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Opportunities at the interface of signal processing and stochastic eigen-analysis

Arthur Baggeroer

Massachusetts Institute of Technology

The history of signal processing, (we think of Wiener), is filled with examples of math-
ematicians and engineers working together on compelling real-world applications. These
collaborations clarified, elaborated and elevated the theory and practice of signal processing
to its present day stature.

The recent developments in stochastic eigen-analysis appear to be on the verge of similarly
triggering a new wave of applications. This talk will provide some examples from the past
and offer additional real-world scenarios (with an emphasis on array signal processing) where
collaborations between mathematicians and engineers can yield immediate dividends. The
hope is that, as before, they will eventually pave the way for compelling applications in other
areas of science and engineering.
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Random Matrix Applications in Environmental Data Assimilation

Dennis McLaughlin, Adel Ahanin, and Dara Entekhabi

Massachusetts Institute of Technology

The dramatic increase in data from remote and in situ sensing presents important oppor-
tunities and challenges for environmental science. In order to properly interpret all this data,
large numbers of diverse observations must be processed to give descriptions of environmental
variables that are dynamically consistent over time and space. This is typically accomplished
by using dynamic models (usually based on nonlinear partial differential equations) to merge
observations (a process commonly called “data assimilation” or “data fusion”). Since uncer-
tainties are significant data assimilation problems are often posed in a Bayesian probablistic
framework.

An important aspect of these problems is the need to propagate probabilistic informa-
tion (e.g. probability densities or some of their moments) over time. The most commonly
used options are i) Monte Carlo (ensemble) methods, ii) methods based on linearization and
implicit Gaussian assumptions, and iii) hybrid combinations of these two approaches.

Ensemble and hybrid methods provide sample estimates of probabilistic quantities that
are based on random matrices with a relatively small number of columns, each corresponding
to a particular replicate of a very large (order 106 or more) state vector. Results from random
matrix theory may be used to assess the accuracy of these sample estimates and to decide
how many replicates are needed for a given application.

In this paper we consider how hybrid propagation methods may improve the validity of
implicit Gaussian assumptions used both in approximate Bayesian conditioning calculations
and in accuracy assessments that rely on random matrix theory. This investigation suggests
some possible topics for future collaboration between mathematicians interested in sampling
and random matrix theory and environmental scientists working on large nonlinear data
assimilation problems.

2
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Random Matrices and Multivariate Statistical Analysis

Iain Johnstone

Stanford University

The talk aims at an introductory account of some of the topics of classical multivariate sta-
tistical analysis to which the approaches, tools and results of random matrix theory have con-
tributed. A number of canonical multivariate methods are founded on eigen-decompositions
of one or two independent Wishart matrices. Using hypothesis tests as an organizing theme,
we review how the null hypothesis distributions are linked to the Laguerre and Jacobi ensem-
bles of RMT. Results for linear statistics and extremes of the eigenvalues yield information
about likelihood ratio and union-intersection tests respectively.

3
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Recent results on the behavior of the largest eigenvalue of large dimensional sample covariance
matrices and statistical applications

Noureddine El Karoui

University of California Berkeley

In modern statistical practice, one often encounters n × p data matrices X with n and
p both large. Classical results from multivariate statistical analysis (Anderson 1963) fail to
give good approximations in this setting.

Using random matrix theory, Johnstone (2001) recently shed light on some theoretical
aspects of Principal Component Analysis in this setting. He specifically showed that under
some conditions on the dimensions of the matrix X, if it had i.i.d Normal(0,1) entries, the
largest eigenvalue of the sample covariance matrix X’X, properly rescaled and recentered
converges to a Tracy-Widom law.

We will discuss several related results. First, we will explain that this convergence result
holds as long as n and p go to infinity, removing some of the dimensionality conditions. In the
case of complex normal entries, which were investigated by Forrester (93), Johansson (2000)
and Johnstone (2001), we will discuss rates of convergence issues which practically improve
the quality of the asymptotic approximation.

We will also discuss the case where the entries of the matrix are correlated with a fairly
general covariance structure, including for instance well-behaved Toeplitz matrices. We will
see that Tracy-Widom limits also appear in this fairly general alternative setting, and give
numerically explicit formulas for the centering and scaling of the largest eigenvalue.

Finally, time permitting, we will illustrate how these and related theoretical insights might
be used in practice.

4
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Edgeworth –Type Expansions for the Distribution Functions in the Gaussian Ensembles

Momar Dieng

The University of Arizona.

Recently L. Choup derived expansions for Hermite and Laguerre kernels at the edge of the
spectrum of the finite n Gaussian Unitary Ensemble (GUEn) and the finite n Laguerre Uni-
tary Ensemble (LUEn), respectively. This yields Edgeworth-type expansions for the largest
eigenvalue distribution function of GUEn and LUEn. These expansions have the F2 Tracy–
Widom distribution as their leading term and provide corrections to it. We discuss these
results and the analogues we obtained for the OE and SE cases. This is joint work with L.
Choup.

