT in
µ. The total processing time of jobs that complete after (k− `+ 1)OPT on a machine j ∈Mq is at least (`− 1− q)OPT, for
q = 0, 3, 4, . . . , `− 1. Therefore, the total processing time of jobs that complete after time (k− `+ 1)OPT in µ is at least
(`−1)|M0|OPT+ (`−4)|M3|OPT+ (`−5)|M4|OPT+· · ·+ |M`−2|OPT. At most OPT(|M0|+ |M3|+ |M4|+ · · ·+ |M`−1|)
of this amount is scheduled on machines in M0 ∪ M3 ∪ M4 ∪ . . . ∪ M`−1 in the optimum solution. Hence, at least
(` − 2)|M0|OPT + (` − 5)|M3|OPT + (` − 6)|M4|OPT + · · · + |M`−3|OPT − |M`−1|OPT of it is scheduled on some other
machines in the optimum solution. Call this set of machinesM`.M` is disjoint from all sets of machinesMi, for i < ` and
|M`| ≥ (`−2)|M0|+ (`−5)|M3|+ (`−6)|M4|+· · ·+|M`−3|−|M`−1|, as desired. Moreover, themakespan of amachine
j inM` is at least (k − `)OPT. Otherwise, a job i that finishes after (k − ` + 1)OPT onM0 ∪M3 ∪M4 ∪ . . . ∪M`−1 could
switch from its current machine to machine j inM` and its completion time is less than (k− `)OPT+ pi ≤ (k− `+ 1)OPT.
This contradicts the fact that job i is scheduled after (k − ` + 1)OPT in µ and µ is a Nash equilibrium. This completes the
proof of the induction step.
We know thatm ≥ |M0| +

∑k−1
`=3 |M`|. Let b0 = |M0| and b` = (`− 2)b0 + (`− 5)b3 + (`− 6)b4 + · · · + b`−3 − b`−1

for all ` ≥ 3. By defining a` = b0 +
∑`
i=3 bi, we get b` = a` − a`−1. Also, using the above recurrence relation for b`, we can

easily prove that b`−b`−1 = b0+
∑`−2
i=3 bi−b`−1 = a`−2−b`−1. Thus, a`−2 = b` = a`− a`−1. As a result, a` = a`−1+ a`−2

for ` ≥ 3, and by definition, a2 = a1 = a0 = b0 ≥ 1. Hence, a` is the product of the (` + 1)th Fibonacci number and b0,
` ≥ 1, and therefore, a` ≥ φ`−1, where φ is the golden ratio. Thus,m ≥ ak−1 ≥ φk−2, which implies k = O(logm). �

2.2. The LongestFirst policy

It is easy to see that the price of anarchy of the LongestFirstpolicy for unrelatedparallelmachine scheduling is unbounded.
It is known that the price of anarchy of this policy for P ‖ Cmax is bounded from above by 43 −

1
3m , and this is tight [10].

Theorems 3 and 4 show that the price of anarchy of the LongestFirst policy for B ‖ Cmax andQ ‖ Cmax isO(logm). In Section 3,
we prove that this bound is tight for B ‖ Cmax. For Q ‖ Cmax however, the price of anarchy is bounded by a constant. This
follows from earlier work by Dobson [14] and Friesen [18] on the longest-first greedy algorithm and the following theorem.
Theorem 5. For P ‖ Cmax, Q ‖ Cmax, and B ‖ Cmax, the set of Nash equilibria for the LongestFirst policy is precisely the set of
solutions that can be returned by the longest-first greedy algorithm.
Proof. The proof is similar to that of Theorem 1. In a schedule returned by the greedy algorithm, the jobs are scheduled in
non-increasing order of processing times on each machine. Moreover, no job has an incentive to switch because otherwise
the greedy algorithmwould have done the same. For the other direction, we again use induction on the number of jobs. This
time, we remove the job with the shortest processing time from the equilibrium schedule. The claim follows easily. �

1594 N. Immorlica et al. / Theoretical Computer Science 410 (2009) 1589–1598

2.3. The Randomized policy

In the Randomized policy, an agent’s disutility is the expected completion time of its job. We begin by characterizing the
condition under which an agent has an incentive to change strategies. Consider a job i on machine j and let Sj be the set of
jobs assigned to machine j. Then the disutility of agent i under the Randomized policy is:

pij +
1
2

∑
i′ 6=i,i′∈Sj

pi′j.

