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Abstract. In this paper, we propose a general framework for designing
fully polynomial time approximation schemes for combinatorial optimiza-
tion problems, in which more than one objective function are combined
into one using any norm. The main idea is to exploit the approximate
Pareto-optimal frontier for multi-criteria optimization problems. Using
this approach, we obtain an FPTAS for a novel resource allocation prob-
lem, for the problem of scheduling jobs on unrelated parallel machines,
and for the Santa Claus problem, when the number of agents/machines is
fixed, for any norm, including the l∞-norm. Moreover, either FPTAS can
be implemented in a manner so that the space requirements are polyno-
mial in all input parameters. We also give approximation algorithms and
hardness results for the resource allocation problem when the number of
agents is not fixed.

1 Introduction

Consider the following resource allocation problem. There are m agents, and
n resources, which are to be distributed among the agents. Each resource is
assumed to be unsplittable; that is, a resource can be allocated to only one
of the agents. However, agents may need to access resources assigned to other
agents as well. The cost incurred by agent i, if it needs to access resource k
from agent j, is ck

ij . We assume that the ck
ij are non-negative integers, and that

ck
ii = 0. The goal is to have a fair allocation of the resources among the agents;

in other words, the maximum cost of an agent is to be minimized.
A practical setting where such a resource allocation problem can arise is page

sharing in a distributed shared memory multiprocessor architecture [1]. In this
architecture, the shared memory is distributed among different processors (also
referred to as nodes), and each node contains a part of the shared memory
locally. Typically, accessing the local memory is faster than accessing the remote
memory. Every physical page in this architecture is allocated to a fixed node,
which is referred to as the home node of the page. Also, there cannot be more
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than one copy of a page in the system. Suppose each node knows in advance the
number of accesses it will need to make to a page. The total delay, or latency,
faced by a node is the sum of latencies over all the pages it needs to access.
Suppose the latency between node i and j is tij , and the number of times node i
needs to access page k is aik. If page k is stored in node j, then the cost of
accessing page k for node i will be ck

ij = tijaik. The performance of the system
is governed by the node having maximum total latency. Thus, the objective is to
allocate pages among the nodes in an offline fashion so that the maximum total
latency over all the nodes is minimized.

We present an FPTAS for this resource allocation problem when the number
of agents is fixed. There are many standard techniques for obtaining approxima-
tion schemes for combinatorial optimization problems. They include rounding of
the input parameters (e.g. [2,3,4]), and shrinking the state space of dynamic pro-
grams [5]. We propose a novel framework for designing approximation schemes.
The idea behind the new procedure is to treat the cost of each agent as a sep-
arate objective function, and to find an approximate Pareto-optimal frontier
corresponding to this multi-objective optimization problem. Safer et al. [6]1 give
necessary and sufficient conditions for the existence of fully polynomial time ap-
proximation schemes in multi-criteria combinatorial optimization. Papadimitriou
and Yannakakis [9] propose an efficient procedure to construct an approximate
Pareto-optimal frontier for discrete multi-objective optimization problems, and
we use their procedure in constructing the approximation scheme for the resource
allocation problem.

A closely related problem is the Santa Claus problem [10,11,12]. In this prob-
lem, each agent has a utility corresponding to each resource allocated to it, and
the objective is to allocate the resources among the agents so that the minimum
utility over all the agents is maximized. Our problem is different from the Santa
Claus problem in that there is a cost associated with accessing each resource an
agent does not get, instead of having a utility for each resource it gets. Using
the above framework, we obtain the first FPTAS for the Santa Claus problem
with a fixed number of agents.

Another closely related problem is scheduling jobs on unrelated parallel ma-
chines to minimize the makespan, also referred to in the literature as the
Rm| |Cmax problem. There are m machines and n jobs, and each job is to be
scheduled on one of the machines. The processing time of job k on machine i is
pik. The objective is to minimize the makespan, that is the time at which the last
job finishes its execution. Our procedure yields the first FPTAS for this problem
that has space requirements that are polynomial in all the input parameters.

