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Abstract

We investigate issues of complexity related to congestion games. In particular, we provide
a full classification of complexity results for the problem of finding a minimum cost solution
to a congestion game, under the model of Rosenthal. We consider both network and general
congestion games, and we examine several variants of the problem concerning the structure of
the game and the properties of its associated cost functions. Many of these problem variants are
NP-hard, and some are hard to approximate. We also identify several versions of the problem
that are solvable in polynomial time.

1 Introduction

The study of congestion games was initiated by Rosenthal [44] as a simple class of games possessing
pure-strategy Nash equilibria. The basic setup is as follows: we are given a finite number of players,
each of which possesses a finite set of strategies. Each strategy consists of a subset of a master set
of resources. The cost of employing a particular strategy is the sum of the costs of the resources
associated with that strategy, where the cost of using a particular resource is solely a function of
the number of players using that resource. The cost of a resource is zero if it is not used.

One example of a congestion game occurs when the set of strategies is associated with paths
in a network. In a network congestion game, each player ¢ is associated with two nodes s; and t;,
and the corresponding set of strategies consists of all (simple) s; — t; paths. The arcs play the role
of the resources, and the cost associated with each arc is a function of the number of players using
that arc.

Rosenthal proposed two practical applications of congestion games, one concerning road
networks and the other involving factory production. In the first application, a network of roads is
given and each player travels from a certain origin to a certain destination. The cost of traveling on
each road is an increasing function of the number of people traveling on that road (hence the use
of the word ‘congestion’). In the second application, a number of firms are engaged in production,
each of which has several production processes available that employ different resources. The cost
of using a resource is a function of the number of firms that use the resource. Rosenthal showed
that regardless of the cost structure on the set of resources, such games always possess a pure Nash
equilibrium.

Monderer and Shapley [39] generalized these congestion games to a class of games they
called potential games, which are games that incorporate information about Nash equilibria in
a single real-valued potential function over the strategy space. By definition, such games always
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possess pure Nash equilibria, and they have since been studied in their own right [16, 48, 50, 53]. In
particular, it has been shown that congestion games are isomorphic to potential games that admit
an exact potential function [39, 53]. Others have examined potential games with an infinite set of
strategies [52], continuous player sets [48], or incomplete information [16].

Another major variant of the problem is that of ‘nonatomic’ congestion games, in which
the number of players is assumed to be so large that the effect an individual player has on the
outcome of the game is negligible. Roughgarden and Tardos [45, 46] provide a bound on the price
of anarchy of pure Nash equilibria in such games, which is the ratio of the objective value of
a worst (most expensive) Nash equilibrium to that of an optimal solution. Correa, Schulz, and
Stier-Moses [9, 10] later simplified, strengthened, and generalized these analyses, and extended the
results to more general classes of cost functions. Most recently, researchers have also studied the
effects of collusion [24] and malicious players [4] in such games.

Returning to Rosenthal’s original concept of congestion games, several researchers have
studied a special class of network congestion games consisting of n users traveling over m parallel
links. Koutsoupias and Pamadimitriou [32] initiated this line of research, and were later followed
by Czumaj and Vocking [12], Czumaj, Krysta and Vocking [11], Mavronicolas and Spirakis [34],
and Koutsoupias, Mavronicolas, and Spirakis [31], among many others. Their focus was mainly on
calculating the price of anarchy for pure and mixed Nash equilibria in such games. Others have
looked at the case where the cost function is linear in the number of players [30, 49] or where players
anticipate the effect of their actions on the price of the links [27]. For an excellent survey of such
games and many additional results, see Kontogiannis and Spirakis [29].

In a related vein, other research [7, 28, 37] concerns a notably different model of congestion
games due to Milchtaich [35]. In this model, the effects of congestion are associated with the players
rather than the resources; each player experiences a different player-specific amount of congestion
according to the number of other players sharing the resources it uses. Milchtaich [35, 36, 38| has
shown that pure Nash equilibria always exist in such games where players travel over a parallel
set of links, but they may not exist in more general networks. Penn, Polukarov, and Tennenholtz
[42, 43] have studied the impact of random resource failures in such games.