Letting Mj be the makespan of machine j, we see that a job i on machine j has an incentive to change to machine k if and
only if:

pij +Mj > 2pik +Mk.

Because of this observation, the randomized policy is the same as the Makespan policy for P ‖ Cmax and B ‖ Cmax. This
implies a price of anarchy of at most 2− 2

m+1 and O(
logm
log logm) for these settings, respectively.

Here, we bound the price of anarchy of the Randomized policy for Q ‖ Cmax and R ‖ Cmax. In fact, we prove that, in
contrast to theMakespan policy, the price of anarchy of the Randomized policy for R ‖ Cmax is not unbounded.
Theorem 6. The price of anarchy of the Randomized policy for R ‖ Cmax is at most 2m− 1.

Proof. Let µ be any Nash equilibrium, and let ω be an optimal solution. We consider two groups of jobs: those that are on
different machines in ω and µ, and those that are on the same machine. Define Sqj as the set of jobs on machine q in µ that
are on machine j in ω, and let Lq =

∑
i∈∪j6=qSqj

piq, Oq =
∑
i∈∪j6=qSjq

piq, and Rq =
∑
i∈Sqq piq. Thus, the makespan of a machine

` in µ is L` + R`, and the makespan of ` in ω is O` + R`. Since µ is a Nash equilibrium, for all jobs i ∈ Sqj,
Lq + Rq + piq ≤ Lj + Rj + 2pij.

Suppose the makespan of µ is achieved on machine `, and the makespan of ω is achieved on machine `′. Then∣∣∣∣∪j6=`S`j
∣∣∣∣ (L` + R`)+ L` =∑

j6=`

∑
i∈S`j

(L` + R` + pi`)

≤

∑
j6=`

∑
i∈S`j

(Lj + Rj + 2pij)

≤

∣∣∣∣∪j6=` S`j
∣∣∣∣ (L` + R`)+ 2∑

j6=`

∑
i∈S`j

pij

≤

∣∣∣∣∪j6=` S`j
∣∣∣∣ (L` + R`)+ 2∑

j6=`

Oj

≤

∣∣∣∣∪j6=` S`j
∣∣∣∣ (L` + R`)+ 2(m− 1)(O`′ + R`′).

Therefore, the value of the Nash solution µ is at most 2(m− 1)(O`′ + R`′)+ R` ≤ (2m− 1)(O`′ + R`′), and so the price
of anarchy is at most 2m− 1. �

Unfortunately, we do not know if Nash equilibria exist for the Randomized policy for R ‖ Cmax, and so the above theorem
might be vacuous for some instances. However, we can extend the above proof to bound themaximum of the expected load
of a machine in a mixed Nash equilibrium of the Randomized policy for R ‖ Cmax. If Mj is the expected load of machine j in
a mixed Nash equilibrium, then it is easy to show that if the probability of assigning job i to machine q is non-zero, then for
any other machine j,Mq + piq ≤ Mj + 2pij. Now, we can define Lq as the expected load of jobs with positive probability on
machine q that are scheduled on machines other than q in the optimum solution. Similar inequalities hold in this setting.
This bounds the maximum of the expected load of any machine in a mixed Nash equilibrium. Note that this analysis does
not hold for the expected value of the maximum load (see [12] for the difference between these two objective functions).
We can further prove that this bound is tight, up to a constant factor (see Theorem 8).

3. Lower bounds on the price of anarchy

In this section, we prove lower bounds on the price of anarchy for coordination mechanisms. Our first result shows that
the price of anarchy of a general class of coordination mechanisms for B ‖ Cmax and, thus, R ‖ Cmax is at least logm. This
is interesting in light of the fact that constant-factor LP-based approximation algorithms are known for R ‖ Cmax [27], and
suggests that it may be hard to obtain similar approximations with local search algorithms.
The example in our proof was used by Davis and Jaffe [13] to show that the approximation factor of the shortest-first

greedy algorithm is at least logm.
Theorem 7. The price of anarchy of any deterministic coordination mechanism is at least logm for B ‖ Cmax and R ‖ Cmax.

