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We study the route-guidance system proposed by
Jahn, Möhring, Schulz, and Stier-Moses [Operations
Research 53 (2005), 600–616] from a theoretical per-
spective. As system-optimal guidance is known to be
problematic, this approach computes a traffic pattern
that minimizes the total travel time subject to user con-
straints. These constraints are designed to ensure that
routes suggested to users are not much longer than
shortest paths for the prevailing network conditions. To
calibrate the system, a certain measure—called normal
length—must be selected. We show that when this length
is defined as the travel time at equilibrium, the result-
ing traffic assignment is provably efficient and close to
fair. To measure efficiency, we compare the output to the
best solution without guidance and to user equilibria. To
measure unfairness, we compare travel times of differ-
ent users, and show that they do not differ too much.
Inefficient or unfair traffic assignments cause users to
travel too long or discourage people from accepting
the system; either consequence would jeopardize the
potential impact of a route-guidance system. © 2006 Wiley
Periodicals, Inc. NETWORKS, Vol. 48(4), 223–234 2006
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1. INTRODUCTION

Transportation authorities and users alike hope that route-
guidance systems can help to mitigate the congestion gen-
erated by the ever-increasing amount of vehicular traffic.
In particular, in-car navigation devices might be used not
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only to provide drivers with map information and current
traffic conditions, but also to optimize the entire network.
With this application in mind, Jahn et al. [13] introduced
a route-guidance system that computes a traffic assignment
that minimizes the total travel time subject to certain user
constraints. These constraints are designed to overcome an
inherent problem of system-optimal guidance. Indeed, it is
well known that in a system-optimal flow some users may
be assigned to considerably longer routes for the benefit of
others. User constraints are intended to guarantee that no rec-
ommended route is significantly longer than that suggested
to any other user with the same origin and destination. For the
sake of algorithmic efficiency, Jahn et al. proposed perform-
ing this comparison based on normal path lengths instead of
actual travel times. The normal length of a path is defined
via some a priori estimate of the real travel time. Based on
extensive computational studies on real-world instances, they
concluded that the resulting constrained system-optimal flow
has two desirable properties when the normal length is prop-
erly chosen: the total travel time in the network is close to that
of the unconstrained system optimum, and individual users
do not experience a notably larger travel time than others.
In other words, the resulting traffic assignment is virtually
efficient and fair.

In this article, we provide a theoretical framework for the
work of Jahn et al. [13]. For our analysis, we rely on the
price-of-anarchy concept [7, 15, 21, 23]. Although the price
of anarchy was originally defined as the ratio of the total
travel time of a Nash equilibrium to that of an ordinary sys-
tem optimum, we adopt a more pragmatic perspective for the
application considered here. Put in our terms, the original
measure compares the user equilibrium to a system-optimal
traffic flow, but the latter cannot realistically be used for route
guidance because of its known unfairness [16]. Instead, we
measure the price of anarchy with respect to a traffic pattern
that can potentially be used in practice. In other words, we
evaluate the efficiency of the route-guidance system with the
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help of the worst-case ratio of the total travel time of an equi-
librium to that of a constrained system optimum. In addition,
we compare the travel times experienced by different users
between the same origin–destination (OD) pair analytically.
A primary goal of any route-guidance system is to offer routes
with similar travel times; otherwise, route recommendations
would most likely be dismissed. We measure the unfairness
of a flow as the worst-case ratio between travel times of users
traveling between the same OD pair. Small unfairness has
another desirable side effect. As the system assigns users to
routes randomly, routes offered under similar circumstances
(e.g., the same user performs the same trip every day) have
similar travel times. That is, almost fair flows reduce the
variance of latencies experienced by individual users.

Section 2 formally introduces constrained system optima
and the price of anarchy. In addition, we study instances
for which the corresponding equilibria have high total cost.
Section 3 discusses the efficiency of solutions returned by
the route-guidance system of Jahn et al. In Section 3.1, we
concentrate on free-flow travel times as normal lengths, and
argue that in this case user equilibria might be preferable
over constrained system optima because they often feature
smaller total cost. Section 3.2 analyzes the case in which
normal lengths are defined as user equilibrium travel times.
In contrast to the previous case, the cost of constrained system
optima is guaranteed to be lower than that of user equilibria.
This theoretical result plus the good performance in traffic
assignments of real-world instances [13] suggests that this is
an excellent choice for normal lengths. Moreover, the main
result in Section 4 shows that the unfairness of constrained
system optima is bounded above by a small constant. All
results established here corroborate the conclusions drawn
in [13]. Specifically, we can prove that constrained system
optima are nearly efficient and fair, under the proper choice
of normal lengths.

2. PRELIMINARIES

The road network is represented by a directed multigraph
G = (N , A) with two attributes for each arc a ∈ A: the nor-
mal length τa ≥ 0 gives an a priori estimate of the actual
traversal time in the solution we seek; the latency func-
tion �a : R≥0 → R≥0 maps the traffic flow xa on arc a
to its traversal time �a(xa). The normal arc lengths have to
be fixed in advance. Their proper choice will allow us to
compute solutions that users of the route-guidance device
are likely to accept; we refer the reader to Section 3 for
details. The latency functions are assumed to be continu-
ous and nondecreasing. These assumptions are naturally met
by common latency functions (see, e.g., [6, 25]). We only
consider latency functions that belong to a specified set L.
In practice, latency functions take a specific form, and the
bounds one obtains without this restriction are unnecessar-
ily pessimistic [23]. For some results, we will additionally
assume that latency functions are affine; that is, they belong
to Laff := {� : �(x) = qx + r for some q, r ≥ 0}. Although
this may appear restrictive at first, congestion effects and

counterintuitive phenomena can already occur, as evidenced
by the apparent paradox discovered by Braess [4].

Vehicles are grouped according to their OD pairs K ⊆
N × N . For each OD pair k = (sk , tk) ∈ K , let Pk be the set
of directed (simple) paths in G from sk to tk , and let dk > 0
be the demand rate associated with OD pair k. Let P :=⋃

k∈K Pk be the set of paths between all OD pairs. Because
route-guidance systems eventually have to propose paths to
the drivers, our formulation is path-based: a feasible flow x
assigns a nonnegative value xP to every path P ∈ P such that∑

P∈Pk
xP = dk for all k ∈ K . Note that flows are not required

to be integral; they describe average rates. Furthermore, we
define the latency of a path P ∈ P under a given flow x
as �P(x) := ∑

a∈P �a(xa), where xa := ∑
{Q∈P:a∈Q} xQ. We

refer to the maximum latency of a flow-carrying path in Pk as
Lk(x) := max{�P(x) : P ∈ Pk , xP > 0}, and to the shortest
normal path length for OD pair k as Tk := min{τP : P ∈ Pk}.
Here, τP := ∑

a∈P τa is the normal length of path P.
There are two aspects that define the quality of a flow.