Other recent work concerns the existence of equilibria in generalizations of congestion games.
Fotakis, Kontogiannis, and Spirakis [20, 21] study the existence of equilibria in weighted congestion
games, in which each player may control different amounts of demand. Holzman and Law-Yone
[25] and Rozenfeld and Tennenholtz [47] study necessary and sufficient conditions for the existence
of a strong equilibrium, in which no coalition of players has an incentive to deviate to an alternate
strategy that is profitable for all of its members. Beier, Czumaj, Krysta, and Vocking [5] address
the problem of computing a pure Nash equilibrium in congestion games with imperfect information.

Most relevant to our work, Fabrikant, Papadimitriou, and Talwar [15] initiated the study of
complezity issues in congestion games. They showed that a pure Nash equilibrium can be computed
in polynomial time in network congestion games with nondecreasing arc costs where all players share
a common source and sink; however, in general the problem is PLS-complete. Following this, leong
et al. [26] showed that in congestion games with parallel links and very general cost functions,
a best pure Nash equilibrium can be computed in polynomial time. In addition, Papadimitriou
and Roughgarden [41, 40] demonstrated that a generalization of a Nash equilibrium known as a
correlated equilibrium can be calculated in polynomial time in compactly encoded games. In terms
of hardness results, Dunkel and Schulz [13] showed that it is strongly NP-hard to determine whether
a weighted congestion game possesses a Nash equilibrium.



Additional studies of complexity in congestion games have addressed the behavior and
properties of best response dynamics. Feldmann et al. [17] examined how to compute a pure Nash
equilibrium starting from an arbitrary solution, giving an O(nm?) algorithm to ‘Nashify’ a given
solution on a network of parallel links. Gairing et al. [22] studied the same problem, showing that
for any k£ > 0 it is NP-hard to decide whether a solution can be ‘Nashified’ in k selfish steps.
They further proposed that the ‘worst’ Nash equilibrium (in terms of cost) is the fully mixed Nash
equilibrium (also studied in [33, 34]), which was later shown [18] to not always be the case. Most
recently, Ackermann, Roglin, and Vocking [1] addressed the impact of the combinatorial structure
of the game on best-response dynamics, and Chien and Sinclair [8] showed the convergence of
best-response dynamics to an approximate Nash equilibrium in a special class of games.

Up to this point, most of the work on congestion games has concerned the existence and
difficulty of finding Nash equilibria, and the various properties of such equilibria (for a further survey
of existence results, see [51].) Our current work takes a slightly different approach, investigating
the complexity of congestion games from a system optimal perspective. Specifically, we address the
complexity of finding an overall minimum cost solution to the congestion game problem. (Note
that such a solution is not required to be a Nash equilibrium.)

One motivation for classifying the complexity of finding a minimum cost solution is that in
some cases, we may be less interested in the performance of individual players than we are in the
system optimum. This can occur in situations where the players are not selfish (i.e., if the players
are all working together), but in which congestion effects are still felt. Alternatively, in certain
situations a pure Nash equilibrium can achieve arbitrarily bad results or it may be hard to find
[6]. Another motivation arises in the work of Anshelevich et al. [2], who showed how to obtain a
provably good Nash equilibrium in certain special cases when starting from an optimal solution.
For this method to be relevant in practice, we must know the complexity of finding an optimal
solution. A final motivation is that in some problems, such as network congestion games with a
single source and sink and nondecreasing costs, finding a Nash equilibrium may be done efficiently
(see [15]) while computing the optimum is NP-hard (as we will show). In such cases, an algorithm
for finding a Nash equilibrium may be used as an approximation algorithm for the problem of
finding a minimum cost solution. In this way, our complexity results add a new interpretation to
the concept of the price of anarchy.

The topic of system-optimal solutions in congestion games was recently and independently
examined in two different studies. In both of these works, the (notably different) model of congestion
games due to Milchtaich [35] was used, where players possess player-specific cost functions and travel
over parallel links. In the first study, Chakrabarty et al. [7] showed that finding a minimum cost
solution to this problem is NP-hard and no approximation algorithm exists. They showed that in
the special case where all of the strategies cost the same and the matrix of player costs is anti-
Monge, the system optimum may be computed in polynomial time. In the second study, Blumrosen
and Dobzinski [6] examined the complementary problem of welfare maximization, where the value
of each resource increases with the number of players using that resource. They proved the hardness
of this problem and presented an —; ~ 1.582 -approximation algorithm, as well as demonstrated
a connection between such games and combinatorial auctions.

