Approximating Tracy–Widom distributions

Momar Dieng

momar@math.arizona.edu

Department of Mathematics
The University of Arizona
Tucson, AZ 85719, USA

Univariate Statistics

Basic problem: testing the agreement between actual observations and an underlying probability model

Univariate Statistics

Basic problem: testing the agreement between actual observations and an underlying probability model

Pearson's χ^2 *test* (1900): sampling distribution approaches the χ^2 distribution as the sample size increases.

Univariate Statistics

Basic problem: testing the agreement between actual observations and an underlying probability model

Pearson's χ^2 *test* (1900): sampling distribution approaches the χ^2 distribution as the sample size increases.

Recall that if X_j are independent and identically distributed standard normal random variables, N(0,1), then the distribution of

$$\chi_n^2 := X_1^2 + \dots + X_n^2$$

has density

$$f_n(x) = \begin{cases} \frac{1}{2^{n/2} \Gamma(n/2)} x^{n/2 - 1} e^{-x/2} & \text{for } x > 0, \\ 0 & \text{for } x \le 0, \end{cases}$$

Multivariate Statistics

It is commonly assumed that the underlying distribution is the multivariate normal distribution.

Multivariate Statistics

It is commonly assumed that the underlying distribution is the multivariate normal distribution.

Suppose X is a $p \times 1$ -variate normal with $\mathbb{E}(X) = \mu$ and $p \times p$ covariance matrix

$$\Sigma = \operatorname{cov}(X) := \mathbb{E}\left((X - \mu) \otimes (X - \mu)\right)$$
, denoted $N_p(\mu, \Sigma)$.

Multivariate Statistics

It is commonly assumed that the underlying distribution is the multivariate normal distribution.

Suppose X is a $p \times 1$ -variate normal with $\mathbb{E}(X) = \mu$ and $p \times p$ covariance matrix

$$\Sigma = \operatorname{cov}(X) := \mathbb{E}\left((X - \mu) \otimes (X - \mu)\right)$$
, denoted $N_p(\mu, \Sigma)$.

If $\Sigma > 0$ the density function of X is

$$f_X(x) = (2\pi)^{-p/2} \left(\det \Sigma\right)^{-1/2} \exp\left[-\frac{1}{2} \left(x - \mu, \Sigma^{-1}(x - \mu)\right)\right],$$

where $x \in \mathbb{R}^p$ and (\cdot, \cdot) is the standard inner product on \mathbb{R}^p .

Matrix notation

Introduce a matrix notation: If X is a $n \times p$ matrix (the *data matrix*) whose rows X_j are independent $N_p(\mu, \Sigma)$ random variables,

$$X = \begin{pmatrix} \longleftarrow & X_1 & \longrightarrow \\ \longleftarrow & X_2 & \longrightarrow \\ \vdots & & \\ \longleftarrow & X_n & \longrightarrow \end{pmatrix},$$

Matrix notation

Introduce a matrix notation: If X is a $n \times p$ matrix (the *data matrix*) whose rows X_j are independent $N_p(\mu, \Sigma)$ random variables,

$$X = \begin{pmatrix} \longleftarrow & X_1 & \longrightarrow \\ \longleftarrow & X_2 & \longrightarrow \\ \vdots & & \\ \longleftarrow & X_n & \longrightarrow \end{pmatrix},$$

then we say X is $N_p(\mathbf{1} \otimes \mu, I_n \otimes \Sigma)$ where $\mathbf{1} = (1, 1, ..., 1)$ and I_n is the $n \times n$ identity matrix.

Multivariate Gamma function

If S_m^+ is the space of $p \times p$ positive definite, symmetric matrices, then

$$\Gamma_p(a) := \int_{\mathcal{S}_p^+} e^{-\operatorname{tr}(A)} (\det A)^{a - (p+1)/2} dA$$

where $\operatorname{Re}(a) > (m-1)/2$ and dA is the product Lebesgue measure of the $\frac{1}{2}p(p+1)$ distinct elements of A.