N. Immorlica et al. / Theoretical Computer Science 410 (2009) 1589–1598 1595

Proof. Consider the following instance of B ‖ Cmax: there are m jobs and m machines and the processing time of job i on
machines 1, 2, . . . ,m− i+ 1 is 1. Job i cannot be scheduled on machinesm− i+ 2, . . . ,m. Assume thatm = 2k, for some
positive integer k.
Consider an assignment of jobs to machines as follows. Jobs 1 to 2k−1 = m/2 are assigned to machines 1 to m/2

respectively. Jobs m/2 + 1 to 3m/4 are assigned to machines 1 to m/4, respectively. Jobs 3m/4 + 1 to 7m/8 are assigned
to machines 1 tom/8, and so on. It is not hard to check that this is a Nash equilibrium. The makespan of this assignment is
logm+1. In an optimal assignment, job i is assigned to machinem− i+1. Thus the optimal makespan is 1, and so the price
of anarchy is at least logm. �

The example in the above proof can be easily changed to show that for R ‖ Cmax, the price of anarchy of the LongestFirst
and ShortestFirst policies is at least logm, even if there is no tie among the processing times.
Theorem 7 proves that if a coordination mechanism is deterministic and policies on different machines are the same,

then we cannot hope to get a factor better than logm for R ‖ Cmax. One might hope that the Randomized policy can achieve
a constant price of anarchy. However, we have the following lower bound for the Randomized policy.

Theorem 8. The price of anarchy of the Randomized policy for R ‖ Cmax is at least m− 1.

Proof. Consider a scenario with m machines and (m − 1)2 jobs. Split the first (m − 1)(m − 2) jobs into m − 1 groups
J1, . . . , Jm−1, each of size m − 2 jobs. For jobs i ∈ Jk, let pik = 1, pim = 1/m2, and pij = ∞ for all other machines j. Form a
matching between the remainingm− 1 jobs and the firstm− 1 machines. Whenever job i is matched to machine j in this
matching, set pij = 1 and pim = 1. Job i cannot be processed on any other machine.
An optimal solution has makespan 1 and assigns all jobs in J1, . . . , Jm−1 to the last machine and each of the remaining

m − 1 jobs to its corresponding machine in the matching. However, the solution which assigns all jobs in Jk to machine k
for all 1 ≤ k ≤ m− 1 and all remaining m− 1 jobs to machine m is a Nash equilibrium with makespanm− 1. To see that
this is a Nash equilibrium, consider a job i ∈ Jk. Its disutility on machine k is 12 (m− 3)+ 1 while its disutility, if it moved to
machinem, would increase to 12 (m− 1)+ 1/m

2. Therefore all jobs in J1, . . . , Jm−1 are playing a best response to the current
set of strategies. Now consider one of the remainingm−1 jobs i. Say job i is matched to machine j in the matching. Then the
disutility of job i onmachinem is 12 (m−2)+1while its disutility, if it moved tomachine j, would remain

1
2 (m−2)+1. Since

these jobs are also playing a (weakly) best response to the current set of strategies, the above scenario is a Nash equilibrium
in the Randomized policy. �

4. Convergence to pure-strategy Nash equilibria

In practice, it is undesirable if the job to machine mapping keeps changing. The system performance can be adversely
affected if players keep reacting to each others changes of strategies. A good coordination mechanism is one with a small
price of anarchy and fast convergence to aNash equilibrium. In this section,we investigate the convergence of players’ selfish
behavior. We prove that, except for the case of the Randomized and LongestFirst policies for R ‖ Cmax and the Randomized
policy for Q ‖ Cmax, the selfish behavior of players converges to a Nash equilibrium.
We first define the notion of a state graph and a potential function. Let Ai be the set of actions of player i, i = 1, 2, . . . , n.