Our work differs from that of Chakrabarty et al. and Blumrosen and Dobzinski in that we
consider the Rosenthal [44] model of congestion games, rather than the Milchtaich [35] model with
parallel links and player-specific cost functions. We also consider a greater number of structural
and combinatorial aspects of the problem and a variety of different resource cost functions, as we



will describe later.

In what follows, we present our results on the complexity of finding system-optimal solutions
to the network and general congestion game problems. In Section 2, we introduce variants of the
problems differing in structure and the type of associated cost functions. With regards to structure,
we consider whether all players have the same set of strategies (symmetric) or not (asymmetric). In
the network case, we also consider whether players have the same source or sink. With respect to arc
costs, we consider five different cost functions (nondecreasing, convex nondecreasing, nonincreasing,
concave nonincreasing, and nonmonotonic) that model different forms of congestion and economies
of scale.

We fully categorize the complexity of the network congestion game problem and all of its
variants under these parameters in Section 3. In most cases, we find the problem is NP-hard;
however, in four cases (symmetric games with convex nondecreasing, nonincreasing, or concave
nonincreasing arc costs, and single source games with concave nonincreasing arc costs) the problem
is solvable in polynomial time.

We examine the complexity of the general congestion game problem in Section 4. In several
cases, our results follow directly from the network case, but in others (for instance, convex nonde-
creasing costs) we are able to derive stronger results. Overall, we find that in almost all cases, the
problems are NP-hard and difficult to approximate. The exceptions are the asymmetric case with
concave nonincreasing costs, which is NP-hard (without a corresponding approximation result),
and the symmetric case with nonincreasing or concave nonincreasing costs, which is solvable in
polynomial time.

2 Preliminaries

In a general congestion game, we are given a set of resources A = {ay,...,an} and a set of players
P = {1,...,n}. Each player i possesses a set of allowable strategies, where each such strategy
s; € A consists of a subset of the resources. Each player wishes to select and play exactly one
strategy. A solution s = (s1,...,S,) consists of the chosen strategies for each player.

The cost of a resource a € A is given by a function c,(z) that computes the per-unit cost
of = players using a. The cost function may be arbitrary in general, but it is restricted to being
solely a function of the number of players using the resource. The cost of a strategy s; is the sum
of the costs of the resources associated with that strategy. The cost of a solution s is equal to

> aca(za),

acA

where x, = |i : a € ;] is the total number of players using resource a in the solution, and s; is the
strategy chosen by player ¢ in s.

A network congestion game is a special case of a general congestion game in which resources
are associated with arcs, strategies are associated with simple paths, and players are associated with
units of demand in a network. This is a special type of minimum cost integer multicommodity flow
problem where the cost per unit flow on each arc differs based on how much flow is traversing the
arc. On the other hand, there are no arc capacities.

More formally, in a network congestion game we are given a directed graph G = (N, A)
and a set of players P = {1,...,n}. Each player i is associated with a pair of nodes s; € N and
t; € N, with the understanding that player 7 wishes to send 1 unit of flow from node s; to node
t;. If an arc a = (u,v) is labeled as ¢,(1)/¢q(2)/ca(3)/ ... /ca(n), then the cost of sending 1 unit of



flow along the arc is cq(1), the cost of sending 2 units of flow is ¢,(2) per unit (for a total cost of
2¢4(2)), and the cost of sending k units of flow is ¢, (k) per unit (for a total cost of kc,(k)). Each
arc has n different labels, since n is the greatest number of players that can traverse an arc. The
goal is to route each player on a single path from its source to its sink in a minimum cost manner.

We consider several variants of these problems. In terms of structure, we consider two
basic alternatives: symmetric problems, in which all players share the same set of strategies, and
asymmetric problems, where players may have different sets of strategies. In the network problem,
the symmetric case corresponds to all players having the same source and sink, and the asymmetric
case corresponds to having different sources and sinks. In addition, in the network problem we also
consider the single source case, in which all players share a single source (but may have different
sinks).