The fairness of the route assignment is of importance to the
users, while the total travel time in the system is of impor-
tance to the traffic authority. Different users traveling between
the same OD pair should experience the same travel time.
If that was not the case, users would have an incentive to
switch routes. We say that a flow with this property is fair.
In a seminal contribution, Wardrop ([27], p. 345) stated a
principle that formalizes this notion: “The journey times on
all the routes actually used are equal, and less than those
which would be experienced by a single vehicle on any
unused route.” Traffic patterns satisfying this principle are
called user equilibria [11], and will be denoted by f UE. (Note
that a flow can be fair without being a user equilibrium.)
Although there may be multiple equilibria, the travel time
that users experience is invariant across different equilib-
ria [2]. In particular, all equilibria share the same total cost.
We define the unfairness of a given flow x as the maximum
ratio of the experienced travel times of two users sharing
the same OD pair, that is, as max{�Q(x)/�R(x) : Q, R ∈ Pk ,
xQ, xR > 0, k ∈ K}. (Jahn et al. called it the loaded unfairness
[13].) In Section 4, we bound the unfairness of constrained
system optima by γ (L). The value γ (L), to be defined in
that section, depends only on the set L of allowed latency
functions; for example, it is p + 1 for polynomials of
degree p.

It has been known since the classical work of Dupuit dat-
ing back to the middle of the 19th century, that equilibria can
be inefficient [12]. Braess’ famous paradox shows a similar
situation for transportation networks [4]. Not only does this
mean that there are solutions where the group is better off as
a whole, but also that each user might benefit individually.
Those solutions are usually called social (or system) optimal.
Despite their efficiency, it is unrealistic to implement sys-
tem optima in the context of transportation networks because
they may be unfair [3]. Nevertheless, their study is important
because they provide bounds on how efficient a system can
possibly be, and they are relevant to centralized systems such
as freight networks.
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FIG. 1. Example without and with restrictions on path lengths.

The route-guidance system proposed by Jahn et al. [13]
was designed to compute the most efficient traffic assignment
among those that are not too unfair. As it is difficult to control
the unfairness directly, the authors introduced an upper bound
on the ratio of the normal length of different users traveling
between the same OD pair. Let us describe this approach in
more detail. Let ϕ ≥ 1 quantify the tolerance of users to
suboptimal paths. This factor is used to prevent users from
being assigned to paths that are longer than ϕ times the length
of a shortest path between their OD pair. In other words,
users of OD pair k ∈ K may only be assigned to paths in
Pϕ

k := {P ∈ Pk : τP ≤ ϕTk}. We call a path feasible when
it belongs to Pϕ := ⋃

k∈K Pϕ

k . Selecting the solution with
minimum total travel time from all assignments of users to
paths in Pϕ is equivalent to solving the following minimum
cost multicommodity flow problem with path constraints and
a separable nonlinear objective function:

Problem CSO:

min C(x) :=
∑
a∈A

�a(xa)xa

s.t.
∑

P∈Pϕ

k

xP = dk for all k ∈ K ,

∑
P:a∈P∈Pϕ

xP = xa for all a ∈ A,

xP ≥ 0 for all P ∈ Pϕ .

A constrained system optimum with tolerance factor ϕ,
denoted by f ϕ , is an optimal solution to this problem. A sys-
tem optimum corresponds to the unconstrained case (when
ϕ = ∞, path constraints disappear). We use f SO to denote
a system optimum. It is evident that the larger the factor ϕ,
the larger is the feasible region. Consequently, C(f ϕ) is a
nonincreasing function of ϕ, and C(f SO) ≤ C(f ϕ) for all
ϕ ≥ 1. When C(x) is convex and differentiable, Beckmann
et al. [2] proved that a flow f SO is a system optimum with
respect to latency functions �a(x) if and only if it is a user
equilibrium with respect to the modified latency functions
�∗

a(x) := �a(x)+x �′
a(x). The latency functions �∗

a include an
extra term that accounts for the service degradation caused to
the other users of arc a. As f SO is at equilibrium with respect to
�∗

a, we denote the common travel time for all users of OD pair
k ∈ K by L∗

k (f SO).

Figure 1 demonstrates the effect of length constraints on
the system optimum. Line thickness reflects arc capacity
(light gray) and arc usage (black). The picture on the left dis-
plays the ordinary system optimum. The flow is distributed
widely over the network to avoid high congestion on arcs and
keep travel times low. In the picture on the right, the same
demand is routed with the restriction that (free-flow) normal
path lengths must not exceed the shortest normal path length
by more than 10% (i.e., ϕ = 1.1).

In addition, Figure 2 presents a small numerical example.
The instance has unit demand between two nodes that are con-
nected by three arcs with latency functions 1 + ε, 1 + x2, and
1 + (x3)

2, respectively, for some ε > 0. The normal lengths
are defined to be 1 + ε, 1, and 1 respectively, according to
the free-flow travel time �a(0) of each arc (as in Section 3.1).
A constrained system optimum for some ϕ < 1 + ε can
only route flow on the lower two arcs; it therefore minimizes
(1+x2)x2+(1+(x3)

2)x3 subject to x2+x3 = 1 and x2, x3 ≥ 0.
For ϕ ≥ 1 + ε, all arcs can be used, and then the problem is
a regular multicommodity minimum cost flow problem with
objective function C(x).

2.1. The Price of Anarchy

In the context of transportation networks, Wardrop [27]
was the first to formalize the notions of user equilibrium and
social optimum, although these terms were coined a couple
of decades later by Dafermos and Sparrow [11]. Beckmann
et al. [2] characterized both solution concepts mathemati-
cally, which allowed them to prove existence, uniqueness,
and also to provide algorithms for their computation. It was a
long-standing open question to characterize the distance from
optimality for a system for which no central coordination is
imposed. For example, Mahmassani and Peeta ([16], p. 84)
wrote:

…the extent of the differences between SO [system optimum]
and UE [user equilibrium] solutions, particularly in terms of
overall system cost, is not known. This is very important
for ATIS [Advanced Traveler Information Systems] because
if the two solutions are not perceptibly different, coordi-
nated cooperative SO route guidance imposed by a central
controller may not be necessary, and descriptive informa-
tion that is less complicated and simpler to disseminate to
noncooperating drivers may be sufficient.