5
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Free Probability Theory and Random Matrices

Roland Speicher

Queen’s University

Assume you are given two symmetric random matrices A and B and you know the eigen-
value distribution of A and the eigenvalue distribution of B. What can you say about the
eigenvalue distribution of A + B or of AB? In general, not much since the relation between
the eigenspaces of A and the eigenspaces of B is relevant. However, in typical cases and when
the size of the matrices tends to infinity the eigenspaces of A and B are in generic position
and this problem has a deterministic solution; there are precise formulas for calculating the
eigenvalue distribution of A + B or of AB from the eigenvalue distribution of A and the
eigenvalue distribution of B. These formulas (and much more) are provided by Voiculescu’s
theory of free probability.

In this survey talk I will give an idea what free probability is and how it relates to random
matrices. In particular, I want to show how tools from free probability (like R-transform or
S-transform) provide the answers to the above mentioned problems.

6



J U L Y 1 0 - 1 4 , 2 0 0 6

Adaptive Array Detection, Estimation and Beamforming

Christ D. Richmond

MIT Lincoln Laboratory

Adaptive radar/sonar systems typically consist of an arrays of receivers deployed in en-
vironments dominated by limiting interference sources. The operational objectives of such
systems often include detection and parameter estimation of signals of interest. The design
and analysis of these systems requires theoretical quantification of detection performance
(receiver operation characteristics) and estimation performance (accuracy of parameter esti-
mates). The use of random matrix theory to provide insights into the performance of such
systems is reviewed for a popular class of adaptive algorithms, and some persistent open
problems of practical significance are discussed.

7
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On some detection problems in radar array processing involving eigenvalues of Wishart and
related random matrices

Olivier Besson∗, Louis L. Scharf†, and Shawn Kraut‡

∗ENSICA

†Colorado State University

‡MIT Lincoln Laboratory.

We consider a radar application in which an array of sensors is used to detect the pres-
ence of a signal of interest (SOI), in the presence of colored noise with possibly unknown
covariance matrix. We consider a situation where the SOI’s signature is not known perfectly,
but lies on an unknown line in a known linear subspace. Additionally, we consider a partially
homogeneous environment, for which the covariance matrix of the primary data -which may
contain the SOI- and the covariance matrix of the secondary data -which contain noise only-
have the same structure, but possibly different levels. The generalized likelihood ratio test
(GLRT) is formulated in the case where the noise covariance matrix is known, and in the
case where it must be estimated from secondary data. In either case, the GLRT involves the
largest eigenvalue of a Wishart or F -distributed random matrix, normalized to its trace. In
the Wishart case, we derive the probability density function (p.d.f.) of such a statistic under
both hypotheses. Some numerical results are presented to validate the theoretical results,
and to assess the performances of the detectors.

8
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Asymptotic Random Matrix Applications in Communication: MIMO and More

Daniel Bliss Jr.

MIT Lincoln Laboratory

The tools of asymptotic random matrices have been employed to address a number of
wireless communication problems. The analysis of code-division multiple-access (CDMA) sys-
tems, networks with multiple-antenna receivers, and multiple-input multiple-output (MIMO)
links have all benefited from these tools. Here, the focus is on MIMO communication, but a
short discussion of some of the other addressed problems is provided.

Wireless communication using MIMO enables increased spectral efficiency for a given total
transmit power. MIMO capacity is a strong function of the singular value distribution of the
channel matrix. The channel matrix contains the complex attenuation from each transmit
to receive antenna. Bounds on the maximum spectral efficiency of MIMO systems in which
both the transmitter and receiver know the channel (channel-state-informed transmitter)
and in which only the receiver knows the channel are introduced. MIMO performance for
environments with interference are also considered.

9
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On the Signal-to-Interference-Ratio of CDMA Systems in Wireless Communications

Jack W. Silverstein

North Carolina State University

Let {sij : i, j = 1, 2, . . .} consist of i.i.d. random variables in C with E(s11) = 0, E|s11|2 =
1. For each positive integer N let sk = sk(N) = (s1k, s2k, . . . , sNk)T , 1 ≤ k ≤ K, with K =
K(N) and K/N → c > 0 as N → ∞. Assume for fixed positive integer L, for each N and k ≤
K αk = (αk(1), . . . , αk(L))T is random, independent of the sij, and the empirical distribution
of (α1, . . . , αK), with probability one converges weakly to a probability distribution H on
C