The resource allocation problem is NP-hard even when there are only two
agents, and strongly NP-hard when the number of agents is variable (see the
proof of NP-hardness in the Appendix). It remains strongly NP-hard for the
special case of uniform costs, in which for each agent i and each resource k, ck

ij =
ck
i for all agents j �= i. In this paper, we give a 2-approximation algorithm for

1 This paper is a combined version of two earlier working papers by Safer and
Orlin [7,8].
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the uniform cost case. The algorithm makes use of the well-known technique of
parametric linear programming and rounding, which has been successfully used
in obtaining approximation algorithm for scheduling problems in the past [3].
Our rounding procedure, however, differs from the one given in [3]; it is more
similar to the one used by Bezàkovà and Dani [12] for the Santa Claus problem.

Our results: The results in this paper can be summarized as follows.
1. Approximation schemes. We present a general framework for designing ap-
proximation schemes for problems with multiple objective functions combined
into one using norms or other functions. We illustrate the versatility of this
scheme by applying it to the resource allocation problem, the Rm| |Cmax prob-
lem, and the Santa Claus problem. An interesting byproduct is that, by a careful
implementation of the FPTAS, the space requirements can be made polynomial
in all the input parameters. Previously, all FPTASes for the Rm| |Cmax problem
had space complexity exponential in the number of machines. This settles an
open question raised by Lenstra et al. [3].
2. A 2-approximation algorithm. We propose a 2-approximation algorithm for
the resource allocation problem with an arbitrary number of agents, for the
special case of uniform costs, in which each agent incurs the same cost to access
a resource from another agent, irrespective of the agent the resource is allocated
to. This is achieved by solving a linear programming relaxation of the problem,
and then rounding the fractional solution.
3. Hardness of approximation. We show that the general resource allocation prob-
lem cannot be approximated within a factor better than 3/2 in polynomial time,
unless P=NP. We achieve this by giving an approximation preserving reduction
from the R| |Cmax problem to the resource allocation problem. In [3], it had
been shown that the former problem cannot be approximated better than 3/2 in
polynomial time, unless P=NP, hence a similar result holds for the resource allo-
cation problem, too. This reduction also establishes a direct connection between
the resource allocation problem and the R| |Cmax scheduling problem.

Related work: Lenstra et al. [3] presented a 2-approximation algorithm for the
R| |Cmax problem, based on a linear programming relaxation and rounding. For
the case of a fixed number of machines, Horowitz and Sahni [2] gave the first
FPTAS, which, however, has exponential space requirements. Lenstra et al. [3]
derived a PTAS for this problem, which has better space complexity. In their
paper, the authors mentioned that, “An interesting open question is whether
this result can be strengthened to give a fully polynomial approximation scheme
for fixed values of m, where the space required is bounded by a polynomial in the
input size, m, and 1/ε (or, even better, log(1/ε)).” We settle this open question
in the affirmative in this paper. Azar et al. [13] gave an FPTAS for this problem
for fixed m for any lp-norm, but they do not analyze the space complexity of
their approximation scheme.

The Santa Claus problem was first studied by Lipton et al. [11]. Bezàkovà
and Dani [12] proposed a linear factor approximation algorithm for this problem,
which is based on a linear programming relaxation and rounding; our rounding
procedure is similar to the rounding procedure used in their paper. Bansal and
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Sviridenko [10] obtained a tighter approximation algorithm for the restricted
assignment version of the problem, where each resource can be allocated to only
a subset of the agents, and each such agent has the same utility for that resource.
As of now, no FPTAS has been proposed for the Santa Claus problem with a
fixed number of agents.

The focus of this paper will be mainly on the resource allocation problem, since
this problem was our original motivation for taking up this study. We will refer
to the Rm| |Cmax problem and the Santa Claus problem whenever our techniques
for the resource allocation problem also apply to these two problems. We begin by
giving an integer programming formulation of the resource allocation problem.
Let xik be a variable which is 1 if the kth resource is given to agent i, otherwise
it is 0. Then the total cost incurred by agent i is

∑n
k=1

∑m
j=1 ck

ijxjk. An integer
programming formulation of the resource allocation problem is given by

min S

s.t.
n∑

k=1

m∑

j=1

ck
ijxjk ≤ S for i = 1, . . . , m,

m∑

i=1

xik = 1 for k = 1, . . . n,

xik ∈ {0, 1} for i = 1, . . . , m, k = 1, . . . , n.