Multivariate Gamma function

If S_m^+ is the space of $p \times p$ positive definite, symmetric matrices, then

$$\Gamma_p(a) := \int_{\mathcal{S}_p^+} e^{-\operatorname{tr}(A)} (\det A)^{a - (p+1)/2} dA$$

where $\operatorname{Re}(a) > (m-1)/2$ and dA is the product Lebesgue measure of the $\frac{1}{2}p(p+1)$ distinct elements of A.

Matrix factorization $A = T^t T$ where T is upper-triangular with positive diagonal elements, allows evaluation of this integral in terms of ordinary gamma functions.

Multivariate Gamma function

If S_m^+ is the space of $p \times p$ positive definite, symmetric matrices, then

$$\Gamma_p(a) := \int_{\mathcal{S}_p^+} e^{-\operatorname{tr}(A)} (\det A)^{a - (p+1)/2} dA$$

where $\operatorname{Re}(a) > (m-1)/2$ and dA is the product Lebesgue measure of the $\frac{1}{2}p(p+1)$ distinct elements of A.

Matrix factorization $A = T^t T$ where T is upper-triangular with positive diagonal elements, allows evaluation of this integral in terms of ordinary gamma functions.

 $\Gamma_1(a)$ is the usual gamma function $\Gamma(a)$.

Multivariate generalization

Definition. If $A = X^t X$, where the $n \times p$ matrix X is $N_p(0, I_n \otimes \Sigma)$, then A is said to have Wishart distribution with n degrees of freedom and covariance matrix Σ . We write A is $W_p(n, \Sigma)$.

Multivariate generalization

Definition. If $A = X^t X$, where the $n \times p$ matrix X is $N_p(0, I_n \otimes \Sigma)$, then A is said to have Wishart distribution with n degrees of freedom and covariance matrix Σ . We write A is $W_p(n, \Sigma)$.

Theorem (Wishart 1928). If A is $W_p(n, \Sigma)$ with $n \geq p$, then the density function of A is

$$\frac{1}{2^{p n/2} \Gamma_n(n/2) (\det \Sigma)^{n/2}} e^{-\frac{1}{2} \operatorname{Tr}(\Sigma^{-1} A)} (\det A)^{(n-p-1)/2}.$$

Multivariate generalization

Definition. If $A = X^t X$, where the $n \times p$ matrix X is $N_p(0, I_n \otimes \Sigma)$, then A is said to have Wishart distribution with n degrees of freedom and covariance matrix Σ . We write A is $W_p(n, \Sigma)$.

Theorem (Wishart 1928). If A is $W_p(n, \Sigma)$ with $n \geq p$, then the density function of A is

$$\frac{1}{2^{p n/2} \Gamma_p(n/2) (\det \Sigma)^{n/2}} e^{-\frac{1}{2} \operatorname{Tr}(\Sigma^{-1} A)} (\det A)^{(n-p-1)/2}.$$

For p=1 and $\Sigma=1$ this reduces to the univariate Pearson χ^2 density. The case p=2 was obtained by Fisher in 1915 and for general p by Wishart in 1928 using geometrical arguments. Most modern proofs follow James.

Importance of Wishart density

Fact: the sample covariance matrix, S, is $W_p(n, \frac{1}{n}\Sigma)$ where

$$S := \frac{1}{n} \sum_{j=1}^{N} (X_i - \overline{X}) \otimes (X_j - \overline{X}), \ N = n+1,$$

and X_j , $j=1,\ldots,N$, are independent $N_p(\mu,\Sigma)$ random vectors, and $\overline{X}=\frac{1}{N}\sum_j X_j$.

Importance of Wishart density

Fact: the sample covariance matrix, S, is $W_p(n, \frac{1}{n}\Sigma)$ where

$$S := \frac{1}{n} \sum_{j=1}^{N} (X_i - \overline{X}) \otimes (X_j - \overline{X}), \ N = n+1,$$

and X_j , $j=1,\ldots,N$, are independent $N_p(\mu,\Sigma)$ random vectors, and $\overline{X}=\frac{1}{N}\sum_j X_j$.