L. Let βk = βk(N) = (αk(1)sT
k , . . . , αk(L)sT

k )T and set C = C(N) = (1/N)
∑K

k=2 βkβ
∗
k . Let

σ2 > 0 be arbitrary. Then with probability one SIR1 ≡ limN→∞(1/N)β∗
1 (C + σ2I)−1β1 =∑L

�,�′=1 ᾱ1(�)α1(�′)a�,�′ where A = (a�,�′) is nonrandom, Hermitian positive definite, and is

the unique matrix of such type satisfying A =
(
c exp αα∗

1+α∗Aα + σ2IL

)−1 where α ∈ C
L has

distribution H. The quantity SIR1 is used as a model for the best signal-to-interference ratio
for one user with respect to other K − 1 users, for K large in a direct-sequence code-division
multiple-access system in wireless communications. The result generalizes those previously
derived but under more restricted assumptions, allowing for the analysis of user location with
respect to the antennas in arbitrary settings (joint work with Zhidong Bai).

10
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Intrinsic Estimation Bounds With Signal Processing Applications

Steven Thomas Smith

MIT Lincoln Laboratory

Signal processing algorithms and systems analysis for signal detection, location, and clas-
sification all rely on covariance, subspace, and matrix-based methods. The applicability of
standard, linear estimation theory is limited in many such settings, where the estimation prob-
lem necessarily involves nonlinear parameter spaces, such as spheres, orthogonal and unitary
matrices, Grassmann manifolds, Stiefel manifolds, and positive-definite matrices. Further-
more, unlike the standard estimation problem, there is no prescribed or natural coordinate
system on these spaces with which to express ones answers. Therefore, an intrinsic approach
to estimation theory is necessitated in these (and other) applications.

This talk addresses the problem of intrinsic or nonlinear estimation at its deepest level,
and provides powerful new tools and insights, as well as well as some startling surprises.
The covariance matrix problem is framed as an intrinsic estimation problem on the space of
positive definite (covariance) matrices, which has the structure of a homogeneous or quotient
space, not a vector space—the necessary setting for classical Cramér-Rao bounds. Covariance
matrix estimation accuracy bounds are derived from an intrinsic derivation of the Cramér-
Rao bound on arbitrary Riemannian manifolds (another new development), and compared to
the accuracy achieved by standard methods involving the sample covariance matrix (SCM).
Estimator efficiency is discussed from different, novel, viewpoints.

Remarkably, it is shown that that from an intrinsic perspective, the SCM is a biased
and inefficient estimator; the bias corresponds to the SCM’s poor estimation quality at low
sample support—this contradicts the well-known fact that E[SCM] = R because the linear
expectation operator implicitly treats the covariance matrices as points in a real vector space,
compared to the intrinsic treatment of positive-definite Hermitian matrices used in this talk.
The analysis approach developed is directly applicable to many other estimation problems
on manifolds encountered in signal processing and elsewhere, such as estimating rotation
matrices in computer vision and estimating subspace basis vectors in blind source separation.
Finally, the intrinsic Cramér-Rao bounds will be compared to other, related intrinsic bounds
reported in the literature.

11
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Spiked covariance model and some extensions

Debashis Paul

University of California, Davis

A spiked population model for large dimensional vector-valued measurements is consid-
ered. The covariance matrix of the measurements is thought of as having a few large eigenval-
ues well separated from the rest of the eigenvalues. The question of how the leading sample
eigenvalues and eigenvectors depend on their population counterparts as well as the ratio of
the dimension to sample size is considered. Some extensions of the model that include a time
dependence of the observations are also studied.

12
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On Powers of a Random (Haar) Orthogonal Matrix

Robb Muirheada, and Morris Eatonb

aPfizer Global R&D.

bUniversity of Minnesota.

In a talk at SEA’05, Tom Marzetta of Bell Labs presented simulations indicating that
when the north pole of a unit sphere in 3-dimensions is rotated twice by the same random
(Haar) orthogonal matrix, the resulting point is more likely to lie in the northern hemisphere
than in the southern hemisphere. An algebraic proof of this result, which actually holds
for any dimension greater than or equal to three, is outlined, through a description of the
distribution of the “north-pointing” coordinate. (The techniques of the proof involve some
basics of groups acting on spaces, and the notion of an invariant distribution – such as
the characterization of the uniform distribution on a sphere being the “unique orthogonally
invariant probability distribution on the sphere”.) We also describe the distribution of this
“north-pointing” coordinate in any dimension following three rotations with the same random
(Haar) orthogonal matrix.