FIG. 2. A simple numerical example.
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Luckily, this question has recently been answered for dif-
ferent systems, starting with the work of Koutsoupias and
Papadimitriou [15]. They proposed to measure the ineffi-
ciency of equilibria in a network consisting of two nodes
and multiple parallel arcs by computing the worst-case ratio
of the social cost of an equilibrium to that of a system opti-
mum. Later, a series of papers studied the efficiency of user
equilibria in traffic networks, under less and less restrictive
assumptions: affine latency functions [23], convex and dif-
ferentiable latency functions [21], general latency functions
in networks with side constraints [7], nonseparable symmet-
ric latency functions [5], nonseparable asymmetric latency
functions [17], and networks with a fixed congestion level
and arbitrary latency functions [8]. For additional references,
see also [22].

Results in [7, 8, 17] use variational inequalities to char-
acterize user equilibria, which makes it possible to extend,
refine, and simplify the initial bounds given in [21, 23].
Variational inequalities were proposed by Smith [26] and
Dafermos [10] as a very powerful tool to compute user
equilibria in very general instances such as those with non-
separable and asymmetric latency functions. In our case, a
flow f UE is a user equilibrium if and only if it satisfies the
following variational inequality:

∑
a∈A

�a
(
f UE
a

)
f UE
a ≤

∑
a∈A

�a
(
f UE
a

)
xa for all feasible flows x.

(2.1)

Roughgarden proved that the cost C(f UE) of a user equilib-
rium is bounded from above by α(L) times the cost C(f SO)

of a system optimum [21]. The constant α(L), defined in
Section 2.2, depends only on the set of allowed latency func-
tions; for example, it is 4/3 for affine, 1.626 for quadratic,
and 1.896 for cubic functions, respectively. For polynomials
of degree p, it grows asymptotically like p/ ln p. Therefore,
although α(L) is not very large, users in real networks can
still benefit from coordination, if done appropriately.

We measure the potential benefits of guiding users by com-
paring the cost of user equilibria to that of constrained system
optima, in a similar fashion to the definition of the price of
anarchy. Although the original definition relies on ordinary
system optima, our notion is arguably more realistic in this
context because ordinary system optima cannot be imple-
mented in traffic networks because of their unfairness [16].
In the following definition, f UE

I and f ϕ
I denote a user equi-

librium and a constrained system optimum of an instance I,
respectively. To simplify notation, we drop the subindex I
afterwards. The price of anarchy for a given tolerance factor
ϕ and a given set L of allowed latency functions is defined
as follows:

αϕ(L) := sup
I∈ inst(L)

C
(
f UE
I

)
C

(
f ϕ
I

) . (2.2)

Here, inst(L) is the set of instances with latency functions
drawn from L. It is immediately clear that α1(L) ≥ 1 and
that αϕ(L) is a nondecreasing function of ϕ. In addition, the
previously mentioned bounds imply that

C(f UE) ≤ α(L) C(f SO) ≤ α(L) C(f ϕ). (2.3)

Equivalently, αϕ(L) ≤ α(L) for all ϕ ≥ 1. Moreover,
for instances with positive minimum normal length Tk for
all OD pairs k ∈ K , a constrained system optimum with
large tolerance is optimal in the unconstrained sense; that is,
C(f ϕ) = C(f SO) when ϕ is sufficiently large.

2.2. Tight Instances

For a specific instance, we refer to the ratio of the cost of a
user equilibrium to that of a constrained system optimum as
the coordination ratio of the instance. To help us understand
what causes the inefficiency of equilibria, we now character-
ize instances with high coordination ratio. Although we work
with ordinary system optima in this section, we will concen-
trate on arbitrary tolerance factors ϕ later. We call an instance
tight when its coordination ratio C(f UE)/C(f SO) matches the
upper bound α(L). Here, f UE and f SO are a user equilibrium
and a system optimum of the corresponding instance, respec-
tively. Roughgarden and Tardos [23] presented an instance,
inspired by the work of Pigou [18], that is tight for affine
latency functions. Subsequently, Roughgarden [21] proved
that the maximum coordination ratio among all instances with
two parallel arcs and latency functions drawn from L matches
the price of anarchy. This implies that the inefficiency of equi-
libria does not arise because networks are big and complex,
and have multiple OD pairs, but merely from the selfishness
of users.

Figure 3 illustrates Roughgarden’s network, which con-
sists of two nodes connected by two parallel arcs and a
demand rate equal to d. For a given function � ∈ L, the
travel time of the top arc is �(d) regardless of its flow, while
the bottom arc has a travel time of �(x). The user equilib-
rium f UE assigns the entire demand d to the lower arc, whereas
the system optimum f SO routes d − x∗ on the top arc. Here,
x∗ := arg max x(�(d)− �(x)). The costs are C(f UE) = �(d)d
and C(f SO) = �(d)(d − x∗) + �(x∗)x∗, respectively. The
supremum over d and � of the ratio of the social costs pre-
cisely matches the following definition of α(L). Following

FIG. 3. Simple tight instance.
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Correa et al. [7], we set β(v, �) := max
{ x

v

(
1 − �(x)/�(v)

)
:

0 ≤ x ≤ v
}

and β(L) := sup{β(v, �) : v ≥ 0 and � ∈ L},
which allows us to define α(L) := (1 − β(L))−1. (We refer
the reader to [8] for more details and intuition on these def-
initions.) This instance shows that the price of anarchy is at
least α(L); the theorem below proves the reverse inequality.
The proof we provide, which appeared in [7], will allow us to
establish conditions that characterize instances that are tight
in the unconstrained case.

Theorem 2.1 ([7, 21]). Consider an instance with latency
functions drawn from a set of continuous and nondecreasing
latency functions L. Then, C(f UE) ≤ (1 − β(L))−1 C(f SO).

