
Stochastic Online Scheduling Revisited

Andreas S. Schulz

Sloan School of Management, Massachusetts Institute of Technology,
E53-361, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract. We consider the problem of minimizing the total weighted
completion time on identical parallel machines when jobs have stochas-
tic processing times and may arrive over time. We give randomized as
well as deterministic online and off-line algorithms that have the best
known performance guarantees in either setting, deterministic and off-
line or randomized and online. Our analysis is based on a novel linear
programming relaxation for stochastic scheduling problems, which can
be solved online.

1 Introduction

We study approximation algorithms for stochastic and online versions of the fol-
lowing deterministic, off-line scheduling problem. There is a set of n jobs to be pro-
cessed on m identical parallel machines. Each job j has a nonnegative weight wj ,
processing time pj , and release date rj . After its release, a job has to be processed
on some machine, and each machine can handle at most one job at a time. The ob-
jective is to assign jobs to machines and to determine a feasible sequence on each
machine so as to minimize the total weighted completion time,

∑n
j=1 wjCj . Here,

Cj denotes the completion time of job j in the schedule. The deterministic prob-
lem is well understood: It is known to be strongly NP-hard (Lenstra, Rinnooy Kan,
and Brucker 1977), and it has a polynomial-time approximation scheme (Afrati et
al. 1999); a simpler 2-approximation algorithm, which is of particular relevance to
the work described here, was earlier given by Schulz and Skutella (20002b).

In stochastic scheduling (Möhring, Radermacher, and Weiss 1984), job pro-
cessing times are modeled as random variables, each specified by some probabil-
ity distribution (with expected value μj and standard deviation σj). The actual
processing time of a job does not become known before it is completed. Research
has traditionally focused on nonanticipative policies that aim at minimizing the
objective function in expectation. Moreover, it is typically assumed that job pro-
cessing times are stochastically independent. These views are adopted here as
well. A scheduling policy is nonanticipative if its decisions about which jobs to
schedule at any given time t depend only on the jobs that are already completed
by that time and on the conditional distributions of the remaining processing
times of jobs that are still active at time t.

For the single-machine problem without nontrivial release dates (m = 1, rj = 0
for all jobs j), Rothkopf (1966) showed that the WSEPT rule is optimal,
which schedules the jobs in order of nonincreasing ratios of weight to expected

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 448–457, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Stochastic Online Scheduling Revisited 449

processing time. For unit weights and exponentially distributed processing times,
the Shortest Expected Processing Time rule remains optimal on identical parallel
machines (Weiss and Pinedo 1980). In fact, Weber, Varaiya, and Walrand (1986)
showed that it suffices when the processing time distributions are stochastically
comparable in pairs. For arbitrary weights, WSEPT is optimal for exponentially
distributed processing times if the WSEPT order of jobs coincides with sequencing
the jobs in the order of nonincreasing weights (Kämpke 1987). Under minor tech-
nical assumptions, Weiss (1990) showed that the WSEPT rule is asymptotically
optimal.

The stochastic scheduling problem considered here, when jobs may have indi-
vidual release dates, was first addressed by Möhring, Schulz, and Uetz (1999). For
processing time distributions whose coefficients of variation σj/μj are bounded
from above by

√
Δ, they gave a static priority policy whose expected objective

function value is within a factor of max{4, 3 + Δ} of that of an optimal policy.1

In addition, they showed that the WSEPT rule has a performance guarantee
of 1 + (Δ + 1)/2 for the problem with identical release dates. This marked the
first time that the use of approximation algorithms was proposed in the realm
of stochastic scheduling. The analysis as well as the algorithm for the general
case is based on a linear programming relaxation, which provides a lower bound
on the expected value of an optimal policy.

A different way of dealing with incomplete information is that of online al-
gorithms and competitive analyses. In our context, jobs arrive over time and
are completely unknown prior to their arrival. However, a job’s processing time
and weight are fully revealed at the time of its arrival. The performance of an
online algorithm is usually compared to that of an optimal off-line algorithm,
which has full hindsight. This quotient is known as the competitive ratio. For
randomized online algorithms, we compare the expected objective function value
of the solution generated by the algorithm to the value of an off-line optimum.
This corresponds to the so-called oblivious adversary model. We refer the reader
to Borodin and El-Yaniv (1998) for a general introduction to online algorithms,
and to Sgall (1998) for a survey of online scheduling models and results. In the
context of the identical parallel machine scheduling problem considered here,
online algorithms were designed and analyzed by Hall et al. (1997), Chakrabarti
et al. (1996), Schulz and Skutella (20002b), Megow and Schulz (2004), and Cor-
rea and Wagner (2008). The currently best deterministic online algorithm has
a competitive ratio of 2.618 (Correa and Wagner 2008), while the best known
randomized algorithm is 2-competitive (Schulz and Skutella 20002b).