13
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Asymptotic Statistical Analysis on Special Manifolds

Yasuko Chikuse

Kagawa University,

The special manifolds of interest are the Stiefel manifold and the Grassmann manifold.
Formally, the Stiefel manifold Vk,m is the space of k-frames in the m-dimensional real Eu-
clidean space Rm, represented by the set of m × k matrices X such that X ′X = Ik, where
Ik is the k × k identity matrix. For m = k, Vk,m is the orthogonal group O(m) of m × m or-
thogonal matrices. The Grassmann manifold Gk,m−k is the space of k-planes (k-dimensional
hyperplanes) in Rm. We see that the manifold Pk,m−k of m × m orthogonal projection ma-
trices idempotent of rank k corresponds uniquely to Gk,m−k. This paper is concerned with
statistical analysis on the manifolds Vk,m and Pk,m−k as statistical sample spaces consisting
of matrices.

For the special case k = 1, the observations from V1,m and G1,m−1 are regarded as directed
vectors on a unit hypersphere and as axes or undirected lines, respectively. There exists a
large literature of applications of directional statistics and its statistical analysis, mostly
occurring for m = 2 or 3 in practice, in the Earth Sciences, Astrophysics, Medicine, Biology,
Meteorology, Animal Behavior and many other fields. Examples of observations on Gk,m−k

arise in the signal processing of radar with m elements observing k targets. The Grassmann
manifold is a rather new subject treated as a statistical sample space.

A random matrix X on Vk,m is said to have the matrix Langevin (or von Mises-Fisher)
distribution, denoted by L(m,k;F ), if its density function is given by

exp(trF ′X)/0F1(
1
2
m;

1
4
F ′F ), with F an m × k matrix,

where the 0F1 is a hypergeometric function with matrix argument. Writing the singular value
decomposition of F as

F = Γ ∧ Θ′, with Γ ∈ Vk,m, Θ ∈ O(k), and ∧ = diag(λ1, . . . , λk), λ1 ≥ . . . λk ≥ 0,

the distribution has the modal orientation ΓΘ′ = Vk,m and the λi’s control the concentrations
about the mode. The L(m,k;F ) distribution is a most useful distribution for statistical
analysis on Vk,m.

The solutions of statistical inference, estimation and testing hypotheses, on the parameters
F = Γ∧Θ′ of the L(m,k;F ) distribution are given in terms of the hypergeometric functions
with matrix argument, which make the problems intractable. We will develop asymptotic
theorems for large sample, large and small concentrations, and high dimension m.

Similar analyses can be developed on the Grassmann manifold. See Chikuse [Statistics
on Special Manifolds, Lecture Notes in Statistics, Vol. 174, Springer, 2003].

14
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Universality in random matrix theory

Arno Kuijlaars

Katholieke Universiteit Leuven

Dyson’s universality conjecture says that the local eigenvalue correlations of random ma-
trices, in the limit as the size of the matrices tends to infinity, depend on the symmetry class,
but not on the precise form of the random matrix ensemble. During the last decade this con-
jecture has been proved for various types of unitary, orthogonal and symplectic ensembles.
At special points in the spectrum (such as edge points) different eigenvalue behavior occurs
which however also turns out to be universal. I will give an overview of some of these results.

15
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Traffic systems and random matrix theory

Petr Sebaa,b

a Academy of Sciences of the Czech Republic

b University Hradec Kralove,

We show that the clearance distribution observed on high way traffic is well described
by eigenvalue distributions of random matrices. The same observation applies also for the
bumper-to-bumper distribution of parking cars. Using the collected data we will demonstrate
that the parking habit is capable to change the universality class of the related random matrix
ensemble.

16
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Two random matrix central limit theorems

Jinho Baika and Toufic M. Suidanb

aUniversity of Michigan

bUniversity of California, Santa Cruz

We will discuss two types of probability models: directed last passage site percolation
models and non-intersecting random walks. For a few special cases (for example, longest
increasing subsequences and random hexagon tiling), the limiting distributions are known to
be described in terms of random matrices such as the Tracy-Widom distribution. However,
such random matrix central limit theorems are believed to be universal in these models. We
will discuss the universality for particular regimes.
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A generalized projection on to matched subspaces approach for adaptive waveform design

Joseph Guerci

DARPA

The advent of digital arbitrary waveform generators (DAWGs) and continued advances in
high speed embedded computing have opened the door to the possibility of multidimensional
channel-dependent adaptive waveform design for sensing and communication. Given an es-
timate of a channel (multidimensional transfer function and/or colored noise covariance),
it has been previously shown that the optimal waveform from an SINR perspective is the
eigenfunction associated with the largest eigenvalue of the channel kernel function [1]-[3]. In
practice, however, this optimal waveform often does not meet other critical constraints such
has constant modulus, bandwidth/resolution, sidelobe rejection, etc.

In this talk, a new method for constrained adaptive waveform estimation is introduced
which exploits the relatively high SINR properties of the dominate subspace of the channel
kernel, i.e., the K dominant eigenfunctions where K is chosen based on a minimally accept-
able level of channel gain relative to a quiescent (non-matched) waveform. By projecting
constraints onto this matched subspace, an acceptably constrained yet “matched” waveform
can be produced. The method is illustrated with applications from a multichannel radar
operating in a colored noise environment.