2 An FPTAS for a Fixed Number of Agents

In this section, we give an FPTAS for the resource allocation problem with a
fixed number of agents. We first discuss a polynomial-time procedure to compute
an approximate Pareto-optimal frontier for general multi-objective optimization
problems. We then show that using the approximate Pareto-optimal frontier,
we can get an approximate solution for the resource allocation problem. Sub-
sequently, we use this technique for obtaining an FPTAS for the Rm| |Cmax
problem and the Santa Claus problem as well, and then extend it to the case of
general lp-norms, other norms, and beyond.

2.1 Formulation of the FPTAS

An instance π of a multi-objective optimization problem Π is given by a set of m
functions f1, . . . , fm. Each fi : X → R+ is defined over the same set of feasible
solutions, X . Let |π| denote the binary-encoding size of the instance π. Assume
that each fi takes values in the range [2−p(|π|), 2p(|π|)] for some polynomial p. We
first define the Pareto-optimal frontier for multi-objective optimization problems.

Definition 1. Let π be an instance of a multi-objective optimization problem.
A Pareto-optimal frontier (with respect to minimization), denoted by P (π), is a
set of solutions x ∈ X, such that there is no x′ ∈ X such that fi(x′) ≤ fi(x) for
all i with strict inequality for at least one i.
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In other words, P (π) consists of all undominated solutions. In many cases, it may
not be tractable to compute P (π) (e.g., determining whether a point belongs to
the Pareto-optimal frontier for the two-objective shortest path problem is NP-
hard), or the number of undominated solutions can be exponential in |π| (e.g.,
for the two-objective shortest path problem [14]). One way of getting around this
problem is to look at an approximate Pareto-optimal frontier, which is defined
below.

Definition 2. Let π be an instance of a multi-objective optimization problem.
For ε > 0, an ε-approximate Pareto-optimal frontier, denoted by Pε(π), is a set
of solutions, such that for all x ∈ X, there is x′ ∈ Pε(π) such that fi(x′) ≤
(1 + ε)fi(x), for all i.

In the rest of the paper, whenever we refer to an (approximate) Pareto-optimal
frontier, we mutually refer to both its set of solutions and their vectors of objec-
tive function values.

Papadimitriou and Yannakakis [9] showed that whenever m is fixed, there
is always an approximate Pareto-optimal frontier that has polynomially many
elements.

Theorem 1 (Papadimitriou and Yannakakis [9]). Let π be an instance of
a multi-objective optimization problem. For any ε > 0 and for fixed m, there is
an ε-approximate Pareto-optimal frontier Pε(π) whose cardinality is bounded by
a polynomial in |π| and 1/ε.

Let us consider the following optimization problem:

minimize g(x) = max
i=1,...,m

fi(x), x ∈ X. (1)

We show that if an approximate Pareto curve can be constructed in polynomial
time, then there is an FPTAS to solve this min-max problem.

Lemma 1. There is at least one optimal solution x∗ to (1) such that x∗ ∈ P (π).

Proof. Let x̂ be an optimal solution of (1). Suppose fk(x̂) is the maximum
among all function values for x̂; that is, fk(x̂) ≥ fi(x̂) for all i = 1, . . . , m.
Suppose x̂ /∈ P (π). Then there exists x′ ∈ P (π) such that fi(x′) ≤ fi(x̂) for i =
1, . . . , m. Therefore, fi(x′) ≤ fk(x̂) for all i, that is maxi=1,...,m fi(x′) ≤ fk(x̂),
or g(x′) ≤ g(x̂). Thus x′ minimizes the function g and is in P (π). ��

Lemma 2. Let x̂ be a solution in Pε(π) that minimizes g(x) over all points
x ∈ Pε(π). Then x̂ is a (1 + ε)-approximate solution of (1); that is, g(x̂) is at
most (1 + ε) times the value of an optimal solution to (1).

Proof. Let x∗ be an optimal solution of (1) that is in P (π). By the definition of
ε-approximate Pareto-optimal frontier, there exists x′ ∈ Pε(π) such that fi(x′) ≤
(1 + ε)fi(x∗), for all i = 1, . . . , m. Therefore g(x′) ≤ (1 + ε)g(x∗). Since x̂ is a
minimizer of g(x) over all solutions in Pε(π), g(x̂) ≤ g(x′) ≤ (1 + ε)g(x∗). ��
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From these two lemmas, we get the following theorem regarding the existence of
an FPTAS for solving (1).