With regards to cost functions, we consider five different classes of cost structures. We say
that the arc costs are nondecreasing if c4(1) < cq(2) < ... < cq(n) for all a € A, and nonincreasing
if co(1) > cq(2) > ... > cq(n) for all @ € A. Nondecreasing cost functions model the negative
effects of congestion on the availability of resources, while nonincreasing cost functions reflect
economies of scale. We say that a cost structure is convex nondecreasing if it is nondecreasing
and the differences between consecutive aggregate arc costs are nondecreasing; in other words,
icg(i)—(i—1)cq(i—1) < (i4+1)ca(i+1) —icg (i) for alli = 1,...,n—1. Similarly, we say a structure
is concave nonincreasing if it is nonincreasing and ic, (i) — (1 — 1)cq(i — 1) > (i+ 1)cq(i 4+ 1) —icq ()
for all i =1,...,n — 1.1 If an arc cost function fits into none of these categories, we say that it is
nonmonotonic.

This gives us fifteen different problems in the network case (three structural variants and
five cost variants), and ten different problems in the general case (two structural variants and five
cost variants). As it turns out, many of the complexity results we prove apply to multiple problems,
with minor changes.

3 The Computational Complexity of Network Congestion Games

Our complexity results for network congestion games are illustrated in Table 1.

We cover the hardness results first: we begin by presenting the single source hardness results, and
we show how slight modifications can be made to derive the symmetric hardness results. We then
give the asymmetric hardness results, followed by the polynomial time algorithms.

Our first theorem concerns single source unweighted congestion games with nondecreasing
costs. (Note that the hardness of this problem does not follow from the hardness of the general
single-source unsplittable flow problem (see [3]), since this problem translates to weighted congestion
games. )

Theorem 3.1 The single source network congestion game problem with nondecreasing costs is
strongly NP-hard.

Proof: We reduce from the 3-PARTITION problem, which is strongly NP-complete [23]. This
problem is:

'Put differently, a per-unit arc cost function c4(i) is convex nondecreasing (concave nonincreasing) if and only if
the total cost function ic, (%) is supermodular (submodular).



type— . . .
costs | symmetric single source | asymmetric
nondecreasing NP-hard 317 | NP-hard 3.1 inapprox.
convex nondecreasing P P 3¢ inapprox. (3.4
nonincreasing P 3.5 inapprox. [s.2] inapprox.
concave nonincreasing P NP-hard 3.3 NP-hard
nonmonotonic inapprox. [s.2) inapprox. inapprox.

Table 1: Complexity results for network congestion games.

(The numbers in brackets indicate in which theorem (or discussion thereafter) the results are proved. Note
that the results for all unlabeled entries follow directly from other entries in the table. By ‘inapprox.” we
mean that the problem is NP-hard, and the reduction actually shows that it is NP-hard to decide whether
the optimal cost is zero or not. Thus, no approximation algorithm can exist for the respective problem,
unless P=NP.)

Instance: A set R = {r1,...,73,} of 3¢ elements, a bound B € Z*, and a size z(r;) € Z"
for each r; € R, such that £ < 2(r;) < £ and > rer 2(ri) = ¢B.

Question: Can R be partitioned into ¢ disjoint sets D1,. .., D, such that, forall 1 < j <g¢,
we have ZmeDj 2(r;) = B?

Suppose we are given an instance of the 3-PARTITION problem. Build the following conges-
tion game (see Figure 1):

1. Create 1 source node s, with a supply of ¢B + 3¢>.
Create 3¢ transshipment nodes s;, where s; corresponds to element r; in R.
Create ¢ sink nodes D1, ..., Dy, each with demand B.
Create 3¢? sink nodes a;j, 1 <i<3qand 1 < j < g, each with demand 1.

2. Add arcs (s, s;) of cost 0/.../0/M/ ... /M, where the last ‘0’ is in place z(r;)+q and M is a
large number.
Add arcs (s;,a;;) of cost 0/1/.../1, for all ¢, j satisfying 1 <i <3¢ and 1 < j <gq.
Add arcs (a;j, Dj) of cost 0/0/ ... /0, for all ¢, j satisfying 1 <i<3¢gand 1 <j <gq.

In terms of the game structure, this corresponds to ¢B + 3¢? players having origin s, B players
having destination D;, and one player having destination a;;, for all 7 and j.

We claim that if the 3-PARTITION answer is ‘yes,” then the congestion game cost is equal to
gB + 3q; if the answer is ‘no,” the congestion game cost is greater than or equal to ¢B 4+ 3¢+ 1. To
see the first implication, suppose the sets in our 3-partition are D1, ..., D,;. We construct a solution
as follows. First, send 1 unit of flow along each of the paths s — s; — a;5, for all i € {1,...,3q}
and j € {1,...,q}. Next, for all ; € R such that r; € D;, send z(r;) units of flow along the path
s —s; —aj; — Dj. This solution will be feasible, since D is a 3-partition and thus the inflow at each
node D; will be equal to B. By inspection, the cost contributed by arc (s;, a;;) is equal to z(r;) + 1
if r; € Dj, and 0 otherwise. Hence the total cost of the solution is ¢B + 3q.