Principle component analysis, a multivariate data reduction technique, requires the eigenvalues of the sample covariance matrix; in particular, the largest eigenvalue (the largest principle component variance) is most important.

Joint pdf for Wishart matrix eigenvalues

Theorem (James 1964). If A is $W_p(n, \Sigma)$ with $n \geq p$ the joint density function of the eigenvalues ℓ_1, \ldots, ℓ_p of A is

$$\frac{\pi^{p^{2}/2}2^{-pn/2} \left(\det \Sigma\right)^{-n/2}}{\Gamma_{p}(p/2)\Gamma_{p}(n/2)} \prod_{j=1}^{p} \ell_{j}^{(n-p-1)/2} \prod_{j< k} (\ell_{j} - \ell_{k})$$

$$\cdot \int_{\mathbb{O}(p)} e^{-\frac{1}{2}\operatorname{Tr}(\Sigma^{-1}HLH^{t})} dH$$

where $\mathbb{O}(p)$ is the orthogonal group of $p \times p$ matrices, dH is normalized Haar measure and L is the diagonal matrix $\mathrm{diag}(\ell_1,\ldots,\ell_p)$. (We take $\ell_1>\ell_2>\cdots>\ell_p$.)

$$\frac{\pi^{p^{2}/2}2^{-pn/2} \left(\det \Sigma\right)^{-n/2}}{\Gamma_{p}(p/2)\Gamma_{p}(n/2)} \prod_{j=1}^{p} \ell_{j}^{(n-p-1)/2} \prod_{j< k} (\ell_{j} - \ell_{k})$$

$$\cdot \int_{\mathbb{O}(p)} e^{-\frac{1}{2}\operatorname{Tr}(\Sigma^{-1}HLH^{t})} dH$$

$$\frac{\pi^{p^{2}/2}2^{-pn/2} (\det \Sigma)^{-n/2}}{\Gamma_{p}(p/2)\Gamma_{p}(n/2)} \prod_{j=1}^{p} \ell_{j}^{(n-p-1)/2} \prod_{j< k} (\ell_{j} - \ell_{k})$$

$$\cdot \int_{\mathbb{O}(p)} e^{-\frac{1}{2} \operatorname{Tr}(\Sigma^{-1} H L H^{t})} dH$$

Problem: the integral over the orthogonal group $\mathbb{O}(p)$.

$$\frac{\pi^{p^{2}/2}2^{-pn/2} (\det \Sigma)^{-n/2}}{\Gamma_{p}(p/2)\Gamma_{p}(n/2)} \prod_{j=1}^{p} \ell_{j}^{(n-p-1)/2} \prod_{j< k} (\ell_{j} - \ell_{k})$$

$$\cdot \int_{\mathbb{O}(p)} e^{-\frac{1}{2} \operatorname{Tr}(\Sigma^{-1} H L H^{t})} dH$$

Problem: the integral over the orthogonal group $\mathbb{O}(p)$.

No known closed formula though James and Constantine developed the theory of *zonal polynomials* which allow one to write infinite series expansions for this integral.

$$\frac{\pi^{p^{2}/2}2^{-pn/2} \left(\det \Sigma\right)^{-n/2}}{\Gamma_{p}(p/2)\Gamma_{p}(n/2)} \prod_{j=1}^{p} \ell_{j}^{(n-p-1)/2} \prod_{j< k} (\ell_{j} - \ell_{k})$$

$$\cdot \int_{\mathbb{O}(p)} e^{-\frac{1}{2}\operatorname{Tr}(\Sigma^{-1}HLH^{t})} dH$$

Expansions converge slowly and zonal polynomials themselves lack explicit formulas such as are available for Schur polynomials.

$$\frac{\pi^{p^{2}/2}2^{-pn/2} (\det \Sigma)^{-n/2}}{\Gamma_{p}(p/2)\Gamma_{p}(n/2)} \prod_{j=1}^{p} \ell_{j}^{(n-p-1)/2} \prod_{j< k} (\ell_{j} - \ell_{k})$$

$$\cdot \int_{\mathbb{O}(p)} e^{-\frac{1}{2} \operatorname{Tr}(\Sigma^{-1} H L H^{t})} dH$$

Expansions converge slowly and zonal polynomials themselves lack explicit formulas such as are available for Schur polynomials.