Chou et al. (2006) proposed to study stochastic online scheduling, where jobs
arrive over time, as in online scheduling, but when a job arrives only its weight
and processing time distribution become known. The expected total weighted
completion time of the schedule computed by an online policy is then compared
to that of an optimal stochastic policy, which has access to all job release dates,

1 The performance guarantee of this algorithm is actually slightly better than this; to
make for an improved reading, we generally suppress terms of order 1/m from this
extended abstract.

450 A.S. Schulz

weights, and processing time distributions at time 0. In other words, the adver-
sary controls the arrival of jobs, their weights, and their processing time distri-
butions, but he cannot influence the actual realization of processing times. While
Chou et al. (2006) considered single-machine and flow-shop problems, Megow,
Uetz, and Vredeveld (2006) looked at the identical parallel machine model con-
sidered here. They introduced δ-NBUE distributions2 and gave a deterministic
online algorithm with performance guarantee 3/2 + δ +

√
4δ2 + 1/2. Their anal-

ysis uses the linear programming relaxation introduced by Möhring, Schulz, and
Uetz (1999), when their algorithm does not.

In this paper, we present deterministic and randomized approximation algo-
rithms that have the best known performance guarantees for stochastic (off-line
and online) scheduling on identical parallel machines with the sum of weighted
completion times objective. The key is a new, stronger linear programming relax-
ation for this problem. Moreover, this linear program can be solved by a simple
online rule, which constructs a preemptive single-machine schedule. We use this
schedule to define an online policy for the original, stochastic problem. This
approach has previously been used successfully for various deterministic online
problems, including nonpreemptive scheduling on a single machine (Goemans et
al. 2002), preemptive single-machine scheduling (Schulz and Skutella 20002a),
identical parallel machine scheduling (Schulz and Skutella 20002b), and uniform
parallel machine scheduling (Chou, Queyranne, and Simchi-Levi 2006).

We present one randomized and one deterministic algorithm; both work online
and run in polynomial time.3 Their respective performance ratios are 2 + Δ
and max{2.618, 2.309+1.309Δ}, respectively. The randomized algorithm can be
derandomized, which results in a deterministic (2+Δ)-approximation algorithm
for the stochastic (off-line) scheduling problem. Table 1 compares the new results
from this paper to earlier results.

The algorithms proposed here are derived from earlier algorithms for deter-
ministic scheduling problems, as were previous algorithms for stochastic schedul-
ing. In our case, we manipulate a randomized online algorithm of Schulz and
Skutella (20002b) as well as a deterministic online algorithm by Correa and Wag-
ner (2008). Previously, Möhring, Schulz, and Uetz (1999) built on deterministic
algorithms by Hall et al. (1997); Skutella and Uetz (2005) used techniques of
Chekuri et al. (2001); and Megow, Uetz, and Vredeveld (2006) drew on ideas

2 For δ = 1, one recaptures the well-known NBUE distributions, “New Better than
Used in Expectation,” which include, among others, exponential, Erlang, uniform,
and Weibull distributions. In the context of stochastic scheduling, an NBUE distri-
bution would imply that the expected remaining processing time of a job in process
is never more than the expected processing time of that job before it was started.
NBUE distributions satisfy Δ ≤ 1 (Hall and Wellner 1981). In general, Δ ≤ 2δ − 1
(Megow, Uetz, and Vredeveld 2006).

3 A general definition of the input size of a stochastic scheduling problem would need
to deal with the way in which arbitrary probability distributions are specified. The
running times of the algorithms proposed here depend only on the input size of the
corresponding deterministic problems where job processing times represent expected
values.

Stochastic Online Scheduling Revisited 451

Table 1. Overview of the development of performance guarantees/competitive ratios
for stochastic scheduling with the total weighted completion time objective. To allow
for a comparison, we assume that the processing time of each job follows an NBUE
distribution.