To see the second implication, suppose there is a solution to the congestion game problem of
cost at most ¢B + 3¢. Because all arcs exiting from the nodes s; have the cost structure 0/1/.../1,
it follows that no node s; can have more than one unit of flow exiting along two arcs (s;, a;;) and
(siyaijr), for j # j'. (Otherwise, the total cost would be strictly greater than ¢B + 3¢, as there are
qB +3¢? units of flow that enter these nodes.) This implies in particular that s; must send 2z(r;) +1



Figure 1: Constructed instance of the congestion game problem with nondecreasing arc costs.

units of flow along exactly one of the arcs (s;, a;;j), and consequently z(r;) units of flow travel from
s; to that corresponding node D;. Consider the partition where each element r; is mapped to the
set D; that its corresponding node s; sends flow to in the solution. Each of the sets D; will have
size B, since the outflow of each node D; is B, and no element r; will be mapped to more than one
of the sets D;. Hence this is a 3-partition of the elements in R. O

We can easily extend this result to the symmetric version of the problem: add a new node
t and new arcs (a;;,t) and (Dj,t) for all ¢, j. Set the cost of the new (a;j,t) arcs to 0/1/.../1 and
the cost of the (Dj,t) arcs to 0/0/.../0/M/ ... /M, where the last ‘0’ occurs in the B-th position.
Adjust the demand so that the nodes a;; and D; have demand 0, and the node ¢ has a demand of
¢B + 3¢%. The same conclusions will hold.

A similar construction gives an even stronger result for single source games with nonin-
creasing arc costs. Recall that an a-approximation algorithm is a polynomial-time algorithm that
produces a feasible solution of cost within a factor of « of the optimum.

Theorem 3.2 The single source network congestion game problem with nonincreasing arc costs is
strongly NP-hard, and it does not have an approrimation algorithm, unless P=NP.

Proof: Again we reduce from the 3-PARTITION problem. We use a simplified version of the
construction in Theorem 3.1. We build a graph as follows (see Figure 2):

1. Create 1 source node s, with a supply of ¢B + 3q¢.

2. Create 3q sink nodes s;, each with a demand of 1.
Create ¢ sink nodes Dj, each with a demand of B.

3. Add arcs (s,s;) of cost M/M/.../M/0/.../0, for all i, where the first ‘0’ occurs in the
(2(r;) + 1)-st place, and M is a positive number.
Add arcs (s, Dj) of cost M/M/.../M/0/... /0, for all i,j, where the first ‘0’ occurs in the
z(r;)-th place.



Figure 2: Constructed instance of the congestion game problem with nonincreasing arc costs.

In terms of the game framework, this corresponds to ¢B + 3¢ players having origin s, 1 player
having destination s;, and B players having destination D;, for all ¢ and j.

If the answer to the 3-PARTITION problem is ‘yes,” we can obtain a routing of cost 0 by
sending z(7;) + 1 units of flow from the source s to node s;, and then routing z(r;) of those units
from s; to the node D; corresponding to the set r; is mapped to in the partition. Conversely, if the
optimal solution to the constructed instance of the congestion game problem has cost 0, exactly
z(r;) + 1 units of flow are sent on each arc (s, s;), and exactly z(r;) units of flow are sent along one
arc (s;, D;). Thus, we can obtain a 3-partition of the elements r; by placing each element r; into
the set D; that s; sends flow to in the congestion game solution. There will only be one such set,
because of the cost structure, and each set D; will have size B, due to the way the demands are
defined.

This implies that the single source network congestion game problem with nonincreasing arc
costs is strongly NP-hard. In fact, the reduction shows that it is even hard to distinguish between
instances of cost 0 and instances of cost greater than 0. This implies that no approximation
algorithm can exist for this problem, unless P=NP. O

The result can be extended to the symmetric problem with nonmonotonic arc costs: add a
super-sink ¢ as in the discussion following Theorem 3.1, and arcs (s;,t) and (D;,t) for all 4, j. Set
the costs of the arcs (s;,t) to 0/M/ ... /M, and the costs of the arcs (D;,t) to 0/.../0/M/... /M,
where the last ‘0’ is in the B-th position. The same conclusions follow.