For complex Wishart matrices, the group integral is over the unitary group $\mathbb{U}(p)$; this integral can be evaluated using the Harish-Chandra-Itzykson-Zuber integral (Zinn–Justin '03).

There is one important case where the integral can be (trivially) evaluated.

Corollary. If $\Sigma = I_p$, then the joint density simplifies to

$$\frac{\pi^{p^2/2} 2^{-pn/2} \left(\det \Sigma\right)^{-n/2}}{\Gamma_p(p/2) \Gamma_p(n/2)} \prod_{j=1}^p \ell_j^{(n-p-1)/2} \exp\left(-\frac{1}{2} \sum_j \ell_j\right) \prod_{j < k} (\ell_j - \ell_k)$$

A is $W_p(n, I_p)$ with eigenvalues $\ell_1 > \cdots > \ell_p$.

A is $W_p(n, I_p)$ with eigenvalues $\ell_1 > \cdots > \ell_p$.

Definition.

$$\mu_{np} = \left(\sqrt{n-1} + \sqrt{p}\right)^2,$$

$$\sigma_{np} = \left(\sqrt{n-1} + \sqrt{p}\right) \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{p}}\right)^{1/3}.$$

A is $W_p(n, I_p)$ with eigenvalues $\ell_1 > \cdots > \ell_p$.

Definition.

$$\mu_{np} = \left(\sqrt{n-1} + \sqrt{p}\right)^2,$$

$$\frac{1}{2} + \sqrt{p} = \left(\sqrt{n-1} + \sqrt{p}\right)^2$$

$$\sigma_{np} = \left(\sqrt{n-1} + \sqrt{p}\right) \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{p}}\right)^{1/3}.$$

Theorem (Johnstone '01). Under the null hypothesis $\Sigma=I_p$, if $n,p\to\infty$ such that $n/p\to\gamma, 0<\gamma<\infty$, then

$$\frac{\ell_1 - \mu_{np}}{\sigma_{np}} \xrightarrow{\mathscr{D}} F_1(s, 1).$$

Theorem (Soshnikov, '02). If $n,p\to\infty$ such that $n/p\to\gamma, 0<\gamma<\infty$, then

$$\frac{\ell_m - \mu_{np}}{\sigma_{np}} \xrightarrow{\mathscr{D}} F_1(s, m), \ m = 1, 2, \dots$$

Theorem (Soshnikov, '02). If $n,p\to\infty$ such that $n/p\to\gamma, 0<\gamma<\infty$, then

$$\frac{\ell_m - \mu_{np}}{\sigma_{np}} \xrightarrow{\mathscr{D}} F_1(s, m), \ m = 1, 2, \dots$$

Important additional assumption: $n - p = O(p^{1/3})$.

Theorem (Soshnikov, '02). If $n,p\to\infty$ such that $n/p\to\gamma, 0<\gamma<\infty$, then

$$\frac{\ell_m - \mu_{np}}{\sigma_{np}} \xrightarrow{\mathscr{D}} F_1(s, m), \ m = 1, 2, \dots$$

Important additional assumption: $n - p = O(p^{1/3})$.

Generalization of Johnstone's proof ('01) together with results of Dieng ('05) show this restriction can be removed.

Theorem (Soshnikov, '02). If $n,p\to\infty$ such that $n/p\to\gamma, 0<\gamma<\infty$, then

$$\frac{\ell_m - \mu_{np}}{\sigma_{np}} \xrightarrow{\mathscr{D}} F_1(s, m), \ m = 1, 2, \dots$$

Important additional assumption: $n - p = O(p^{1/3})$.

Generalization of Johnstone's proof ('01) together with results of Dieng ('05) show this restriction can be removed.