Proof ([7]). The claim follows from

C(f UE) ≤
∑
a∈A

�a
(
f UE
a

)
f SO
a ≤

∑
a∈A

β
(
f UE
a , �a

)
�a

(
f UE
a

)
f UE
a

+
∑
a∈A

�a
(
f SO
a

)
f SO
a ≤ β(L)C(f UE) + C(f SO). (2.4)

The first inequality is identical to (2.1); the other two follow
directly from the definition of β. ■

Observation 2.2. Let L be a family of continuous and
nondecreasing latency functions. An instance with latency
functions drawn from the set L is tight if and only if the
following three conditions are satisfied:

for all k ∈ K and P ∈ Pk :

f SO
P > 0 ⇒ �P(f UE) = Lk(f

UE), (2.5a)

for all a ∈ A : f SO
a = arg max

x≥0
x(�a(f

UE
a ) − �a(x)),

(2.5b)

for all a ∈ A : �a(f
UE
a )f UE

a > 0 ⇒ β(f UE
a , �a) = β(L).

(2.5c)

Here, f SO and f UE are an arbitrary system optimum and user
equilibrium, respectively.

Proof. An instance is tight if and only if all inequal-
ities in the proof of the previous theorem are equali-
ties. Equation (2.5a) follows from

∑
P∈P �P(f UE)f UE

P =∑
P∈P �P(f UE)f SO

P , which is the flow-on-paths version of
(2.1). The second inequality and the definition of βa(f UE

a , �)
give (2.5b). Finally, the third inequality is equivalent to
(2.5c). ■

Let us make a few remarks related to Observation 2.2:

(1) When latency functions are differentiable, setting the
derivative of the right-hand side of condition (2.5b) to
zero, we see that �∗

a

(
f SO
a

) = �a
(
f UE
a

)
. This implies that

�∗
P(f SO) = �P(f UE) for all P ∈ P , and that L∗

k (f SO) =
Lk(f UE) for all k ∈ K . For example, when latencies are

affine, any user equilibrium and system optimum of a
tight instance must satisfy f SO

a = f UE
a /2 for all arcs a ∈ A,

with the exception of those that have constant travel time.
(2) Under differentiability, condition (2.5a) is implied by the

optimality of f SO and remark (1).
(3) For arcs with strictly increasing latency functions, con-

dition (2.5b) implies that either f SO
a < f UE

a or f SO
a =

f UE
a = 0.

(4) Assume that L is closed under addition (i.e., if � ∈ L
and r ≥ −�(0), then � + r ∈ L) and that β(L) > 0
(otherwise, the price of anarchy is 1 and all instances are
tight). If an arc a carries flow in a user equilibrium, it
must satisfy �a(0) = 0.

Proof. Suppose �a(0) > 0. Let x∗ be a maximizer
of x(�a(f UE

a ) − �a(x)) in the definition of β(f UE
a , �a).

Because 0 < �a(0) ≤ �a(f UE
a ), condition (2.5c) implies

that β(f UE
a , �a) > 0, meaning that �a(x∗) < �a(f UE

a ).
Therefore,

x∗

f UE
a

(
1 − �a(x∗)

�a(f UE
a )

)
<

x∗

f UE
a

(
1 − �a(x∗) − �a(0)

�a(f UE
a ) − �a(0)

)
.

This shows that β(f UE
a , �a) < β(f UE

a , �a − �a(0)),
which is a contradiction to condition (2.5c). ■

The following lemma gives a necessary condition for an
instance to be tight.

Lemma 2.3. Let L be a family of continuous and nonde-
creasing latency functions that are either constant or strictly
increasing, with β(L) > 0. If �a(0) = 0 for all a ∈ A, then
the instance cannot be tight.

Proof. To prove the claim, suppose that �a(0) = 0 for all
a ∈ A. Given the assumptions, there are two classes of arcs:
those with travel times identically equal to 0 (we refer to
them as 0-latency arcs), and those with strictly increasing
latency functions. Consider a user equilibrium, a system-
optimal flow, and an OD pair k ∈ K . Let us define the set
Ck := {i ∈ N : there is a path from sk to i using 0-latency
arcs}. If tk ∈ Ck , both flows route the demand of OD pair k
along a 0-latency path. When this happens for all OD pairs,
the instance cannot be tight. Therefore, consider an OD pair
k ∈ K for which tk 
∈ Ck . Thus, Ck defines an sk-tk-cut.
Note that all the flow that reaches nodes in Ck has to follow
paths that, up to the last node in Ck , consist of 0-latency arcs.
Hence, a forward arc of the cut cannot be a 0-latency arc,
and a backward arc cannot carry (user or system optimal)
flow for OD pair k. [A forward (resp. backward) arc of a cut
(S, S̄) is an arc with tail (resp. head) in S and head (resp. tail)
in S̄.] The former is obvious; to see the latter, if a backward
arc a carried flow, a would be a 0-latency arc because all flow
reaching Ck must use paths with zero travel time. Thus, its
tail would belong to Ck , too. Hence, there is no flow of OD
pair k entering Ck , and all flow exits Ck along non 0-latency
arcs. This is a contradiction to remark (3) because the sum
of the flow on forward arcs of the cut Ck must equal the
demand dk . ■
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The insight provided by this lemma can be used to improve
the upper bounds on the price of anarchy. Instances for
which �a(0) = 0 correspond to situations when the fixed
component of the cost—the so-called free-flow travel time—
can be ignored because the major influence comes from
congestion-dependent costs. As suggested by Lemma 2.3,
those instances should not have high coordination ratios. This
is formalized by a result in [8] that proves that the price of
anarchy is much lower than α(L): it is bounded from above
by 1, 1.185, 1.25, and 1.999 instead of 4/3, 1.626, 1.896,
and 2.151 for affine, quadratic, cubic, and quartic functions,
respectively.

3. EFFICIENCY

As mentioned in the introduction, Jahn et al. [13] consid-
ered two possible definitions for the normal length used in
the route-guidance system: free-flow travel times and user
equilibrium travel times. The free-flow travel time of an
arc a ∈ A represents the time �a(0) needed to traverse a
when there is no traffic (e.g., late at night). The user equi-
librium travel time of an arc is the traversal time �a

(
f UE
a

)
when the prevailing condition is a user equilibrium. Recall
that normal lengths can only be static; for instance, it is
not possible to consider travel times under the current solu-
tion with this methodology. The advantage of this simple
model is that it allows for faster algorithms that produce
good solutions when normal lengths are properly selected.
Although normal lengths have to be set in advance, it is
important to point out that users do not need to know the
normal lengths; they are merely an artifact to select solutions
without extended detours and are controlled by the traffic
authority.