In our setting, each Ai equals the set of machines {1, 2, . . . ,m}. A state graph G = (V , E) is a directed graph where the set
V of nodes equals A1 × A2 × · · · × An, and an edge labeled with i exists from state u to v if the only difference between
the two states is the action of player i and i’s payoff is strictly less in u. A Nash equilibrium corresponds to a node with no
outgoing edges. A potential function is a function f mapping the set of states to a totally ordered set such that f (v) is strictly
less than f (u) for all edges uv ∈ G. In other words, whenever a player in state u changes its action and improves its payoff,
the resulting state v satisfies f (u) > f (v). Note that the existence of a potential function implies that the state graph is
acyclic, which establishes the existence of a Nash equilibrium. The existence of a potential function also implies that the
Nash dynamics will converge if one player takes the best-response action atomically. We restrict our convergence analysis
to this atomic and best-response behavior of players. A game that has a potential function is called a potential game.
First, we note that the Makespan policy corresponds to a potential game. This fact has been observed in various places.

In particular, Even-Dar et al. [15] gave several bounds on the speed of convergence to Nash equilibria for this policy. The
Randomized policy is the same as the Makespan policy for B ‖ Cmax and P ‖ Cmax. Thus, the Randomized policy also
corresponds to a potential game for B ‖ Cmax and P ‖ Cmax. We do not know if the Randomized policy for R ‖ Cmax leads to a
potential game or not. If it did, this would imply, among other things, that Nash equilibria exist. In the following subsections,
we study the convergence for the ShortestFirst and LongestFirst policies.

4.1. Convergence for the ShortestFirst policy

In Section 2.1, we have shown that Nash equilibria exist for the ShortestFirst policy for R ‖ Cmax and can be found
in polynomial time. In the following, we show that this game is a potential game and players will converge to a Nash
equilibrium. Note that this gives an alternative proof of the existence of Nash equilibria.

Theorem 9. The ShortestFirst policy for R ‖ Cmax is a potential game.

1596 N. Immorlica et al. / Theoretical Computer Science 410 (2009) 1589–1598

Proof. For any state u, let c(u) be the vector of job completion times sorted in non-decreasing order. We show that as a
job switches from one machine to another machine to decrease its completion time, it decreases the corresponding vector
c lexicographically. To address potential ties, we assume that the potential function is defined with respect to processing
times pεij = pij + ε

n−i, for some sufficiently small ε > 0. In other words, if pij = pi′j and job i is scheduled before job i′ on
machine j because i < i′, then the processing time pεij of job i on machine j used for the definition of the potential function c
is actually smaller than that of i′.
Suppose the system is in state u and c(u) = (c1, c2, . . . , cn). Suppose job i with completion time ci switches machines

and decreases its completion time. Call the new state v, and let c(v) = (c ′1, c
′

2, . . . , c
′
n). Let i’s completion time in v be c

′

j . We
know that c ′j < ci. However, the change in i’s action may cause an increase in the completion times of other jobs. Assume
that job i switched to machine k in state v. Jobs whose completion time increases after this switch are the jobs that are
scheduled on machine k and whose processing time on machine k is greater than i’s processing time on machine k. Thus,
the completion times of these jobs in state u (before i moves) were greater than c ′j . Thus in the resulting vector c(v), we
decrease an element of the vector from ci to c ′j and we do not increase any element with value less than c

′

j . Thus this switch
decreases the corresponding vector lexicographically, i.e., c(v) < c(u), and so c is a potential function. �

Corollary 10. Selfish behavior of players will converge to a Nash equilibrium under the ShortestFirst policy for R ‖ Cmax.

Knowing that the selfish behavior of players converges to a Nash equilibrium and the social value of a Nash equilibrium
is bounded does not indicate a fast convergence to good solutions. We are interested in the speed of convergence to a Nash
equilibrium. We consider the best responses of jobs and prove fast convergence to Nash equilibria for the ShortestFirst
policy.

Theorem 11. For R ‖ Cmax with the ShortestFirst policy, best responses of jobs converge to a Nash equilibrium after n rounds in
which jobs may make one selfish move each, in arbitrary order. In other words, from any state in the state graph, it takes at most
n2 state traversals to end up in a state with no outgoing edges.