[1] J. R. Guerci and P. Grieve, “Optimum Matched Illumination-Reception Radar”, U.S.
Patent 5 121 125, June 1992, and U.S. Patent 5 175 552, December 1992.

[2] S. U. Pillai, H. S. Oh, J. R. Guerci, and D. C. Youla, “Optimum Transmit-Receiver De-
sign in the Presence of Signal-Dependent Interference and Channel Noise” IEEE Trans. on
Information Theory, Vol. 46, No. 2, March 2000 pp. 577-584.

[3] S. U. Pillai and J. R. Guerci, “Multichannel Matched Transmit-Receiver Design in Pres-
ence of Signal-Dependent Interference and Noise”, Proceedings of the IEEE Sensor Array and
Multichannel (SAM) Processing, March 2000, Boston, MA.

18



J U L Y 1 0 - 1 4 , 2 0 0 6

Asymptotic distribution of principal components estimator of large spherical factor models

Alexei Onatski

Columbia University

This paper studies asymptotic distribution of k largest eigenvalues and corresponding
eigenvectors of the sample covariance matrix of data having k-factor structure when the di-
mensionality of the data, n , and the number of observations, T , go to infinity proportionally.
We show that, in contrast to the classical case when only T goes to infinity, the principal
eigenvectors of the sample covariance matrix are inconsistent estimates of the population
eigenvectors . However, the components of the sample eigenvectors centered by their proba-
bility limits and scaled by

√
T are asymptotically normal, and we give an explicit formula for

the limits and the variance of the asymptotic distribution. The asymptotic distribution of the
principal sample eigenvalues is also obtained. Both sample eigenvalues and the components
of the sample eigenvectors exhibit a phase transition phenomenon when, if the true cumu-
lative effect of factors on the cross-sectional units is below certain threshold, then sample
eigenvectors and eigenvalues do not carry any information about their population analogs,
but if the cumulative effect passes the threshold and becomes very large, all information is
eventually recovered. As a Monte Carlo analysis shows, the obtained asymptotic distribu-
tion of the components of the sample eigenvectors approximate the finite sample distribution
much better than the classical asymptotic distribution does, even for n and T as small as
about 15.

19



J U L Y 1 0 - 1 4 , 2 0 0 6

Concentration of measure, free probability and Markov chains

Sourav Chatterjee

University of California, Berkeley.

We shall present a new measure concentration technique that uses couplings and rates of
convergence of Markov chains to obtain concentration inequalities. A concentration result for
the empirical distribution of the eigenvalues of sums of random hermitian matrices (arising
in free probability theory) will be derived as an application of the method. This also gives
an example of concentration for discontinuous functions, which can be an important area of
application for the new technique.
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Riemann-Hilbert Problems: Applications

Percy Deift

Courant Institute.

The speaker will describe the application of Riemann-Hilbert techniques to a variety of
problems in mathematics and mathematical physics. The nonlinear steepest descent method
plays a key role.
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The sloppy model universality class and the Vandermonde matrix

James P. Sethnaa, Joshua J. Waterfalla, Fergal P. Caseyb, Ryan N. Gutenkunsta, Kevin S. Brownc,
Christopher R. Myersd, Piet W. Brouwera, and Veit Elsera

aLaboratory of Atomic and Solid State Physics, Cornell University.

bCenter for Applied Mathematics, Cornell University

cHarvard University

dCornell University

We explain why multiparameter nonlinear systems so often are sloppy; the system behavior
depends only on a few ‘stiff’ combinations of the parameters and is unchanged as other ‘sloppy’
parameter combinations vary by orders of magnitude. We contrast examples of sloppy models
(from systems biology, variational quantum Monte Carlo, and data fitting) with systems which
are not sloppy (multidimensional linear regression, random matrix ensembles). We observe
that the eigenvalue spectra for the sensitivity of sloppy models have a striking, characteristic
form, with a density of logarithms of eigenvalues which is roughly constant over a large range.
We suggest that the common features of sloppy models indicate that they may belong to a
common universality class. In particular, we motivate focusing on a Vandermonde ensemble
of multiparameter nonlinear models and show in one limit that they exhibit the universal
features of sloppy models.
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Speed Limits in Biological Neural Networks

Marc Timme a,b,c

aCornell University

bMax Planck Institute for Dynamics and Self-Organization

cBernstein Center for Computational Neuroscience

Precisely coordinated spatio-temporal spiking dynamics have been observed experimen-
tally in different neuronal systems and are discussed to be an essential part of computation
in the brain. Their dynamical origin, however, remains unknown.