Theorem 2. Suppose there is an algorithm that computes Pε(π) in time poly-
nomial in |π| and 1/ε for a fixed value of m. Then there is an FPTAS for solving
the min-max optimization problem (1).

Thus, the only thing we are left with is to find a polynomial-time algorithm for com-
puting an approximatePareto-optimal frontier. Papadimitriou and Yannakakis [9]
give a necessary and sufficient condition under which such a polynomial-time algo-
rithm exists.

Theorem 3 (Papadimitriou and Yannakakis [9]). Let m be fixed, and let
ε, ε′ > 0 be such that (1 − ε′)(1 + ε) = 1. One can determine a Pε(π) in time
polynomial in |π| and 1/ε if and only if the following ‘gap problem’ can be solved
in polynomial-time: Given an m-vector of values (v1, . . . , vm), either
(i) return a solution x ∈ X such that fi(x) ≤ vi for all i = 1, . . . , m, or
(ii) assert that there is no x ∈ X such that fi(x) ≤ (1− ε′)vi for all i = 1, . . . , m.

We sketch the proof because our approximation schemes are based on it.

Proof. Suppose we can solve the gap problem in polynomial time. An approx-
imate Pareto-optimal frontier can then be constructed as follows. Consider the
box in R

m of possible function values given by {(v1, . . . , vm) : 2−p(|π|) ≤ vi ≤
2p(|π|) for all i}. We divide this box into smaller boxes, such that in each dimen-
sion, the ratio of successive divisions is equal to 1 + ε′′, where ε′′ =

√
1 + ε − 1.

For each corner point of all such smaller boxes, we call the gap problem. Among
all solutions returned by solving the gap problems, we keep only those solu-
tions that are not Pareto-dominated by any other solution. This is the required
Pε(π). Since there are O((p(|π|)/ε)m) many smaller boxes, this can be done in
polynomial time.

Conversely, suppose we can construct Pε(π) in polynomial time. To solve
the gap problem for a given m-vector (v1, . . . , vm), if there is a solution point
(f1(x), . . . , fm(x)) in Pε(π) such that fi(x) ≤ vi for all i, then we return x.
Otherwise we assert that there is no x ∈ X such that fi(x) ≤ (1 − ε′)vi for all
i = 1, . . . , m. ��

Thus, we only need to solve the gap problem to get a (1+ε)-approximate solution
for the min-max problem. This is accomplished in a manner similar to that given
in [9]. Our description here is with respect to minimization problems; a similar
description for maximization problems can be found in [9].

We restrict our attention to the case when X ⊆ {0, 1}d, since many combinato-
rial optimization problems can be framed as 0/1-integer programming problems.
Further, we consider linear objective functions; that is, fi(x) =

∑d
j=1 aijxj , and

each aij is a non-negative integer. Suppose we want to solve the gap problem for
the m-vector (v1, . . . , vm). Let r = �d/ε′�. We first define a “truncated” objective
function. For all j = 1, . . . , d, if for some i, aij > vi, we set xj = 0, and drop the
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variable xj from each of the objective functions. Let V be the index set of the
remaining variables. Thus, the coefficients in each objective function are now less
than or equal to vi. Next, we define a new objective function f ′

i(x) =
∑

j∈V a′
ijxj ,

where a′
ij = �aijr/vi�. In the new objective function, the maximum value of a

coefficient is now r. For x ∈ X , the following two statements hold.

– If f ′
i(x) ≤ r, then fi(x) ≤ vi.

– If fi(x) ≤ vi(1 − ε′), then f ′
i(x) ≤ r.