Proof. In round t , let it be the alphabetically first job which achieves the minimum possible disutility among the set of jobs
Jt = {1, 2, . . . , n} − {i1, . . . , it−1}, given the (fixed) strategies of i1, . . . , it−1. We prove by induction that in round t , job it
moves to some machine and remains there in subsequent rounds.
Suppose j is a machine on which it achieves its minimum disutility (given the strategies of i1, . . . , it−1). Then in round

t , a best response for it is to move to machine j. We show that this machine is the weakly best response of it for any set of
strategies of jobs Jt . By weakly best response, we mean there is no other action that gives the player a strictly better payoff
(i.e., a smaller completion time in our setting).
First notice that the disutility of it on j cannot increase as jobs in Jt alter their strategies. This is because any job i′ ∈ Jt

has processing time at least pit j on machine j and, upon equality, is alphabetically larger or else we would have set it = i
′

in round t . Now consider some other machine j′. Let cj be the completion time of job it on machine j. Then any job with
completion time less than cj on machine j′ in round t must be in {i1, . . . , it−1} or else we would have picked this job to be it
in round t . Thus, the strategies of these jobs are fixed. Let i′ be the job onmachine j′ in round t with the smallest completion
time that is at least cj. If pit j′ < pi′j′ , then the strategy of i

′ and all other jobs scheduled after i′ on j′ in round t does not affect
it ’s disutility for machine j′. If pit j′ ≥ pi′j′ , then even if i

′ leaves j′ in a subsequent round, the completion time of it on j′ is still
at least i′’s completion time on j′ in round t , or at least cj. Thus, it is a weakly best response for it to remain on machine j.
This shows that it is a weakly best response for it to remain on machine j in all subsequent rounds. �

The next theorem proves that the bound of Theorem 11 is tight.

Theorem 12. There are instances of Q ‖ Cmax under the ShortestFirst policy for which it takes n rounds of best responses of
players to converge to a Nash equilibrium.

Proof. Let the processing time of job i be i, for i = 1, 2, . . . , n, and let the speed of machine j be 1 + (j − 1)ε, for some
sufficiently small ε > 0 and j = 1, 2, . . . , n. Suppose job i is on machine i initially, for i = 1, 2, . . . , n. In the first round, if
jobs play in the order n, n− 1, . . . , 1, each job will go to the fastest machine, i.e., machine n. In the second round, played in
the same order, all jobs except job 1 go to machine n− 1. In round t , jobs n, n− 1, . . . , t move from machine n− t + 2 to
machine n−t+1. In the end, job i is scheduled onmachine n−i+1, and it takes n rounds to converge to this equilibrium. �

4.2. Convergence for the LongestFirst Policy.

For the LongestFirst policy, it is possible to prove convergence in the Q ‖ Cmax, B ‖ Cmax, and P ‖ Cmax models in a
manner similar to that of Theorem 11. One just must argue that in each round the job with the longest feasible processing
time (among jobs not yet considered) moves to its optimal machine and remains there in subsequent rounds.

Theorem 13. For the LongestFirst policy and Q ‖ Cmax, B ‖ Cmax, or P ‖ Cmax, the best responses of jobs converge to a Nash
equilibrium after n rounds in which jobs may make one selfish move each, in arbitrary order.

We note that Theorem 13 proves the existence of a Nash equilibrium in these games. However, we do not know how to
prove that the LongestFirst policy converges in the R ‖ Cmax model.

N. Immorlica et al. / Theoretical Computer Science 410 (2009) 1589–1598 1597

5. Conclusion and future work

We have studied abstract scheduling games where the disutility of each player is its (expected) completion time. We
note that our results can be applied in many practical network settings. Our results can be directly applied to the Internet
setting [33] where there is a set of selfish clients, each of whommust choose a server from a set of servers. Each client tries
to minimize its latency, or job completion time; the social welfare is the system-wide latency. Similar problems arise in the
context of wireless networks. For example, the basic fairness and load balancing problem in wireless LANs [7] is reduced to
the problem of unrelated parallel machine scheduling. Centralized algorithms have been designed for this problem in [7].
We hope to use ideas from our coordination mechanisms to design decentralized algorithms for this problem. In the third
generation wireless data networks, the channel quality of a client is typically time-varying [8]; it would be interesting to
study coordination mechanisms in this context given that users may exhibit selfish behavior.
Theoretically, the most interesting open problem in this paper is to find coordination mechanisms with constant price