Here we study the dynamics of spiking neural network models and reveal basic mechanisms
underlying the neurons’ precise temporal coordination. We focus on the synchronization
dynamics of neural networks exhibiting a complicated connection topology. In such networks,
an irregular, balanced state coexists with a synchronous state of regular activity. Using
a random matrix approach we predict the speed of synchronization in such networks in
dependence of properties of individual neurons and their interaction network. We find that
the speed of synchronization is limited by the network connectivity and remains finite, even
if the coupling strengths between neurons become infinitely large. We offer an intuitive
explanation of this phenomenon.
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Computing Eigenvalue Distributions of Random Matrices with Applications

Plamen Koev

Massachusetts Instiute of Technology

I will present our new algorithm for efficiently computing distributions of the eigenvalues
of various random covariance matrices based on the hypergeometric function of a matrix
argument.

The latter distributions are critical in many multivariate statistical tests (Canonical Cor-
relation Analysis, Principal Component Analysis, MANOVA, etc.) and thus in many practical
applications in genomics, wireless communications, 3D target classification, etc.

I will explain the connections between Schur functions, Zonal polynomials, representation
theory, and random matrix theory that make our new algorithm possible and in turn enable
the above applications, which I will also discuss.
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Applications of Random Matrix Theory to Economics, Finance and Political Science

Matthew C. Harding

MIT and Institute for Quantitative Social Science, Harvard University

Random Matrix Theory introduces social scientists to new methods of analyzing large
N, T panel data sets which commonly occur in economics, finance and political science.
In this paper we discuss a number of stochastic eigen-analysis techniques which enhance
traditional econometric and statistical approaches to social science research using large data
sets. We explore applications of free probability, moments of eigenvalue distributions and
eigen-inference, largest increasing subsequences and random incidence matrices to real world
problems in portfolio selection, global factors in stock and bond markets, regional risk sharing,
precursors of extreme events, financial contagion in emerging markets and strategic voting in
the US Congress.
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From Random Matrices to Stochastic Operators

Brian D. Sutton

Randolph-Macon College

Random matrices are usually treated as arrays of numbers, not operators. Utilizing the
structured matrix models of Dumitriu and Edelman, we show that classical random matrix
models are, in fact, finite difference schemes for stochastic boundary value problems. The
stochastic Airy, Bessel, and sine operators play a privileged role in this theory.

The BVP’s provide a unifying effect. For example, the stochastic Airy operator is dis-
cretized by both the Gaussian/Hermite matrix model and the Wishart/Laguerre matrix
model when scaled at the right edge of the spectrum. Therefore, the largest eigenvalues
of the two ensembles have the same distribution as n → ∞, a fact observed by Johnstone
and others.
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β-ensembles, Stochastic Airy spectrum, and a diffusion

Brian Ridera, José Ramı́rezb

aUniversity of Colorado, Boulder

bUniversidad de Costa Rica

Building on earlier work of A. Edelman, I. Dumitriu, and B. Sutton we prove that the
largest eigenvalues of the general beta-ensemble of Random Matrix Theory, properly centered
and scaled, converge in distribution to the law of the low lying eigenvalues of a random
operator of Schrödinger type. The latter is − d2

dx2 + x + 2√
β
b′(x) acting on L2(R+) with

Dirichlet boundary condition at the origin. Here b′(x) denotes a standard White Noise,
and the β > 0 is that of the original ensemble. Based on this convergence, we provide a
new characterization of the Tracy-Widom type laws (for all β) in terms of the explosion
probability of a one-dimensional diffusion.
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Applications of Structured Random Matrices to Complex Systems

G. Ergün

University of Bath

Many complex systems whether technological, social or biological have network structures.
Topological features of such structures may be described by the associated adjacency matrices.
The eigenvalues of adjacency matrices are related to many basic topological invariants of
networks. I will present a generic random matrix model to study coupled systems or a
system with modules, where introduction of a full coupling between two systems/modules of
contrasted intra-interactions changes the semi circular shape of the density of states (DOS)
to an onion dome shape. However, if the intra-interactions are the same but a few strong
inter-couplings are introduced then the density of the spectra has a triangular shape, which
has been observed in scale free networks of many kinds.
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Random Lévy Matrices

Z. Burdaa, J. Jurkiewicza, M.A. Nowaka, G. Pappb and I. Zahedc

a Jagellonian University

bEötvös University, Budapest

cSUNY Stony Brook

We compare two ensembles of large symmetric random matrices exhibiting a power law
spectrum with the stability index 0 < μ < 2: Free Random Lévy (FRL) matrices with a
rotationally symmetric measure, and Bouchaud, Cizeau (BC) random matrices based on a
measure whereby each independent matrix entry is chosen from a symmetric stable Lévy
distribution. Both the ensembles are spectrally stable with respect to matrix addition. We
illustrate the relation between the two types of stability and show that the addition of rotated
BC matrices leads by a matrix central limit theorem to FRL spectra.
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Causal sets and their applications