Therefore, to solve the gap problem, it suffices to find an x ∈ X such that f ′
i(x) ≤

r, for i = 1, . . . , m, or assert that no such x exists. Since all the coefficients of
f ′

i(x) are non-negative integers, there are r + 1 ways in which f ′
i(x) ≤ r can be

satisfied. Hence there are (r+1)m ways overall in which all inequalities f ′
i(x) ≤ r

can be simultaneously satisfied. Suppose we want to find if there is an x ∈ X
such that f ′

i(x) = bi for i = 1, . . . , m. This is equivalent to finding an x such
that

∑m
i=1 M i−1f ′

i(x) =
∑m

i=1 M i−1bi, where M = dr + 1 is a number greater
than the maximum value that f ′

i(x) can take.
Given an instance π of a multi-objective linear optimization problem over

a discrete set X , the exact version of the problem is: Given a non-negative
integer C and a vector (c1, . . . , cd) ∈ Z

d
+, does there exist a solution x ∈ X such

that
∑d

j=1 cjxj = C?

Theorem 4. Suppose we can solve the exact version of the problem in pseudo-
polynomial time, then there is an FPTAS for solving (1).

Proof. The gap problem can be solved by making at most (r + 1)m calls to the
pseudo-polynomial time algorithm, and the input to each call has numerical val-
ues of order O((d2/ε)m+1). Therefore, all calls to the algorithm take polynomial
time, hence the gap problem can be solved in polynomial time. The theorem
now follows from Theorems 2 and 3. ��

Now we give a pseudo-polynomial time algorithm for solving the exact version of
the resource allocation problem for a fixed number of agents. The exact version
for resource allocation is this: Given an integer C, does there exist a 0/1-vector x
such that

∑n
k=1

∑m
j=1 cjkxjk = C, subject to the constraints that

∑m
j=1 xjk = 1

for k = 1, . . . , n, and xjk ∈ {0, 1}? The exact problem can be viewed as a
reachability problem in a directed graph. The graph is an (n+1)-partite directed
graph; let us denote the partitions of this digraph by V0, . . . , Vn. The partition
V0 has only one node, labeled as v0,0 (the source node), all other partitions have
C +1 nodes. The nodes in Vi for 1 ≤ i ≤ n are labeled as vi,0, . . . , vi,C . The arcs
in the digraph are from nodes in Vi to nodes in Vi+1 only, for 0 ≤ i ≤ n − 1. For
all c ∈ {c1,i+1, . . . , cm,i+1}, there is an arc from vi,j to vi+1,j+c, if j+c ≤ C. Then
there is a solution to the exact version if and only if there is a directed path from
the source node v0,0 to the node vn,C . Finding such a path can be accomplished
by doing a depth-first search from the node v0,0. The corresponding solution for
the exact problem (if it exists) can be obtained using the path found by the
depth-first search algorithm.
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Thus, the above pseudo-polynomial algorithm implies the following theorem.

Theorem 5. There is an FPTAS for the resource allocation problem with a fixed
number of agents.

2.2 Space Complexity of the FPTAS

A straightforward implementation of the above algorithm will have substantial
storage requirements. The bottleneck for space requirements appears at two
places: one is storing the approximate Pareto-optimal frontier, and the other
is in solving the exact problem. However, by a careful implementation of the
algorithm, the storage requirements can be reduced significantly. We give an
outline below for a space-efficient implementation of the above algorithm.

1. We do not need to store all the corner points of the smaller boxes into which
the region of possible objective function values has been divided. By simply
iterating over the corner points using loops, we can cover all the corner points.
2. We also do not need to store the approximate Pareto-optimal frontier, as it
is sufficient to store the current best solution obtained after solving each gap
problem.
3. When solving the exact problem using the depth-first search algorithm, we do
not need to generate the whole graph explicitly. The only data we need to store in
the execution of the depth-first search algorithm are the stack corresponding to
the path traversed in the graph so far (the path length is at most n), and the coef-
ficients of the modified objective function. There are mn coefficients that need to
be stored, and the maximum magnitude of each coefficient is O((m2n2/ε)m+1),
thus the space complexity of the FPTAS is O(m2n log (mn/ε)).

Thus, we have the following theorem.

Theorem 6. There is an FPTAS for the resource allocation problem whose
space requirements are polynomial in m, n and log (1/ε).