The same argument does not apply to concave nonincreasing arc costs, but a simple reduc-
tion gives that this problem is NP-hard as well.

Theorem 3.3 The single source network congestion game problem with concave nonincreasing arc
costs 1s strongly NP-hard.

Proof: We reduce from the DIRECTED STEINER TREE problem, which is strongly NP-complete



[23]. This problem is:

Instance: A directed graph G = (N, A) with arc costs ¢, € ZT for all a € A, a root node
s, a set of terminals {t1,ts,...,t,} CV, and a bound B € Z*.

Question: Does there exist a directed tree T rooted at node s, such that T contains an
s —t; path for all i = 1,...,n, and the sum of the combined arc costs in T is at most B?

Suppose we are given G = (N, A), the node s, and terminals t1,...,t,. We define an
instance of the congestion game on G as follows. First, we assign one player to travel from node s
to node t;, for all i € {1,...,n}. Second, we set the cost of the arcs a € A equal to the concave
nonincreasing function c,/% /% /... /%.

We claim that there is a solution to this single source congestion game problem of cost at
most B if and only if there is a solution to the DIRECTED STEINER TREE problem of cost at most
B. To see the first direction, suppose there exists a directed Steiner tree 7' of cost at most B.
Since T is a Steiner tree, it must contain a path from s to t; for all i. Consider a solution to the
congestion game problem where we route all players from s to ¢; using only arcs contained in 7.
This solution will be feasible since it contains a feasible path for every player, and its total cost will
be at most B, by the way the costs in the congestion game are defined.

To see the other direction, suppose there exists a solution to the congestion game problem
of cost at most B. The collection of arcs used in this solution must contain a path from s to ¢; for
all 4, since the congestion game solution is feasible. Hence it must also contain a directed Steiner
tree T'. The cost of this tree will be at most B, by the way the congestion game costs are defined.
Hence the congestion game problem is NP-hard. O

Another relatively simple reduction provides a strong hardness result for the asymmetric congestion
game problem with convex nondecreasing costs.

Theorem 3.4 The asymmetric network congestion game problem with convex nondecreasing arc
costs is strongly NP-hard, and it does not have an approximation algorithm, unless P=NP.

Proof: We reduce from the ARC-DISJOINT PATHS problem, which is strongly NP-complete [23].
This problem is:

Instance: A directed graph G = (N, A) and a set of node pairs (s1,%1), ..., (Sn,tn)-

Question: Does there exist a collection of arc-disjoint paths P, ..., P,, where P; is an
s; — t; path?
Suppose we are given G = (N, A) and (s1,t1),...,(Sn,ty). We transform this into an instance of

the asymmetric network congestion game problem with convex nondecreasing arc costs as follows.
First, we assign one player to travel from node s; to node ¢;, for all i. Second, for every arc (i, ) € A,
we introduce the cost structure 0/1/2/.../n — 1.

If there exist arc-disjoint paths, then any routing using these paths will have cost 0, since
each arc will be taken at most once. Conversely, if there do not exist arc-disjoint paths, in any
routing some arc will have to be taken twice, for a cost of at least 1. Hence the asymmetric network
congestion game problem with convex nondecreasing arc costs is strongly NP-hard; moreover, it is
already hard to distinguish between instances of cost 0 and those of cost greater than 0. O



We have now covered all of the hardness results. We next address variants of the problem
that are solvable in polynomial time.

Theorem 3.5 The symmetric network congestion game problem with nonincreasing arc costs is
solvable in polynomial time.

Proof: Suppose we are given an instance of this problem, consisting of G = (N, A), designated
nodes s and t, costs on the arcs, and a collection of players {1,...,n}. We first claim that in such
a problem, there exists an optimal solution where all players follow the same path from their origin
to their destination.

To see this, suppose in a solution at least two players follow different paths. Let ¢; denote
the cost of the path followed by player ¢. Further suppose that among all the players, player k
is following a path of minimal cost ¢;. Now, consider rerouting all of the other players onto the
path followed by player k. Since the arc costs are nonincreasing, the cost of this path will change
to C;C < ¢i. The total cost of the solution will change to nc§C < neg, < ZZ ¢;. Hence there is some
optimal solution where all players follow the same path.