Eitan Bachmat

Ben-Gurion University

Causal sets are random partially ordered sets of a geometric origin. They can be consid-
ered as discrete analogs of space-time manifolds. We show how causal sets appear naturally
in the consideration of scheduling, card game, crystal growth, airplane boarding and pattern
recognition problems. We then explain how in some cases their finer asymptotic properties
are related to random matrix theory. Finally we will provide some applications.
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Fluctuations of the asymmetric exclusion process and random matrix theory

Tomohiro Sasamoto

Chiba University

The one-dimensional asymmetric simple exclusion process (ASEP) is a stochastic process
of many particles on a one-dimensional lattice and is defined as follows (Fig. 1). Due to
the volume exclusion interaction among particles, each lattice site can be either occupied
by a particle or is empty. During infinitesimal time duration dt, each particle performs the
asymmetric diffusion; it tries to hop to the right neighboring site with probability dt if the
target site is empty. We could also allow particles to hop to the left but restrict our attention
to the case of total asymmetry.

· · · �⇒ � �⇒ � · · ·
-3 -2 -1 0 1 2 3

Fig. 1 : asymmetric simple exclusion process(ASEP)

Though it may look too simple, the ASEP shows many interesting phenomena and has a
lot of applications. The ASEP can be regarded as a simple model of traffic flow or molecular
motor system. The ASEP also plays a role of testing ground in the theory of nonequilibrium
statistical physics.

Another important aspect of the ASEP is its mathematical tractability. In particular, in
recent years, many properties of physical interest have been revealed by utilizing the methods
of random matrix theory. The major breakthrough was the Laguerre ensemble representation
for the current fluctuation by Johansson (2000) for the special initial configuration of particles
. . . 111000 . . . (0 and 1 stand for an empty and occupied site respectively). The result was
obtained by mapping the problem of the ASEP to some combinatorial problem and a lot of
progress has been made since then by pursuing this connection.

There is a closely related but somewhat different approach using the determinantal ex-
pression for the transition probability. This was first applied to recover (and slightly gen-
eralize) the Laguerre unitary ensemble representation of the current fluctuation (Nagao and
Sasamoto 2004). It was then utilized to compute the multi-point fluctuation for a case where
other methods seem to be difficult to apply (Sasamoto 2005). The details of the methods will
be explained with simple examples. More recent developments and some open problems are
also discussed.
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Free Meixner distributions and random matrices

Michael Anshelevich

Texas A&M University

The Meixner family of distributions consists of the Gaussian, Poisson, gamma, negative
binomial, hyperbolic secant, and (perhaps) the binomial distribution. There is a number
of different characterizations that distinguish these among all probability distributions. In
this talk, I will describe the “free” version of the Meixner family. I will define it, explain
what “free version of” means, and describe a number of properties it has. Some of the free
Meixner distributions are familiar as the limiting mean eigenvalue distributions for the GUE,
Wishart, and Jacobi ensembles. This talk is intended as a tutorial, so I will try to minimize
the amount of background necessary.
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Fluctuations of Random Matrices and Second Order Freeness: Part I

James A. Mingo and Roland Speicher

Queen’s University

Whereas free probability theory allows to deal with the average eigenvalue distribution
of random matrices, the theory of second order freeness is intended to address in a similar
fashion the global fluctuations of the eigenvalues (i.e., the covariances of traces of powers
of the matrices). We will motivate the notion of second order freeness by asking how the
fluctuations of A+B are related to the fluctuations of A and the fluctuations of B, in a generic
situation. We will describe some properties of second order freeness and, in particular, present
our second order analogue of R-transform formulas, which allows to calculate fluctuations of
A + B from fluctuations of A and B effectively.
(This is, in part, joint work with B. Collins and P. Śniady.)
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Global fluctuations for the β-Hermite and β-Laguerre ensembles

Ioana Dumitriua and Ofer Zeitounib

aUniversity of Washington

bUniversity of Minnesota, Minneapolis

The β-Hermite and β-Laguerre ensembles are some of the most studied general-parameter
distributions in classical random matrix theory, and include the Gaussian orthogonal, unitary,
and symplectic ensembles, together with the Wishart real, complex, and quaternion ones.

In a much celebrated paper from 1998, Johansson computed the global fluctuations of a
linear statistic for a large class of ensembles, which includes the β-Hermite ones; the proof
used methods from potential theory and was based exclusively on the eigenvalue distributions.

With the discovery of matrix models by D. and Edelman in 2001, we have embarked on
a journey to (re)prove and extend Johansson’s results using a matrix-based approach. The
first step was achieved by D. and Edelman (2006), for a polynomial statistic and for both
kinds of ensembles.