2.3 An FPTAS for Scheduling on Unrelated Parallel Machines and
the Santa Claus Problem

Recall the Rm| |Cmax scheduling problem defined in the introduction. There are
m machines and n jobs, and the processing time of job k on machine i is pik.
The objective is to schedule the jobs to minimize the makespan. The m objective
functions in this case are given by fi(x) =

∑n
k=1 pikxik, and the set X is given by∑m

i=1 xik = 1 for each k = 1, . . . , n, and xik ∈ {0, 1}. The Santa Claus problem is
similar to this scheduling problem, except that the objective here is to maximize
the minimum execution time over all the machines.

The exact version of the Rm| |Cmax problem and the Santa Claus problem
is the same as that for the resource allocation problem, and hence we get an
FPTAS for either problem for fixed m. For the Rm| |Cmax problem, we obtain
the first FPTAS that has space requirements which are polynomial in m, n
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and log (1/ε), whereas all the previously obtained FPTASes for this problem
had space complexity exponential in m. For the Santa Claus problem, we give
the first FPTAS for a fixed number of agents. We therefore have the following
theorem.

Theorem 7. There are FPTASes for the Rm| |Cmax problem and the Santa
Claus problem with a fixed number of agents whose space requirements are poly-
nomial in n, m, and log (1/ε).

2.4 FPTAS for Any Norm

The above technique for obtaining an FPTAS in fact can be extended to include
any norm used for combining the different objective functions. More generally,
let h : R

m
+ → R+ be any function that satisfies

(i) h(y) ≤ h(y′) for all y, y′ ∈ R
m
+ such that yi ≤ y′

i for all i = 1, . . . , m, and
(ii) h(λy) ≤ λh(y) for all y ∈ R

m
+ and λ > 1.

Consider the following generalization of the optimization problem given by (1):

minimize g(x) = h(f(x)), x ∈ X. (2)

Then Lemma 1 and 2 can be easily generalized as follows.

Lemma 3. There is at least one optimal solution x∗ to (2) such that x∗ ∈ P (π).

Lemma 4. Let x̂ be a solution in Pε(π) that minimizes g(x). Then x̂ is a (1+ε)-
approximate solution of (2); that is, g(x̂) is at most (1 + ε) times the optimal
value of (2).

These two lemmata then imply that the technique given in this section can be
used to obtain an FPTAS for (2). The only difference is in selecting the solution
from the approximate Pareto-optimal frontier: we have to choose the solution
which is the best according to the given h. Thus we have the following theorem.

Theorem 8. There is an FPTAS for the resource allocation problem, the prob-
lem of scheduling jobs on unrelated parallel machines, and the Santa Claus
problem with fixed m when the objectives for the different agents/machines are
combined into one using a function h that satisfies (i) and (ii). Moreover, this
algorithm can be made to run with space requirements that are polynomial in m,
n, and log (1/ε).

3 A 2-Approximation Algorithm for the Uniform Cost
Case

Recall that in the case of the resource allocation problem with uniform costs, for
each agent i and each resource k, ck

ij = ck
i for all j �= i, and ck

ii = 0. Let Ak(s)
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denote the set of all agents such that if resource k is allocated to an agent in
this set, the cost that any other agent will have to pay to access resource k is no
more than s.

We will consider a parametric linear programming relaxation of the problem,
in which we have the constraint that no agent has a cost of more than s in
the relaxed solution. For each resource k, we consider only the agents in the set
Ak(s) as possible candidates for allocating that resource. We show that if this
parametric linear program has a feasible solution, then an extreme point of the
feasible set of the linear program can be rounded to an integer solution in which
each agent has cost no more than 2s.

Theorem 9. For s ∈ Z+, consider the following set of linear inequalities, which
we denote by LP (s):

n∑

k=1

∑

j∈Ak(s)

ck
ijxjk ≤ s for i = 1, . . . , m, (3a)

∑

i∈Ak(s)

xik = 1 for k = 1, . . . , n, (3b)

xik ≥ 0 for k = 1, . . . , n, i ∈ Ak(s). (3c)

Suppose LP (s) has a feasible solution, then, for the case of uniform costs, one
can find xR

ik ∈ {0, 1} in polynomial time such that

n∑

k=1

∑

j∈Ak(s)

ck
ijx

R
jk ≤ 2s for i = 1, . . . , m, (4a)

∑

i∈Ak(s)

xR
ik = 1 for k = 1, . . . , n. (4b)

Proof. Let xLP be an extreme point of the non-empty polytope defined by the
inequalities of LP (s). Let v be the total number of variables defining the system
LP (s). There are v+m+n inequalities in LP (s). Since LP (s) has v variables, at
any extreme point of this polytope, at least v linearly independent inequalities
will be satisfied with equality. Hence, at most m + n inequalities will not be
satisfied with equality. Therefore, it follows from (3c) that at most m+n variables
will have a non-zero value.