3.1. Free-Flow Travel Times as Normal Lengths

In this section, we assume that normal lengths are defined
as travel times in the uncongested network; that is, τa = �a(0)

for all a ∈ A. The theoretical results presented next help
to explain the conclusion derived from the computational
study of real-world instances in [13]: the “constrained” price
of anarchy is smaller than the ordinary price of anarchy,
in which one compares user equilibria with normal system
optima instead of constrained system optima. In fact, we will
see that for small values of ϕ, constrained system optima
can even be worse than user equilibria. This is because for
small values of ϕ, only a small number of paths are avail-
able, and therefore, they are likely to be highly congested,
making the total travel time rather high. For this reason,
free-flow travel times are not the ideal option for normal
lengths.

Let us studyαϕ(L) as a function ofϕ to understand how the
price of anarchy depends on the users’ tolerance to unfairness.
We start by proving a structural property that implies that the
price of anarchy is subadditive. For this purpose, we introduce
a construction that enables us to modify the tolerance factor of
an instance without altering its coordination ratio too much.

For a fixed tolerance factor ϕ, consider an instance I with
large coordination ratio; that is, the instance satisfies

C(f UE)

C(f ϕ)
≥ αϕ(L) − ε, (3.1)

for some ε > 0. We construct a new instance Ĩ, which is
equal to I except for the following modifications. The origins
in Ĩ are new vertices s̃k for k ∈ K (instead of sk), which are
connected to sk with arcs of constant travel time Mk , specified
below. The natural extension x̃ of a flow x to the new instance
is defined as x̃P̃ := xP for P ∈ Pk and k ∈ K , where P̃ starts at
s̃k and then continues with the original path P. The extensions
f̃ UE and f̃ SO of a user equilibrium f UE and a system optimum
f SO of I are a user equilibrium and a system optimum for Ĩ,
respectively. The next lemma establishes a relation between
the constrained system optima of the two instances.

Lemma 3.1. Consider a fixed ϕ̃ such that 1 < ϕ̃ < ϕ, and
set Mk := ϕ−ϕ̃

ϕ̃−1 Tk. If f ϕ is a ϕ-constrained system optimum
of I, then its natural extension f̃ ϕ is a ϕ̃-constrained system
optimum of Ĩ.

Proof. All paths in Pk that carry flow under f ϕ have a
normal length between Tk and ϕTk . After adding Mk to each
of them, their lengths are between Mk + Tk and Mk + ϕTk =
ϕ̃(Mk + Tk). It follows that f̃ ϕ is a ϕ̃-constrained system
optimum. ■

Observe that extending a flow x of I to a flow x̃ of Ĩ
changes its cost by a fixed amount M; that is, C(x̃) = M +
C(x) with M := ∑

k∈K Mkdk . Moreover, for this choice of
normal lengths, Tk ≤ �P(x) for all P ∈ Pk , which implies
that

M = ϕ−ϕ̃
ϕ̃−1

∑
k∈K

Tkdk ≤ ϕ−ϕ̃
ϕ̃−1 C(x). (3.2)

We can now prove that the price of anarchy cannot increase
too fast.

Theorem 3.2. The function αϕ(L)/(ϕ−1) is nonincreasing
in ϕ.

Proof. Consider the instance I with large coordination
ratio that we selected in (3.1), and let f UE be a user equilibrium
and f ϕ be a ϕ-constrained system optimum. Furthermore,
their natural extensions to Ĩ are referred to as f̃ UE and f̃ ϕ ,
respectively. We bound the price of anarchy of the new
instance Ĩ with that of the original instance I:

αϕ̃(L) ≥ C(̃f UE)

C(̃f ϕ)
= M + C(f UE)

M + C(f ϕ)
≥ C(f UE)

ϕ−1
ϕ̃−1 C(f ϕ)

≥ ϕ̃−1
ϕ−1

(
αϕ(L) − ε

)
for all ϕ̃ < ϕ.

The inequalities follow from (2.2), (3.2), and (3.1), respec-
tively. As ε can be made arbitrarily small, αϕ̃(L) ≥
ϕ̃−1
ϕ−1 αϕ(L) for all ϕ̃ < ϕ. ■
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The last theorem implies that the price of anarchy is subad-
ditive as a function of δ, where δ ≥ 0 is a modified tolerance
factor defined as ϕ − 1.

Corollary 3.3. The function α1+δ(L) is subadditive in δ.

Although the price of anarchy increases when the users’
tolerance to unfairness increases, Corollary 3.3 implies that
it cannot grow too quickly. This especially suggests that to
obtain efficient constrained system optima, users would need
to tolerate relatively large deviations from their shortest paths,
which is unlikely to happen. Indeed, the left chart of Figure 3
in [13] shows that constrained system optima can be consid-
erably less efficient than user equilibria when ϕ is relatively
close to 1.

3.1.1. Bad Instances. In this section, we extend the results
presented in Section 2.2 to constrained system optima. We
call an instance tight if C(f UE)/C(f ϕ) matches the upper
bound α(L), where f UE and f ϕ are a user equilibrium and a
constrained system optimum of the corresponding instance,
respectively. We will use Observation 2.2 and Lemma 2.3 to
show that, under mild assumptions, there cannot exist tight
instances for the constrained case. Note that this does not pre-
vent αϕ(L) from being equal to α(L) for some ϕ. Again, the
following result hints that with free-flow travel times as nor-
mal lengths, constrained system optima need not be nearly
as efficient as system optima.

Lemma 3.4. Consider an instance with latency functions
drawn from a set L of continuous and nondecreasing latency
functions that are either strictly increasing or constant.
Assume that L is closed under addition and that β(L) > 0.
Then the coordination ratio C(f UE)/C(f ϕ) < α(L) for all
finite ϕ ≥ 1.

Proof. Suppose that the coordination ratio equals α(L).
In this case, f ϕ is a system optimum in the unconstrained
sense because the cost of the system optimum is a lower
bound on that of f ϕ , and the coordination ratio cannot be
larger than α(L). From remark (4), in Section 2.2, we know
that �a(0) = 0 for all arcs a with f UE

a > 0. Hence, there is
a path joining each OD pair whose free-flow travel time is
equal to zero. In other words, the normal length Tk has to be 0
for all k ∈ K , which implies that a path belongs to Pϕ

k only if
its normal length is zero. Therefore, �a(0) = 0 for all arcs a
with flow in f UE or f ϕ , contradicting Lemma 2.3. ■

We now turn our attention to characterizing instances with
large coordination ratio for fixed ϕ. We say that a path P ∈ Pk

is longest if its normal length τP equals the maximum pos-
sible value ϕTk . The following result shows that, when a
constrained system optimum routes flow along paths that are
not longest, we can make the instance worse by adding the
Pigou subnetwork shown in Figure 3, which has a large coor-
dination ratio. Note that the conditions required by the result

FIG. 4. Modified instance used in the proof of Theorem 3.5.

are satisfied by the standard choices of L such as polynomials
of a given degree.