Subsequently, El Karoui ('03) extended Soshnikov's Theorem to $0 < \gamma \le \infty$; extension to $\gamma = \infty$ is important for modern statistics where $p \gg n$ arises in applications.

Soshnikov lifted the Gaussian assumption, again establishing a F_1 universality theorem.

Soshnikov lifted the Gaussian assumption, again establishing a F_1 universality theorem.

Redefine the $n \times p$ matrices $X = \{x_{i,j}\}$ such that $A = X^t X$ to satisfy

- 1. $\mathbb{E}(x_{ij}) = 0$, $\mathbb{E}(x_{ij}^2) = 1$.
- 2. The random variables x_{ij} have symmetric laws of distribution.
- 3. All even moments of x_{ij} are finite, and they decay at least as fast as a Gaussian at infinity:

$$\mathbb{E}(x_{ij}^{2m}) \leq (\operatorname{const} m)^m$$
 .

4.
$$n-p = O(p^{1/3})$$
.

With these assumptions,

Theorem (Soshnikov '02).

$$\frac{\ell_m - \mu_{np}}{\sigma_{np}} \xrightarrow{\mathscr{D}} F_1(s, m), \ m = 1, 2, \dots$$

With these assumptions,

Theorem (Soshnikov '02).

$$\frac{\ell_m - \mu_{np}}{\sigma_{np}} \xrightarrow{\mathscr{D}} F_1(s, m), \ m = 1, 2, \dots$$

It is an important open problem to remove the restriction $n-p={\rm O}(p^{1/3})$.

With these assumptions,

Theorem (Soshnikov '02).

$$\frac{\ell_m - \mu_{np}}{\sigma_{np}} \xrightarrow{\mathscr{D}} F_1(s, m), \ m = 1, 2, \dots$$

It is an important open problem to remove the restriction $n-p={\rm O}(p^{1/3})$.

Deift and Gioev ('05), building on the work of Widom ('99), proved F_1 universality when the Gaussian weight function $\exp(-x^2)$ is replaced by $\exp(-V(x))$ where V is an even degree polynomial with positive leading coefficient.

In the unitary case ($\beta=2$), define the trace class operator K_2 on $L^2(s,\infty)$ with *Airy kernel*

$$K_{\operatorname{Ai}}(x,y) := \frac{\operatorname{Ai}(x)\operatorname{Ai}'(y) - \operatorname{Ai}'(x)\operatorname{Ai}(y)}{x-y} = \int_0^\infty \operatorname{Ai}(x+z)\operatorname{Ai}(y+z)\,dz$$

and associated Fredholm determinant, $0 \le \lambda \le 1$,

$$D_2(s,\lambda) = \det(I - \lambda K_2).$$

In the unitary case ($\beta = 2$), define the trace class operator K_2 on $L^2(s, \infty)$ with *Airy kernel*

$$K_{\operatorname{Ai}}(x,y) := \frac{\operatorname{Ai}(x)\operatorname{Ai}'(y) - \operatorname{Ai}'(x)\operatorname{Ai}(y)}{x-y} = \int_0^\infty \operatorname{Ai}(x+z)\operatorname{Ai}(y+z)\,dz$$

and associated Fredholm determinant, $0 \le \lambda \le 1$,

$$D_2(s,\lambda) = \det(I - \lambda K_2).$$

Then

$$F_2(s, m+1) - F_2(s, m) = \frac{(-1)^m}{m!} \frac{d^m}{d\lambda^m} D_2(s, \lambda) \big|_{\lambda=1}, \quad m \ge 0,$$

where $F_2(s,0) \equiv 0$

$$K_4(x,y) := \frac{1}{2} \begin{pmatrix} S_4(x,y) & SD_4(x,y) \\ IS_4(x,y) & S_4(y,x) \end{pmatrix}$$

$$K_4(x,y) := \frac{1}{2} \begin{pmatrix} S_4(x,y) & SD_4(x,y) \\ IS_4(x,y) & S_4(y,x) \end{pmatrix}$$