Model
Performance Guarantee

Reference
deterministic randomized

off-line, all rj = 0 2 − Möhring et al. (1999)

4 − Möhring et al. (1999)

off-line, general rj 3.618 − Megow et al. (2006)

3 − this paper

3.618 Megow et al. (2006)
online

3.618 3 this paper

from Megow and Schulz (2004). In each case, the challenge is to refine the algo-
rithm and its analysis such that they still work, even though job processing times
are random. In contrast to the previous approximation and online algorithms for
stochastic scheduling problems, which all relied on the lower bounds introduced
by Möhring, Schulz, and Uetz (1999), we use a linear programming relaxation
that is new in the context of stochastic scheduling.

2 A Linear Programming Relaxation

Möhring, Schulz, and Uetz (1999) showed that the vector of expected completion
times of any nonanticipative policy satisfies the following inequalities:

∑

j∈S

μj Cj ≥ 1
2m

(∑

j∈S

μj

)2
− Δ − 1

2

∑

j∈S

μ2
j for all S ⊆ N.

As mentioned before, Δ is an upper bound on the squared coefficients of vari-
ation; i.e., σ2

j /μ2
j ≤ Δ for all j ∈ N , where N := {1, 2, . . . , n} denotes the set

of all jobs. One can strengthen these inequalities by observing that none of the
jobs in a subset S can be processed before time rmin(S) := min{rj : j ∈ S}.

Lemma 1. Let Π be a nonanticipative policy for the stochastic identical parallel
machine scheduling problem. Then, the corresponding vector E[CΠ] of expected
completion times satisfies the following inequalities:

∑

j∈S

μj

(
Cj +

Δ − 1
2

μj

)
≥ rmin(S)

∑

j∈S

μj +
1

2m

(∑

j∈S

μj

)2
for all S ⊆ N. (1)

A similar observation was made earlier in the context of deterministic scheduling;
see Queyranne and Schulz (1995). Its relevance in our situation is a consequence

452 A.S. Schulz

of the fact that the associated linear programming relaxation, when we minimize∑
j∈N wjCj over (1), is equivalent to that of a deterministic single-machine prob-

lem. In fact, setting Mj := Cj + Δ−1
2 μj , leads to the following, equivalent linear

program:

min
∑

j∈N

wjMj (2a)

s.t.
∑

j∈S

μj

m
Mj ≥

∑
j∈S μj

m

(

rmin(S) +

∑
j∈S μj

2m

)

for all S ⊆ N. (2b)

Note that in (2) we have dropped the term 1−Δ
2

∑
j∈N wjμj from the objective

function, as it is constant anyway.
The linear program (2) can be interpreted as a relaxation of a single-machine

scheduling problem where jobs have (deterministic) processing times μj/m, and
the formulation makes use of mean busy time variables Mj . The mean busy time
Mj of job j is the average point in time at which the (single) machine is busy
with processing job j. In other words, if Ij(t) is 1 if the machine is processing
job j at time t, and 0 otherwise, then

Mj =
1
pj

∫ ∞

rj

Ij(t) t dt .

Here and henceforth, we use pj to denote the processing time of job j on the
“fast” single machine; i.e., pj = μj/m.

Theorem 2 (Goemans et al. 2002). The mean busy time vector of the pre-
emptive single-machine schedule that is constructed by the following online algo-
rithm is an optimal solution to the linear programming relaxation (2):

At any point in time, schedule from the available (and as of yet not
completed) jobs one with the highest ratio of weight to processing time.

As was done before (Goemans et al. 2002; Schulz and Skutella 20002a; Chou et
al. 2006; Correa and Wagner 2008), we refer to this preemptive schedule as the
“LP schedule.” It is worth pointing out that Theorem 2 effectively implies that
one can solve the linear programming relaxation of minimizing

∑
j∈N wjCj over

(1) online. So, not only it provides a lower bound on the expected value of an
optimal off-line policy, but also it can be used to design an online algorithm for
the stochastic scheduling problem itself.

3 A Randomized Algorithm

In the spirit of all previous approximation algorithms for nonpreemptive stochas-
tic scheduling problems, which are based on existing algorithms for determinis-
tic scheduling problems, we will now extend an algorithm of Schulz and Skutella
(20002b) to stochastic online scheduling. To describe the algorithm, we need the

Stochastic Online Scheduling Revisited 453

notion of α-points. For 0 < α ≤ 1, the α-point tj(α) of a job j is the first moment
in time when an α-fraction of j has been completed in the LP schedule. α-points
were introduced by Sousa (1989), and have since been used in the design of a
variety of approximation and online algorithms for scheduling problems.