Theorem 3.5. Consider a family L of differentiable latency
functions that is closed under multiplication by nonnega-
tive constants. Furthermore, assume that L is closed under
scaling, that is, if � ∈ L, �ρ : x �→ �(ρx) belongs to L for
all ρ ≥ 0. Let ϕ ≥ 1 and f ϕ be a ϕ-constrained system opti-
mum of a given instance with latency functions drawn from L.
If C(f UE)/C(f ϕ) < α(L) and f ϕ routes flow along a path that
is not longest, then the instance can be modified to increase
the coordination ratio C(f UE)/C(f ϕ).

Proof. Assume that for some k ∈ K there is path Q ∈ Pϕ

k
that is not longest such that f ϕ

Q > 0. We insert the network
shown in Figure 3 at the source sk , the origin of path Q. (This
modification is illustrated in Fig. 4.) After the modification,
two parallel arcs connect a new origin sk̃ to sk . Furthermore,
f ϕ
Q units of demand are reassigned from OD pair k to a new OD

pair k̃ with terminals sk̃ and tk . We will now construct latency
functions that will make the added network tight. Let v > 0
and � ∈ L be such that β(v, �) = β(L). Consider the latency
function �̃ defined as �̃(x) := �(xv/f ϕ

Q )/M, where M > 0 is a
constant to be specified later. Note that the assumptions imply
that �̃ ∈ L. It can be seen that β(f ϕ

Q , �̃) = β(L) as well. We
let the latency functions of the new arcs be the constant �̃(f ϕ

Q )

and the function �̃(x). After the modification, there are two
possible extensions of Q: the path Q↑ (resp. Q↓) starts with
the constant (resp. nonconstant) arc just added and continues
along Q. Denoting the set of paths in the new instance by P̃
and setting M such that �̃(f ϕ

Q ) + τQ < ϕTk ≤ ϕTk̃ , τQ↑ and
τQ↓ are bounded from above by ϕTk̃ . Thus, Q↑ and Q↓ belong
to P̃k̃ .

The user equilibrium f̃ UE of the new instance can be con-
structed as an extension of f UE. We reassign (any) f ϕ

Q units
of flow from OD pair k to OD pair k̃, route them along the
new nonconstant arc, and let them then follow their orig-
inal paths. It is straightforward to see that f̃ UE is feasible
and at equilibrium. Similarly, the constrained system opti-
mum f̃ ϕ of the new instance can be obtained easily from f ϕ .
Indeed, we distribute the flow originally in Q along the paths
Q↓ and Q↑ in a way that satisfies �̃∗

Q↓ (̃f
ϕ) = �̃∗

Q↑ (̃f
ϕ). As

f̃ ϕ
a = f ϕ

a for the original arcs a, �̃∗
P (̃f ϕ) = �̃∗

P(f ϕ) for all
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FIG. 5. Instance used in the proof of Lemma 3.7.

P ∈ P̃ϕ
j with j 
= k̃. Therefore, this extension is a con-

strained system optimum. Computing the total travel times
of both flows and observing that the subgraph is tight, the
coordination ratio C(̃f UE)/C(̃f ϕ) equals

C(f UE) + �̃
(
f ϕ
Q

)
f ϕ
Q

C(f ϕ) + �̃
(
f ϕ
Q

)
f ϕ
Q /α(L)

.

Note that the last expression is a convex combination of
C(f UE)/C(f ϕ) and α(L). As the former is smaller than the
latter, the new instance has worse performance. ■

The previous result implies that instances with the high-
est possible coordination ratio are not especially attractive to
users either. Indeed, for such instances, a constrained system
optimum routes all flow along longest paths with respect to
normal lengths. Therefore, users would have to take paths that
are at the limit of their tolerance to deviations from shortest
paths. Fortunately, real-world instances seem not to exhibit
these problems; their coordination ratios are typically not
very high. According to the middle graph of Figure 3 in [13],
which shows the distribution of experienced travel times,
most users do not experience extreme values. The situation
for free-flow travel times is similar.

Theorem 3.5 is actually still valid if latency functions are
not differentiable. Although we cannot work with the mod-
ified latency functions �̃∗ anymore, we can use the system
optimum of the instance shown in Figure 3 instead. The the-
orem also remains valid for user equilibrium normal lengths,
which we will state explicitly in Section 3.2.

3.1.2. Bounds for the Price of Anarchy. In this section,
we present upper and lower bounds for the function αϕ(Laff).
This will allow us to evaluate the performance of the route-
guidance system when free-flow normal lengths are used.
We start with an upper bound that improves on αϕ(Laff) ≤
α(Laff) = 4/3.

Theorem 3.6. The price of anarchy αϕ(Laff) ≤ (2 − ϕ)−1

for all 1 ≤ ϕ < 2. In particular, α1(Laff) = 1 and αϕ(Laff) <

4/3 for ϕ < 5/4.

Proof. Consider a tolerance factor 1 ≤ ϕ < 2, and let
f ϕ and f UE be a ϕ-constrained system optimum and a user
equilibrium, respectively. We define the function h : [0, 1] →
R by h(z) := C(f UE + z(f ϕ − f UE)). Due to the convexity of

C(·), h(1) ≥ h(0) + h′(0). To prove the claim, we verify that
h(0) + h′(0) ≥ (2 − ϕ)h(0) because then C(f ϕ) = h(1) ≥
(2 − ϕ)h(0) = (2 − ϕ)C(f UE), as required. Now,

h′(0) =
∑

a

�∗
a

(
f UE
a

)(
f ϕ
a − f UE

a

)
=

∑
a

[
2�a

(
f UE
a

) − �a(0)
] (

f ϕ
a − f UE

a

)
≥ 2

(∑
k

Lk(f
UE)dk −

∑
k

Lk(f
UE)dk

)

+
∑

k

Tkdk − ϕ
∑

k

Tkdk

= (1 − ϕ)
∑

k

Tkdk ≥ (1 − ϕ)C(f UE) = (1 − ϕ)h(0).