In a solution where all players follow the same path, the cost of each arc a in the solution
is equal to the cost cq(n) of routing n players across the arc. This suggests a simple algorithm for
solving the problem: first, fix the cost of each arc a € A equal to ¢,(n); next, find the shortest s —¢
path in G with respect to the new arc costs, and route all n players along this path. This gives a
minimum cost solution to the problem where all players follow the same path, so it is optimal. O

We have one final complexity result, which relates to convex nondecreasing arc costs.

Theorem 3.6 The single source network congestion game problem with conver nondecreasing arc
costs 1s solvable in polynomial time.

Proof: This result was independently proved by Chakrabarty et al. [7], though their proof was
only stated for the symmetric case and linear costs. For completeness, we review the result here,
noting that it also extends to the single source case.

Suppose we have an instance of the single source problem, which consists of a graph G =
(N, A) and a cost structure on the arcs. We give a reduction to the minimum cost flow problem. We
create a new graph G’ on the same node set N, where the arcs are defined as follows. For every arc
a € A with cost structure c,(1)/ca(2)/ ... /ca(n), we introduce n parallel arcs a1, as,...,a, in G’
with the same head and tail nodes as a, where the cost of arc ay, is equal to ke, (k) — (k—1)ca(k—1)
and the capacity of each arc is 1.

We claim a minimum cost flow on G’ gives a minimum cost flow on G, by setting the flow on
a € A equal to the sum of the flows on the corresponding arcs in G’. To see this, first observe that
there exists an integral minimum cost flow on G’ since standard network flow problems with integer
capacities always admit an integral optimal solution. Moreover, because the costs are convex and
nondecreasing, there exists such an optimal solution so that any flow traveling across the parallel
arcs ai,...,a, in G’ will fill in order of increasing index (from 1 to n). This implies that if there
are k units traveling across a set of parallel arcs, the corresponding cost will be

ca(1) + (2¢a(2) = ca(1)) + ... + (kca(k) — (k — D)ea(k — 1)) = kea (k).
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Thus the cost structure in G’ mimics that of G, and it follows that a minimum cost flow in G’ gives
an integral minimum cost flow in G. O

Fixed Number of Players We now comment on the complexity of the aforementioned problems

with a fixed number of players. In this situation, we are given a set of players {1,2,...,n}, where n is
a fixed constant. (Hence the running time of a polynomial-time algorithm may depend exponentially
on n.)

In general congestion games, where the set of strategies is given explicitly, the congestion
game problem with a fixed number of players can be solved in polynomial time (every player tries
every strategy). In the case of network congestion games, however, there may be an exponential
number of strategies: here the strategy space is compactly encoded, and the number of strategies
can be exponential in the number of nodes and arcs in the network. Thus for this problem, the
case with a fixed number of players is a nontrivial variant.

Several of our earlier results can be extended to apply to network congestion games with
a fixed number of players. In particular, Theorem 3.4 holds for a fixed number of players, since
the ARC-DISJOINT PATHS problem is NP-complete even for only two terminal pairs [19]. Similarly,
Theorems 3.5 and 3.6 apply, since anything that can be solved in polynomial time with an arbitrary
number of players can be solved in polynomial time with a fixed number of players.

We also observe that the single source network congestion game problem with concave non-
increasing arc costs can be solved in polynomial time for a fixed number of players. This is since
we can model the problem as a minimum cost integer network flow problem with a concave cost
function, by taking a piecewise linearization of the arc costs. (In other words, we create a continu-
ous cost function for the problem by fitting a straight line between each two consecutive arc costs
that are specified.) Such problems can be solved in polynomial time for fixed demand using the
send-and-split method proposed by Erickson, Monma, and Veinott [14].

4 General Complexity Results

Our complexity results for general congestion games are given in Table 2. We note that since the
set of strategies in general congestion games is given explicitly rather than implicitly, this problem
is different from the network case, and the same results do not immediately apply. In fact, the
input size of an instance of a general congestion game is determined by the number of resources,
the number of players, the number of strategies, and the maximum encoding length over all costs.
In contrast, the input size of an instance of a network congestion game does only depend on the
number of players, the size of the network, and the maximum encoding length of an arc cost. Asin
the previous section, we first present the hardness results and then a polynomial time algorithm.

Theorem 4.1 The symmetric general congestion game problem with convexr nondecreasing arc
costs is strongly NP-hard, and no approximation algorithm exists, unless P=NP.