This talk will present the second (and last) leg of this journey. We have used concentra-
tion results obtained by Guionnet and Z., together with perturbation theory, to extend our
computation of global fluctuations to a larger class of functions than the one considered by
Johansson.
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Spectra of large block matrices

R. Rashidi Far*a, R. Speichera W. Brycb, and T. Orabyb

aQueen’s University, bUniversity of Cincinnati.

Motivated by some engineering problem, we investigate the limit eigenvalue distribution of
random block matrices. We present a method, coming from operator-valued free probability
theory, to get the limit distribution of the eigenvalues for such matrices.

For a matrix composed of d square-block matrices in each row and z ∈ lC+, we show
that zG (z) = Id + η (G (z)) · G (z) where Id is the identity matrix, η (·) is an operator on the
entries of G (z) and G (z) ∈ Md ( lC) with the following properties: lim|z|→∞ zG (z) = Id and
the normalized trace of G (z) is the Cauchy transform of the desired distribution.

Then applying the Stieltjes inversion formula, we numerically calculate the distribution
from the above mentioned formula for some cases and show how they match with the simu-
lation results.
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Matrix-valued Processes, Free Probability and Root Systems

Nizar Demni

LPMA Universite de Paris VI

Our motivation began by extending well known properties to matrix-valued stochastic
processes (Wishart and Laguerre). The latters are the dynamic version of real and complex
Wishart variables already studied by James, Muirhead , Chikuse. in multivariate statistics.
While studying this kind of processes, we are dealing with multivariate hypergeometric func-
tions and orthogonal polynomials. In the next step, we focus on the limit as the size of the
matrix goes to infinity. By this way, we define free processes in a von Neumann algebras.
An other aspect is provided by the eigenvalues processes which evolve like a radial Dunkl
processes associated to a root system for which we derive some properties such as existence,
uniqueness and the first collision time of the Weyl chamber. Besides, it is worthnoting that
at time t = 1 and starting at 0, these ones coincide with the Beta ensembles defined and
studied by A. Edelman and I. Dumitriu.
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Fluctuations of Random Matrices and Second Order Freeness: Part II

James A. Mingo and Roland Speicher

Queen’s University

Whereas free probability theory allows to deal with the average eigenvalue distribution
of random matrices, the theory of second order freeness is intended to address in a similar
fashion the global fluctuations of the eigenvalues (i.e., the covariances of traces of powers
of the matrices). We will motivate the notion of second order freeness by asking how the
fluctuations of A+B are related to the fluctuations of A and the fluctuations of B, in a generic
situation. We will describe some properties of second order freeness and, in particular, present
our second order analogue of R-transform formulas, which allows to calculate fluctuations of
A + B from fluctuations of A and B effectively.
(This is, in part, joint work with B. Collins and P. Śniady.)
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Multivariate orthogonal polynomials in non-commuting variables

Michael Anshelevich

Texas A&M University

In this talk, I will describe some preliminary results on orthogonal polynomials in several
non-commuting variables. After deriving a general recursion relation, I will concentrate
on a sub-class of polynomials with a resolvent-like generating function, that can be called
“multivariate free Meixner polynomials.” Under further restrictions, all such polynomials are
simply products of one-variable polynomials, after a change of variable. This parallels known
results for the multivariate Meixner polynomials in commuting variables. On the other hand,
an example will also be provided of polynomials that are not products, and that have no
analog in the commutative case.
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Norm of sums and products of free random variables

Vladislav Kargin

New York University

This talk is about large deviation results in free probability theory. Consider Sn =
n−1/2 (X1 + ... + Xn) where Xi are identically distributed, bounded, and free random vari-
ables. In classical probability theory the tails of the distribution of Sn (i.e. sets of x, where
|FSn (x)| > c) would be asymptotically exponentially small but not zero. In contrast, in free
probability theory, there is a threshold, after which the tail of the spectral distribution of
Sn is exactly zero In other words the probability of large deviations is smaller for sums of
free random variables. This effect was named superconvergence by Bercovici and Voiculescu.
I will talk how this result can be generalized to non-identically distributed variables, and
about the explicit rate of superconvergence.

For products, I will discuss how the norm of products Πn = X1X2...Xn behaves, where
Xi are free identically-distributed positive random variables. In addition, I will talk about
the behavior of the norm of Yn = X1 ◦ X2 ◦ ... ◦ Xn, where ◦ denotes the symmetric product
of two positive operators: A ◦ B =: A1/2BA1/2.

It turns out that the condition ‖Xi‖ ≤ L implies that ‖Πn‖ ≤ cL
√

nsn−1, where s is the
standard deviation of the random variables Xi. For Yn our result is that ‖Yn‖ ≤ cLn. These
results are significantly different from the analogous results for commuting random variables.
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