The algorithm that we analyze here works as follows. It maintains, side-by-side
with the actual schedule on m machines, the preemptive LP schedule on the (vir-
tual) single machine. For this, we create a priority list L of jobs, sorted by nonin-
creasing ratios of weight to expected processing time. Initially, L is empty. When-
ever a new job j arrives, we draw some value αj ∈ (0, 1] uniformly at random
(independent from the drawings for other jobs). Moreover, job j is inserted into
the correct position in L. (Ties are broken arbitrarily.) We obtain the LP schedule
by scheduling, at any point in time, the first job in L on the virtual machine. As
soon as job j has reached its αj-point in the LP schedule; i.e., when it has been
processed for αjpj units of time on the virtual machine, it is randomly assigned
to one of the m machines (independent of the assignments of other jobs). It then
enters another priority list on that machine, which is arranged by nondecreasing
α-points. (As before, ties are broken arbitrarily.) On each real machine, jobs are
then scheduled nonpreemptively in that order. Note that, by construction, no job
can start before its α-point. Finally, whenever a job j is completed on the virtual
machine (i.e., it has been processed for pj periods of time), it is removed from L.
And when it is completed on its real machine, it is deleted from the priority list
of that machine. This concludes the description of the algorithm, which we call
RSOS (for Randomized Stochastic Online Scheduling).

Theorem 3. Let I be an instance of the stochastic scheduling problem to mini-
mize the total weighted completion time on identical parallel machines in which
jobs arrive over time, and let Δ be an upper bound on the squared coefficients
of variation of the jobs’ processing times. Moreover, let OPT(I) be the objec-
tive function value of an optimal off-line nonanticipative scheduling policy for I.
Finally, let RSOS(I) be the value of the schedule produced by the randomized
online policy RSOS. Then, E[RSOS(I)] ≤ (Δ + 2)E[OPT(I)].

Proof. Let us consider an arbitrary, but fixed job j. Initially, let us also fix the
index i of the machine to which j has been assigned, as well as a value of αj . Note
that j is ready to start at time tj(αj) on machine i; in particular, rj ≤ tj(αj). If
j is not started at time tj(αj), then it is delayed by jobs with a smaller α-point
that have been assigned to the same machine i. We denote by Ei,αj [Cj] the
conditional expected completion time of job j, where the expectation is taken
both over the random choices of the algorithm, except for i and αj , which are
still fixed, and the processing times. We then have

Ei,αj [Cj] ≤ tj(αj) + μj +
∑

k �=j

μk P (k on i before j)

≤ tj(αj) + μj +
∑

k �=j

μk
1
m

1
pk

∫ tj(αj)

0
Ik(t) dt

≤ tj(αj) + μj + tj(αj) = 2 tj(αj) + μj .

454 A.S. Schulz

In the first inequality, P (k on i before j) is the probability that job k �= j is
assigned to the same machine as j and will be started before j. The probability
that k is assigned to machine i is 1/m. The integral in the second inequality
captures the fraction of job k that is processed in the LP schedule before tj(αj),
which, by the choice of αk, is precisely the probability of tk(αk) being smaller
than tj(αj). The remaining two inequalities are straightforward. We finally get
rid of the conditional expectation by noting that the average αj-point is equal
to the mean busy time Mj in the LP schedule (Goemans et al. 2002). Therefore,

E[Cj] ≤ 2
∫ 1

0
tj(αj) dαj + μj = 2 Mj + μj .

The result now follows from our earlier observation that
∑

j∈N wjMj −
Δ−1

2

∑
j∈N wjμj is a lower bound on the expected value of an optimal policy

(Lemma 1), and so is
∑

j∈N wjμj . Hence,

E
[∑

j∈N

wjCj

]
≤ 2

∑

j∈N

wjMj +
∑

j∈N

wjμj

= 2
∑

j∈N

wjMj − (Δ − 1)
∑

j∈N

wjμj + Δ
∑

j∈N

wjμj

≤ (2 + Δ)OPT(I) . �	

The crucial observation, which makes this proof work, is that the set of jobs that
is scheduled on machine i before job j does not depend on the actual realization
of processing times. The order of jobs is determined by the LP schedule, which
depends only on the expected processing times.

Corollary 4. There exists a deterministic (2+Δ)-approximation algorithm for
the stochastic (off-line) problem of minimizing the weighted sum of completion
times on identical parallel machines subject to release dates.

We omit the proof from this extended abstract, but note that this algorithm
can be obtained from RSOS by the method of conditional probabilities (Spencer
1987). Of course, this implies that the derived algorithm does not work in an
online context. This will be fixed, to some extent, in the next section.