The first inequality follows from the fact that �P(f UE) =
Lk(f UE) for every P ∈ Pk such that f UE

P > 0, and �P(f UE) ≥
Lk(f UE) in general. Moreover, τP ≤ ϕTk for every P such that
f ϕ
P > 0, and Tk ≤ τP in general. ■

We now offer a lower bound on αϕ(Laff) by providing an
instance with high coordination ratio. Although the instance
shown in Figure 3 can be used, a stronger bound can be given
with a collection of instances based on the Braess Paradox
network [4].

Lemma 3.7. The price of anarchy αϕ(Laff) ≥ 1 + (
3 +

2
ϕ−1

)−1
.

Proof. Consider the network depicted in Figure 5, where
z ≥ 0 is a constant and the demand between the single OD pair
is d ≥ 0. Maximizing the coordination ratio over z and d, we
obtain the claim. ■

Figure 6 summarizes the bounds for αϕ(Laff). The main
conclusion is that αϕ(Laff) is close to 1 when ϕ is in the prox-
imity of 1. Therefore, it is not necessary to compute the exact
value of the price of anarchy to conclude that the total travel
time of user equilibria is, in the worst-case, just a little bit

FIG. 6. Bounds for αϕ(Laff).
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higher than that of constrained system optima. This adds more
support to the conclusion that we drew before: if free-flow
travel times are used, central coordination is not beneficial,
and the route-guidance system does not deliver solutions of
significantly improved quality. To further explain why these
normal lengths do not work, note that free-flow travel times
are demand-independent; by definition, they are based on
the situation in which the network is not loaded. Hence,
had they delivered consistently good solutions, it would have
been regardless of the real demand. A posteriori, this seems
unlikely because uncongested and congested networks oper-
ate under very different regimes. In addition, when ϕ ≈ 1
most paths are not feasible, leaving the few feasible ones
very congested, and the total travel time too high. Because
of this negative result for affine cost functions, we will not
compute the price of anarchy for more general sets L.

3.2. User Equilibrium Travel Times as Normal Lengths

In this section, we assume that normal lengths are set equal
to the travel times experienced in a user equilibrium. Based on
superior empirical performance compared to free-flow travel
times, Jahn et al. [13] concluded that these normal lengths are
the “correct” choice. We now provide a theoretical foundation
for their findings. The improvement compared to free-flow
normal lengths comes from the fact that user equilibrium
normal lengths depend on the actual demand.

A user equilibrium f UE is a feasible solution to (CSO)

because all paths used in f UE are feasible. Therefore, the
constrained system optimum f ϕ satisfies

C(f ϕ) ≤ C(f UE) for all ϕ ≥ 1. (3.3)

As in the previous section, we obtain a lower bound on
the function αϕ(L) by providing an appropriate instance.
However, in this case, the lower bound matches the upper
bound.

Lemma 3.8. The price of anarchy αϕ(L) = α(L) for all
ϕ ≥ 1.

Proof. In the equilibrium of the instance depicted in
Figure 3, travel times along both paths equal �(d). Hence,
regardless of the value of ϕ, the system optimum is a ϕ-
constrained system optimum. The claim follows by taking
the supremum over � ∈ L. ■

This lemma implies that the price of anarchy is the same,
regardless of whether it is defined with respect to the sys-
tem optimum or the constrained system optimum. Note that
Lemma 3.8 is a worst-case statement. For realistic instances
the two solutions typically differ, as shown in Figure 9 of [13],
which we reproduce here, for convenience. Figure 7 shows,
for a variety of realistic instances, the tradeoff between the
unfairness of the considered solutions and the ratio of their
cost to that of a system optimum. The left part of the dia-
gram corresponds to system optima (SO), the lower part to

FIG. 7. Tradeoff between efficiency and unfairness.

user equilibria (UE), and the circled data-points represent
constrained system optima with ϕ = 1.02.

The two bounds presented in (2.3) and (3.3) can be tight.
For example, the proof of Lemma 3.8 describes an instance
for ϕ = 1, satisfying C(f SO) = C(f 1) = C(f UE)/α(L). On
the other hand, if we add a small constant ε > 0 to the
travel time of the first arc, the constrained system optimum
coincides with the user equilibrium. Therefore, C(f UE) =
C(f 1) ≈ α(L)C(f SO).

Theorem 3.5, proved before for free-flow normal lengths,
is also valid when normal lengths are set to user equilibrium
travel times. It is enough to note that at equilibrium the lengths
of the two new arcs equal �̃(f ϕ

Q ); therefore, Q↓ and Q↑ belong

to P̃ϕ .

Observation 3.9. Consider a family L of differentiable
latency functions that is closed under multiplication by con-
stants. Furthermore, assume that L is closed under scaling.
Let ϕ ≥ 1 and f ϕ be a ϕ-constrained system optimum of
a given instance with latency functions drawn from L. If
f ϕ routes flow along a path that is not longest, then the
instance can be modified to increase the coordination ratio
C(f UE)/C(f ϕ).

However, constrained system optima for real-world
instances do not typically route all users along longest paths.
The middle graph of Figure 4 in [13] shows the distribution
of experienced travel times. It can be seen that few users are
routed along longest paths; the situation for user equilibrium
travel times is similar.

4. FAIRNESS

As we mentioned earlier, a common argument against
using a system optimum in the design of route-guidance
devices for traffic assignment is that it generally assigns
some drivers to unacceptably long paths to use shorter
paths for most other drivers (see, e.g., [1, 14]). This section

NETWORKS—2006—DOI 10.1002/net 231



presents results related to the unfairness of system optima
and constrained system optima. In this section, we work with
arbitrary normal lengths, unless otherwise stated.

The following theorem quantifies the severity of this
effect by characterizing the unfairness of the system opti-
mum. It turns out that there is a relation to earlier work that
compared the maximum latency of a system optimum in a
single-sink single-source network to the latency of a user
equilibrium [19]. This work showed that for a given class
of latency functions L, this ratio is bounded from above
by γ (L). Here, γ (L) is defined to be the smallest value
that satisfies �∗(x) ≤ γ (L)�(x) for all � ∈ L and x ≥ 0.
For example, γ ({polynomials of degree p with nonnegative
coefficients}) = p + 1. The unfairness of a system optimum
is, in fact, bounded by the same constant, even for general
instances with multiple commodities [9, 20].