of anarchy for B ‖ Cmax and R ‖ Cmax. We have shown that this cannot be achieved by any deterministic coordination
mechanism which uses a common tie-breaking rule, and a subsequent result by [3] has ruled out any deterministic
coordinationmechanism. Another problem left open in this paper is the existence of pureNash equilibria for theRandomized
policy for R ‖ Cmax.
Throughout this paper, we assumed that all information regarding job processing times was public knowledge. A new

direction considered in [10,28] is the design of coordination mechanisms in a private information setting, i.e., where a job’s
processing time is a private value. In such a setting, it would be nice if a coordination mechanism gave incentives for jobs to
announce their true processing times. The only constant-factor price of anarchy for Q ‖ Cmax and the best factor for P ‖ Cmax
in our paper are achieved using the LongestFirst policy, but this policy is not truthful. In particular, jobs can artificially
inflate their length (e.g., by inserting empty cycles) and as a result actually decrease their disutility. A truthful coordination
mechanism with a constant price of anarchy in these settings would be an interesting result.

Acknowledgments

The work of the fourth author was supported by NSF award 0426686. Part of this work was done while the first and third
authors were with the Massachusetts Institute of Technology.

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, O. Waarts, On-line routing of virtual circuits with applications to load balancing and machine scheduling, Journal
of the ACM 44 (1997) 486–504.

[2] B. Awerbuch, Y. Azar, Y. Richter, D. Tsur, Tradeoffs in worst-case equilibria, Theoretical Computer Science 361 (2006) 200–209.
[3] Y. Azar, K. Jain, V.S. Mirrokni, (Almost) optimal coordination mechanisms for unrelated machine scheduling, in: Proceedings of the 19th Annual
ACM–SIAM Symposium on Discrete Algorithms, 2008, pp. 323–332.

[4] Y. Azar, J. Naor, R. Rom, The competitiveness of on-line assignments, Journal of Algorithms 18 (1995) 221–237.
[5] A. Bagchi, Stackelberg Differential Games in Economic Models, in: Lecture Notes in Control and Information Sciences, vol. 64, Springer, 2004.
[6] M. Beckmann, C.B. McGuire, C.B. Winsten, Studies in the Economics of Transportation, Yale University Press, 1956.
[7] Y. Bejerano, S.-J. Han, L. Li, Fairness and load balancing in wireless LANs using association control, in: Proceedings of the 10th Annual International
Conference on Mobile Computing and Networking, 2004, pp. 315–329.

[8] S. Borst, User-level performance of channel-aware scheduling algorithms in wireless data networks, IEEE/ACM Transaction on Networking 13 (2005)
636–647.

[9] Y. Cho, S. Sahni, Bounds for list schedules on uniform processors, SIAM Journal on Computing 9 (1980) 91–103.
[10] G. Christodoulou, E. Koutsoupias, A. Nanavati, Coordinationmechanisms, in: Proceedings of the 31st International ColloquiumonAutomata, Languages

and Programming, in: Lecture Notes in Computer Science, vol. 3142, Springer, 2004, pp. 345–357.
[11] R. Cole, Y. Dodis, T. Roughgarden, How much can taxes help selfish routing? in: Proceedings of the 4th ACM Conference on Electronic Commerce,

2003, pp. 98–107.
[12] A. Czumaj, B. Vöcking, Tight bounds for worst-case equilibria, in: Proceedings of the 13th Annual ACM–SIAM Symposium on Discrete Algorithms,

2002, pp.413–420.
[13] E. Davis, J.M. Jaffe, Algorithms for scheduling tasks on unrelated processors, Journal of the ACM 28 (1981) 721–736.
[14] G. Dobson, Scheduling independent tasks on uniform processors, SIAM Journal on Computing 13 (1984) 705–716.
[15] E. Even-Dar, A. Kesselman, Y. Mansour, Convergence time to Nash equilibria, in: Proceedings of the 30th International Colloquium on Automata,