4 A Deterministic Algorithm

A simple, though somewhat less effective way of derandomizing the RSOS policy,
yet one that does not destroy its online nature, is to choose αj deterministically
beforehand. The rest of the algorithm, to which we will refer as DSOS, remains
unchanged, except that jobs are not randomly assigned to machines. Instead,
we employ a list scheduling strategy: whenever a machine becomes available, we
start a job with the smallest α-point of all not-yet-processed jobs whose α-points
have already passed. Let φ denote the golden ratio, and let us choose αj = φ−1
for all j ∈ N .

Stochastic Online Scheduling Revisited 455

Theorem 5. Let I be an instance of the stochastic scheduling problem to mini-
mize the total weighted completion time on identical parallel machines in which
jobs arrive over time, and let Δ be an upper bound on the squared coefficients
of variation of the jobs’ processing times. Moreover, let OPT(I) be the objec-
tive function value of an optimal off-line nonanticipative scheduling policy for I.
Finally, let DSOS(I) be the value of the schedule produced by the deterministic
online policy DSOS. Then, E[DSOS(I)] ≤ max{φ+ 1, φ+1

2 Δ + φ+3
2 }E[OPT(I)].

Proof. The proof is saved for the full version of this paper; it is based on careful
modifications of the proof of Correa and Wagner (2008, Theorem 3.2), which it-
self is based on that of Goemans et al. (2002, Theorem 3.3). Apart from Lemma 1,
the key insight is that the start of any job j is always delayed by the same set
of jobs, regardless of the actual instantiation of processing times. �	

5 Concluding Remarks

In this paper, we have taken the design and analysis of approximation and online
algorithms for nonpreemptive stochastic scheduling problems a step further. The
main ingredient is a new linear programming relaxation for stochastic scheduling
problems on identical parallel machines that is provably stronger than the one
that was used in the design of all previously proposed approximate policies.

While the algorithms studied here do have deterministic counterparts that
were analyzed before, it is important to recognize that the extension of algo-
rithms designed for deterministic scheduling problems to stochastic problems
is not automatic. In fact, many approaches that work well for deterministic
scheduling problems cannot be modified to handle random processing times.

In the course of this work, we have obtained the first randomized policy
for stochastic online scheduling as well as the best performance guarantee for
stochastic (off-line) scheduling on identical parallel machines with release dates.
Looking beyond the realm of stochastic scheduling, this paper provides addi-
tional proof of the versatility of the LP schedule, which had previously been
used to derive a series of best known performance guarantees, competitive ra-
tios, and asymptotic optimality results for a variety of scheduling problems; see
Goemans et al. (2002), Schulz and Skutella (20002a, 20002b), Chou et al. (2006),
and Correa and Wagner (2008), among others.

It is also worth mentioning that both RSOS and DSOS need information on
expected processing times only, even though they are compared to optimal poli-
cies that have full access to the entire distribution. Moreover, as was the case
for the previous linear programming relaxation by Möhring, Schulz, and Uetz
(1999), the new linear programming relaxation remains valid for preemptive
schedules. In particular, the nonpreemptive schedules generated by the algo-
rithms considered here and in previous papers are approximate solutions for
preemptive stochastic scheduling as well. While their performance guarantees
are not as good as the one in Megow and Vredeveld (2006), the policies are
simple, can be implemented in polynomial time, and require little information
about the distribution of processing times.

456 A.S. Schulz

Acknowledgments

The author is grateful to the organizers of Dagstuhl Seminar 05031, where this
work was originally conceived, and to José Correa for sending him a preliminary
version of Correa and Wager (2008), which inspired him to revisit stochastic
scheduling problems.

References

Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I.,
Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes for
minimizing average weighted completion time with release dates. In: Proceedings of
the 40th Annual IEEE Symposium on Foundations of Computer Science, pp. 32–43
(1999)

Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge
University Press, Cambridge (1998)

Chakrabarti, S., Phillips, C., Schulz, A., Shmoys, D., Stein, C., Wein, J.: Improved
scheduling algorithms for minsum criteria. In: auf der Heide, F., Monien, B. (eds.)
ICALP 1996. LNCS, vol. 1099, pp. 646–657. Springer, Heidelberg (1996)

Chekuri, C., Motwani, R., Natarajan, B., Stein, C.: Approximation techniques for av-
erage completion time scheduling. SIAM Journal on Computing 31, 146–166 (2001)