It is not difficult to extend the bound on the unfairness of
system optima to constrained system optima. Notice that the
following theorem does not assume any particular definition
of normal lengths.

Theorem 4.1. Let f ϕ be a constrained system optimum in a
multicommodity flow network with latency functions drawn
from a family L of differentiable and nondecreasing latency
functions. Then the unfairness of f ϕ is bounded from above
by γ (L).

Proof. Using the definitions of �∗ and γ (L), it is clear
that �a(x) ≤ �∗

a(x) ≤ γ (L)�a(x) for all x ≥ 0. The first-
order optimality conditions of (CSO) imply that for a constant
L∗

k (f ϕ), �∗
P(f ϕ) = L∗

k (f ϕ) for all P ∈ Pϕ

k such that f ϕ
P > 0.

Therefore, for all paths P ∈ Pϕ

k carrying flow,

L∗
k (f ϕ)

γ (L)
≤ �P(f ϕ) ≤ L∗

k (f ϕ).

Consequently, �Q(f ϕ)/�R(f ϕ) ≤ γ (L) for all Q, R ∈ Pϕ

k with
positive flow. ■

Correa et al. [9] presented an example that can be used to
show that this bound is tight. Consider the instance shown
in Figure 3 with d = 1 and �(x) := x. User equilibrium
normal lengths are equal to 1 for both arcs; therefore, both
paths are feasible regardless of the value of ϕ. This means that
any constrained system optimum is an unconstrained system
optimum, and its unfairness is γ (Laff) = 2. Nevertheless,
in practice these bounds are loose, as the extensive experi-
ments in [13] show. In particular, Figure 7 demonstrates that
for polynomials of degree 4, which are typically used by
transportation planners, the highest observed unfairness was
approximately 2.1, whereas the previous theorem implies an
unfairness of 5 in the worst case.

Note that Theorem 4.1 does not imply that the unfairness
of ϕ-constrained system optima is nondecreasing as a func-
tion of ϕ. We now present two examples corresponding to
the two definitions of normal lengths that we studied. The
example using free-flow travel times is the one we presented

FIG. 8. The unfairness can decrease when ϕ increases (normal length =
user equilibrium travel times).

in the introduction (see Figure 2). A constrained system opti-
mum with ϕ = 1 can only route flow on the two bottom
arcs; it therefore has an unfairness strictly larger than 1. For
ϕ ≥ 1 + ε, all arcs can be used, and it is easy to see that the
value of unfairness approaches 1 when ε → 0.

For the case in which normal lengths are user equilibrium
travel times, consider the instance shown in Figure 8. There
are five arcs a, b, c, d, and e with latency functions x + 2ε,
1, 2ε, 1 + 5ε, and x, respectively, where ε is a small positive
number. The user equilibrium routes flow only along paths
ab and ace; at equilibrium the path de is too long to carry
flow. Therefore, the constrained system optimum f 1 can only
use paths ab and ace, and its unfairness is 4+4ε

3+6ε
. If ϕ ≥ 2+3ε

2+2ε
,

the constrained system optimum f ϕ can use all three paths. In
this case, it routes the flow along ab and de, and its unfairness
is 6+17ε

6+11ε
. For small enough values of ε, the unfairness of the

constrained system optimum with ϕ = 1 is arbitrarily close
to 4/3 while the unfairness for a large enough tolerance factor
ϕ is arbitrarily close to 1.

Finally, we show that in the case of affine latency func-
tions, paths that are short with respect to free-flow normal
lengths are also relatively short with respect to experienced
travel times. To be more concrete, define the average travel
time of a flow x between OD pair k ∈ K as Ck(x) :=∑

P∈Pϕ

k
�P(x)xP/dk .

Theorem 4.2. Consider an instance with affine latency
functions and arbitrary tolerance factor ϕ. Let P ∈ Pϕ

k be
a path satisfying f ϕ

P > 0 and �P(0) ≤ ε Ck(f ϕ) for some
ε ≥ 0. Then the experienced travel time �P(f ϕ) is bounded
from above by (1 + ε/2)Ck(f ϕ).

Proof. As latencies are affine functions and f ϕ is at
equilibrium with respect to latency functions �∗, we have

�P(f ϕ) = �∗
P(f ϕ) −

∑
a∈P

qaf ϕ
a

=
∑

Q∈Pϕ

k

f ϕ
Q �∗

Q(f ϕ)

dk
− (�P(f ϕ) − �P(0))

≤
∑

Q∈Pϕ

k

2
f ϕ
Q �Q(f ϕ)

dk
− �P(f ϕ) + εCk(f

ϕ).

Therefore, 2�P(f ϕ) ≤ (2 + ε)Ck(f ϕ). ■
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5. SUMMARY AND CONCLUSION

This article presents a theoretical analysis of the route-
guidance system proposed by Jahn et al. [13]. This route-
guidance system aims at optimizing the efficiency of the
traffic flow, while ensuring that all users are treated fairly.
We have given bounds on the inefficiency and unfairness of
the returned solutions. When the system uses user equilibrium
travel times as normal lengths, constrained system optima
are not much more costly than system-optimal solutions, and
users with the same OD pair are assigned to paths of similar
lengths.

In practice, network planners sometimes work with non-
separable latency functions, so that the travel time of one
arc also depends on the load of other arcs. Although these
functions are more difficult to calibrate, they improve the
predictive power because congestion levels on different arcs
of the network are typically correlated. The most common
examples are two-way streets and intersections. Theoret-
ically, system optima and user equilibria can, and have
been extended to that setting. Constrained system optima
can be generalized without difficulty given that they have
the same structure as system optima. Although bounds
on the efficiency of user equilibria with the more general
latency functions were previously given [5, 17], it is an
interesting open question to determine the price of anarchy
with respect to constrained system optima. It is clear that
under user equilibrium normal lengths, (3.3) is still valid
because any user equilibrium remains feasible for the con-
strained system optimum problem. Theorem 4.1 can also
be extended to bound the unfairness of constrained system
optima by generalizing the definition of γ (L) to incorporate
the more complicated derivatives of C(x). Another inter-
esting extension would be to incorporate structural insights
of realistic networks. This has the potential of making
worst-case bounds less pessimistic. As an example in this
direction, Correa et al. [8] gave improved bounds on the
price of anarchy that depend on the congestion level of the
network.
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