Consider the bipartite graph G in which one of the partitions has nodes cor-
responding to each agent, and the other partition has nodes corresponding to
each resource. There is an edge between agent i and resource k in G if xLP

ik > 0.
In this graph, the number of edges is less than or equal to the number of nodes.
For the R| |Cmax problem, which has a similar integer programming formulation,
Lenstra et al. [3] showed that each connected component of G also has the prop-
erty that the number of edges is less than or equal to the number of nodes. This
result holds here as well.
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We now construct an integral solution xR by rounding the fractional solution.
Let G′ be a connected component of G. The rounding is performed in two stages.
In the first stage, the following two operations are performed on G′ repeatedly,
in the given order.

1. For all resource nodes k such that in G′, exactly one edge, say (i, k), is
incident to it, we set xR

ik = 1, and remove all such resource nodes and the
edges incident to these nodes from G′.

2. For all agent nodes i such that there is exactly one edge, say (i, k), incident
to it, we set xR

ik = 0, and remove all such agent nodes and all the edges
incident to these nodes from G′.

The first stage of rounding ends when the above two operations can no longer
be performed. Let the resulting subgraph after the first stage of rounding be
G′′. Note that in the first stage, whenever we are deleting a node, we are also
deleting at least one edge from the graph. Hence after the first stage, the number
of edges is still less than or equal to the number of nodes in G′′. For the second
stage, there are three possibilities.

1. There are no nodes corresponding to resources in G′′. This means that all
resources in this subgraph have already been allocated to some agent. In this
case we are done for G′′.

2. There are some nodes corresponding to resources in G′′, but there are no
edges incident to these resource nodes. That is, some of the resources in
G′ have not yet been assigned to any of the agents. In this case, each such
resource is assigned to one of the agents to which it was incident before the
starting of the rounding procedure.

3. If both the above cases do not hold, then each node in G′′ has at least two
edges incident to it. Since the number of edges is less than or equal to the
number of nodes, this component is actually a cycle, and the number of agent
nodes is the same as the number of resource nodes. In this component, there
is now a perfect matching between the agent nodes and the resource nodes.
We find any perfect matching in this component, and for each matching edge
(i, k) we set xR

ik = 1. All the remaining variables corresponding to G′ whose
values have not been determined yet, are assigned the value zero.

This rounding procedure is performed on each connected component of G
to get a 0/1-solution xR. Note that xR

ik satisfies the constraint (4b), since each
resource is allocated to exactly one of the agents. Also, for each agent i, there
is at most one resource, say r(i), for which the LP solution was fractional, and
in the integral solution that resource was not allocated to i, but was instead
allocated to agent i′ ∈ Ar(i)(s). This is because in the first stage of rounding,
an agent node is deleted only when there is just one resource node in the graph
to which it remains incident to, and hence it does not get that resource. And in
the second stage, in the third case, there will be exactly one resource to which
an agent is incident to, but that resource is not allocated to the agent.
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For an agent i, define a partition of the resources into Ri
=0 and Ri

>0 as follows:
Ri

=0 = {k : xLP
ik = 0}, and Ri

>0 = {k : xLP
ik > 0}. For all i ∈ {1, . . . , m},

n∑

k=1

∑

j∈Ak(s)

ck
ijx

R
jk =

∑

k∈Ri
=0

∑

j∈Ak(s)

ck
i xR

jk +
∑

k∈Ri
>0

∑

j∈Ak(s)

ck
ijx

R
jk

=
∑

k∈Ri
=0

∑

j∈Ak(s)

ck
i xLP

jk +
∑

k∈Ri
>0

∑

j∈Ak(s)

ck
ijx

R
jk (5a)