Proof: We reduce from the 3-DIMENSIONAL MATCHING problem, which is strongly NP-complete
[23]. This problem is:

Instance: A set S C X XY x Z, where X, Y, and Z are disjoint sets of cardinality ¢ each.
Question: Does S contain a subset S C S such that |S’| = ¢ and no two elements of S’

11



ggfsj symmetric asymmetric
nondecreasing inapprox. inapprox.
convex nondecreasing | inapprox. [4.1] inapprox.

nonincreasing P [4.4) inapprox. [4.2]

concave nonincreasing P NP-hard [4.3]
nonmonotonic inapprox. inapprox.

Table 2: Complexity results for general congestion games.

agree in any coordinate?

Suppose we are given X, Y, Z, and S. We define an instance of the general congestion game
problem as follows: let the members of X, Y, and Z correspond to the resources, and let each s € S
correspond to a potential strategy. (Thus, each strategy contains three resources: one from X, one
from Y, and one from Z.) Define ¢ players, each of which possesses the same set of strategies S.
Set the cost of each resource to 0/1/2/.../(q —1).

We claim that if the answer to the 3-DIMENSIONAL MATCHING problem is ‘yes,” then the
optimal cost of this congestion game problem is 0; if the answer is ‘no,” then the cost is at least
1. To see this, observe that a solution to the congestion game problem has cost 0 if and only if
the strategies chosen by players in that solution constitute a matching. Moreover, if there is no
matching, some resource will have to be chosen more than once, for a cost of at least 1. O

In the case of nonincreasing arc costs, our proof from the previous section carries over.

Theorem 4.2 The asymmetric general congestion game problem with nonincreasing arc costs is
strongly NP-hard, and no approrimation algorithm exists, unless P=NP.

Proof: This follows directly from Theorem 3.2. Note that in our construction, there are a total of
3¢? possible strategies, which is polynomial in the input size. O

For concave nonincreasing costs, we give a somewhat different argument.

Theorem 4.3 The asymmetric general congestion game problem with concave nonincreasing arc
costs s strongly NP-hard.

Proof: We reduce from the MINIMUM COVER problem, which is strongly NP-complete [23]. This
problem is:

Instance: A finite set X, a collection S of subsets of X, and an integer K < |S|.
Question: Does S contain a subset S’ C S with |S’| < K, such that every element of X
belongs to at least one member of S’?

Suppose we are given X, S, and K. We construct an instance of the asymmetric general
congestion game problem with concave nonincreasing arc costs as follows. Let the sets in .S corre-
spond to both the resources and the strategies, so that each strategy consists of one resource. Set

the cost of each resource to 1/ % / % /... %, where n = | X|. Define n players, each corresponding
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to an element of X, and set the possible strategies associated with player x € X to be those sets
Sz C S containing element x.

We claim that the answer to the MINIMUM COVER problem is ‘yes’ if and only if the optimal
cost of the congestion game is less than or equal to K. To see this, first note that each resource
s € S costs the same regardless of how many players are using it. Thus the optimal solution to
the congestion game corresponds to the smallest collection of sets that cover all the elements in X.
It follows that if the optimal cost is less than or equal to K, then the corresponding instance is a
‘yes’ instance of the problem. Conversely, if there is a minimum cover of size less than or equal to
K, we can obtain a solution to the congestion game of cost less than or equal to K by selecting for
each element a strategy that contains it in the minimum cover. O

Finally, we have one polynomial-time algorithm.

Theorem 4.4 The symmetric general congestion game problem with nonincreasing arc costs is
solvable in polynomial time.

Proof: By a similar argument to that in Theorem 3.5, we see that in any such problem it is optimal
for all players to choose the same strategy. Hence we need only determine the cheapest strategy,
where the cost of each resource a € A is set to c4(n). This can be done in polynomial time, because
the number of strategies is part of the input. O

5 Concluding Remarks

We have provided the first extensive study of the complexity of finding minimum cost solutions to
congestion games, from a central perspective. For the most part, these problems are NP-hard, but
we have identified several variants that are solvable in polynomial time. We examined a variety of
different structural aspects and several different types of cost functions.

We have not yet addressed the approximability of those NP-hard problems contained in this
paper for which inapproximability results were not obtained. This is an intriguing area for further
study, as it may provide new insights into the structure and properties of the problem.
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