Languages and Programming, in: Lecture Notes in Computer Science, vol. 2719, Springer, 2003, pp. 502–513.
[16] G. Finn, E. Horowitz, A linear time approximation algorithm for multiprocessor scheduling, BIT 19 (1979) 312–320.
[17] L. Fleischer, K. Jain,M.Mahdian, Tolls for heterogeneous selfish users inmulticommodity networks and generalized congestion games, in: Proceedings

of the 45th Symposium on Foundations of Computer Science, 2004, pp. 277–285.
[18] D.K. Friesen, Tighter bounds for LPT scheduling on uniform processors, SIAM Journal on Computing 16 (1987) 554–560.
[19] M. Gairing, T. Lücking, M. Mavronicolas, B. Monien, Computing Nash equilibria for scheduling on restricted parallel links, in: Proceedings of the 36th

Annual ACM Symposium on Theory of Computing, 2004, pp. 613–622.
[20] D.K. Goldenberg, L. Qiu, H. Xie, Y.R. Yang, Y. Zhang, Optimizing cost and performance for multihoming, ACM SIGCOMM Computer Communication

Review 34 (2004) 79–92.
[21] R.L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical Journal 45 (1966) 1563–1581.
[22] R.L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal of Applied Mathematics 17 (1969) 416–429.
[23] O.H. Ibarra, C.E. Kim, Heuristic algorithms for scheduling independent tasks on nonidentical processors, Journal of the ACM 24 (1977) 280–289.
[24] N. Immorlica, L. Li, V.S. Mirrokni, A.S. Schulz, Coordination mechanisms for selfish scheduling, in: Proceedings of the 1st International Workshop on

Internet and Network Economics, in: Lecture Notes in Computer Science, vol. 3828, Springer, 2005, pp. 55–69.
[25] Y.A. Korilis, A.A. Lazar, A. Orda, Achieving network optima using Stackelberg routing strategies, IEEE/ACM Transactions on Networking 5 (1997)

161–173.

1598 N. Immorlica et al. / Theoretical Computer Science 410 (2009) 1589–1598

[26] E. Koutsoupias, C.H. Papadimitriou,Worst-case equilibria, in: Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science,
in: Lecture Notes in Computer Science, vol. 1563, Springer, 1999, pp. 404–413.

[27] J.K. Lenstra, D.B. Shmoys, É Tardos, Approximation algorithms for scheduling unrelated parallel machines, Mathematical Programming 46 (1990)
259–271.

[28] H. Moulin, On scheduling fees to prevent merging, splitting and transferring of jobs, Mathematics of Operations Research 32 (2007) 266–283.
[29] J.F. Nash, Equilibrium points in N-person games, Proceedings of the National Academy of Sciences of the United States of America 36 (1950) 48–49.
[30] N. Nisan, A. Ronen, Algorithmic mechanism design, in: Proceedings of the 31st Annual ACM Symposium on Theory of Computing, 1999, pp. 129–140.
[31] T. Roughgarden, Stackelberg scheduling strategies, in: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001, pp. 104–113.
[32] P. Schuurman, T. Vredeveld, Performance guarantees of local search for multiprocessor scheduling, INFORMS Journal on Computing 19 (2007) 52–63.
[33] S. Suri, C.D. Tóth, Y. Zhou, Selfish load balancing and atomic congestion games, in: Proceedings of the 16th Annual ACM Symposium on Parallelism in

Algorithms and Architectures, 2004, pp. 188–195.
[34] H. von Stackelberg, Marktform und Gleichgewicht, Springer, 1934.
[35] T. Vredeveld, Combinatorial approximation algorithms: Guaranteed versus experimental performance, Ph.D. Thesis, Technische Universiteit

Eindhoven, the Netherlands, 2002.

	Coordination mechanisms for selfish scheduling
	Introduction
	Upper bounds on the price of anarchy
	The ShortestFirst policy
	The LongestFirst policy
	The Randomized policy

	Lower bounds on the price of anarchy
	Convergence to pure-strategy Nash equilibria
	Convergence for the ShortestFirst policy
	Convergence for the LongestFirst Policy.

	Conclusion and future work
	Acknowledgments
	References