≤
∑

k∈Ri
=0

∑

j∈Ak(s)

ck
i xLP

jk +
∑

k∈Ri
>0

∑

j∈Ak(s)

ck
ijx

LP
jk + c

r(i)
ii′ (5b)

=
n∑

k=1

∑

j∈Ak(s)

ck
ijx

LP
jk + c

r(i)
ii′

≤ s + s = 2s. (5c)

The equality in (5a) follows from the fact that for each resource k,
∑

j∈Ak(s) xLP
jk

=
∑

j∈Ak(s) xR
jk = 1, and also because we are dealing with the case of uniform

costs. The inequality in (5b) holds because for each agent i, there is at most one
resource r(i) such that xLP

i,r(i) > 0, but xR
i,r(i) = 0. And finally, the inequality

in (5c) is true by the definition of the set Ar(i)(s), c
r(i)
i ≤ s, and (3a). ��

To get a 2-approximation algorithm for the problem that runs in polynomial
time, one starts by choosing a trivial lower and upper bound on the optimum
value of the objective function. The lower bound can be min {ck

ij}, and the upper
bound can be mn max {ck

ij}. Then, by adopting a binary search procedure, one
can find the minimum integer value of s, say s∗, for which LP (s) is feasible,
and get a corresponding vertex xLP of the non-empty polytope in polynomial
time by using the ellipsoid algorithm [15]. Clearly, s∗ is a lower bound on the
optimal objective function value of the resource allocation problem. Using the
above rounding procedure, one can obtain a rounded solution whose value is
at most 2s∗. We therefore obtain a 2-approximation algorithm for the resource
allocation problem with uniform costs.

4 Hardness of Approximation

In this section, we give a hardness of approximation result for the resource
allocation problem with general costs.

Theorem 10. There is no polynomial-time algorithm that yields an approxima-
tion ratio smaller than 3/2 for the resource allocation problem, unless P=NP.

Proof. We prove this by a reduction from the problem of scheduling jobs on
unrelated parallel machines (R| |Cmax), which cannot have a better than 3/2-
approximation algorithm, unless P=NP [3].
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Consider an instance of the R| |Cmax problem with m machines and n jobs,
where the processing time of job k on machine i is pik. Let pmax = max{pik}.
We construct a corresponding instance of the resource allocation problem as
follows. There are 2m agents and n resources. For i, j ∈ {1, . . . , m}, i �= j, let
ck
ij = npmax + 1, and ck

i,m+i = pik. All other cost coefficients are zero. Then, in
any optimal allocation of resources in the resource allocation problem, all the
resources will be distributed among the agents m + 1, . . . , 2m. It is easy to see
that if there is an optimal solution of the R| |Cmax instance in which job k is
allocated to machine m(k), there is a corresponding optimal solution for the
resource allocation problem in which resource k is allocated to agent m + m(k),
and vice-versa. Also, the optimal objective function value of both instances will
be the same.

Thus, if the resource allocation problem could be approximated better than
3/2 in polynomial time, then so can the R| |Cmax problem, which is impossible,
unless P=NP [3]. ��
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Appendix

Lemma 5. The resource allocation problem with uniform costs is NP-hard for
two agents, and strongly NP-hard in general.

Proof. The proof of NP-hardness for the two-agents case is by reduction from
Partition [16]. Consider an instance of Partition given by a set A of n el-
ements, where element a ∈ A has size s(a) ∈ Z+. We construct an instance
of the resource allocation problem with two agents and n resources as follows:
ca
12 = ca

21 = s(a) for each a ∈ A, and ca
ii = 0 for i = 1, 2. Then, A can be

partitioned into two sets of equal size if and only if the optimal solution for the
given resource allocation problem has cost

∑
a∈A s(a)/2.

The strong NP-hardness proof for the general case is by a reduction from
3-Partition [16]. Let an instance of this problem be given by the set A =
{a1, . . . , a3m}, with

∑
a∈A s(a) = mB. The corresponding instance of the re-

source allocation problem is constructed as follows: There are m agents, and 3m
resources. For each agent i, ck

ij = s(ak) for k = 1, . . . , 3m; j = 1, . . . , m, i �= j,
and ck

ii = 0. Then the answer to the 3-Partition instance is “Yes” if and only if
the optimal solution to the given resource allocation problem has cost (m−1)B.
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