Chou, M., Liu, H., Queyranne, M., Simchi-Levi, D.: On the asymptotic optimality of a
simple on-line algorithm for the stochastic single-machine weighted completion time
problem and its extensions. Operations Research 54, 464–474 (2006)

Chou, M., Queyranne, M., Simchi-Levi, D.: The asymptotic performance ratio of an
on-line algorithm for uniform parallel machine scheduling with release dates. Math-
ematical Programming 106, 137–157 (2006)

Correa, J., Wagner, M.: LP-based online scheduling: From single to parallel machines.
Mathematical Programming (in press, 2008)

Goemans, M., Queyranne, M., Schulz, A., Skutella, M., Wang, Y.: Single machine
scheduling with release dates. SIAM Journal on Discrete Mathematics 15, 165–192
(2002)

Hall, L., Schulz, A., Shmoys, D., Wein, J.: Scheduling to minimize average completion
time: Off-line and on-line approximation algorithms. Mathematics of Operations
Research 22, 513–544 (1997)

Hall, W., Wellner, J.: Mean residual life. In: Csörgö, M., Dawson, D., Rao, J., Saleh,
A.E. (eds.) Proceedings of the International Symposium on Statistics and Related
Topics, pp. 169–184 (1981)

Kämpke, T.: On the optimality of static priority policies in stochastic scheduling on
parallel machines. Journal of Applied Probability 24, 430–448 (1987)

Lenstra, J., Rinnooy Kan, A., Brucker, P.: Complexity of machine scheduling problems.
Annals of Discrete Mathematics 1, 343–362 (1977)

Megow, N., Schulz, A.: On-line scheduling to minimize average completion time revis-
ited. Operations Research Letters 32, 485–490 (2004)

Megow, N., Uetz, M., Vredeveld, T.: Models and algorithms for stochastic online
scheduling. Mathematics of Operations Research 31, 513–525 (2006)

Megow, N., Vredeveld, T.: Approximation results for preemptive stochastic online
scheduling. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 516–
527. Springer, Heidelberg (2006)

Stochastic Online Scheduling Revisited 457

Möhring, R., Radermacher, F., Weiss, G.: Stochastic scheduling problems I: General
strategies. Zeitschrift für Operations Research 28, 193–260 (1984)

Möhring, R., Schulz, A., Uetz, M.: Approximation in stochastic scheduling: The power
of LP-based priority policies. Journal of the ACM 46, 924–942 (1999)

Queyranne, M., Schulz, A.: Scheduling unit jobs with compatible release dates on
parallel machines with nonstationary speeds. In: Balas, E., Clausen, J. (eds.) IPCO
1995. LNCS, vol. 920, pp. 307–320. Springer, Heidelberg (1995)

Rothkopf, M.: Scheduling with random service times. Management Science 12, 703–713
(1966)

Schulz, A., Skutella, M.: The power of α-points in preemptive single machine schedul-
ing. Journal of Scheduling 5, 121–133 (2002a)

Schulz, A., Skutella, M.: Scheduling unrelated machines by randomized rounding. SIAM
Journal on Discrete Mathematics 15, 450–469 (2002b)

Sgall, J.: On-line scheduling. In: Fiat, A., Woeginger, G. (eds.) Online Algorithms: The
State of the Art. LNCS, vol. 1442, ch. 9, pp. 196–231. Springer, Heidelberg (1998)

Skutella, M., Uetz, M.: Stochastic machine scheduling with precedence constraints.
SIAM Journal on Computing 34, 788–802 (2005)

Sousa, J.: Time Indexed Formulations of Non-Preemptive Single-Machine Scheduling
Problems. Ph.D. thesis, Université Catholique de Louvain, Belgium (1989)

Spencer, J.: Ten Lectures on the Probabilistic Method. CBMS-NSF Regional Confer-
ence Series in Applied Mathematics, vol. 52. SIAM, Philadelphia (1987)

Weber, R., Varaiya, P., Walrand, J.: Scheduling jobs with stochastically ordered pro-
cessing times on parallel machines to minimize expected flowtime. Journal of Applied
Probability 23, 841–847 (1986)

Weiss, G.: Approximation results in parallel machines stochastic scheduling. Annals of
Operations Research 26, 195–242 (1990)

Weiss, G., Pinedo, M.: Scheduling tasks with exponential service times on nonidentical
processors to minimize various cost functions. Journal of Applied Probability 17,
187–202 (1980)

	Introduction
	A Linear Programming Relaxation
	A Randomized Algorithm
	A Deterministic Algorithm
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