where

$$S_4(x,y) = K_{\mathrm{Ai}}(x,y) - \frac{1}{2}\operatorname{Ai}(x,y) \int_y^\infty \operatorname{Ai}(z)\,dz,$$

$$SD_4(x,y) = -\partial_y S_4(x,y) \text{ and } IS_4(x,y) = \varepsilon S_4(x,y)$$

$$K_4(x,y) := \frac{1}{2} \begin{pmatrix} S_4(x,y) & SD_4(x,y) \\ IS_4(x,y) & S_4(y,x) \end{pmatrix}$$

where

$$S_4(x,y) = K_{\mathrm{Ai}}(x,y) - \frac{1}{2}\operatorname{Ai}(x,y) \int_y^\infty \operatorname{Ai}(z) \, dz,$$

$$SD_4(x,y) = -\partial_y S_4(x,y) \text{ and } IS_4(x,y) = \varepsilon S_4(x,y)$$

and the associated Fredholm determinant, $0 \le \lambda \le 1$,

$$D_4(s,\lambda) = \det(I - \lambda K_4 \chi_{(s,\infty)}).$$

In the orthogonal case ($\beta = 1$)

$$K_1(x,y) := \begin{pmatrix} S_1(x,y) & SD_1(x,y) \\ IS_1(x,y) - \varepsilon(x,y) & S_1(y,x) \end{pmatrix}$$

In the orthogonal case ($\beta = 1$)

$$K_1(x,y) := \begin{pmatrix} S_1(x,y) & SD_1(x,y) \\ IS_1(x,y) - \varepsilon(x,y) & S_1(y,x) \end{pmatrix}$$

where

$$\begin{split} \varepsilon(x-y) &= \frac{1}{2}\operatorname{sgn}(x-y). \\ S_1(x,y) &= K_{\operatorname{Ai}}(x,y) - \frac{1}{2}\operatorname{Ai}(x) \, \left(1 - \int_y^\infty \operatorname{Ai}(z) \, dz\right), \\ SD_1(x,y) &= -\partial_y S_1(x,y) \quad \text{and} \quad IS_1(x,y) = \varepsilon S_1(x,y) \end{split}$$

In the orthogonal case ($\beta = 1$)

$$K_1(x,y) := \begin{pmatrix} S_1(x,y) & SD_1(x,y) \\ IS_1(x,y) - \varepsilon(x,y) & S_1(y,x) \end{pmatrix}$$

where

$$\begin{split} \varepsilon(x-y) &= \frac{1}{2}\operatorname{sgn}(x-y). \\ S_1(x,y) &= K_{\operatorname{Ai}}(x,y) - \frac{1}{2}\operatorname{Ai}(x) \, \left(1 - \int_y^\infty \operatorname{Ai}(z) \, dz\right), \\ SD_1(x,y) &= -\partial_y S_1(x,y) \quad \text{and} \quad IS_1(x,y) = \varepsilon S_1(x,y) \end{split}$$

$$D_1(s,\lambda) = \det_2(I - \lambda K_1 \chi_{(s,\infty)})$$

Recall that in the unitary ($\beta = 2$) case we have the recurrence

$$F_2(s, m+1) - F_2(s, m) = \frac{(-1)^m}{m!} \frac{d^m}{d \lambda^m} D_2(s, \lambda) \big|_{\lambda=1}, \quad m \ge 0,$$

where $F_2(s,0) \equiv 0$.

Recall that in the unitary ($\beta = 2$) case we have the recurrence

$$F_2(s, m+1) - F_2(s, m) = \frac{(-1)^m}{m!} \frac{d^m}{d \lambda^m} D_2(s, \lambda) \big|_{\lambda=1}, \quad m \ge 0,$$

where $F_2(s,0) \equiv 0$.

Similarly in the orthogonal and symplectic ($\beta = 1, 4$) case

$$F_{\beta}(s, m+1) - F_{\beta}(s, m) = \frac{(-1)^m}{m!} \frac{d^m}{d\lambda^m} D_{\beta}^{1/2}(s, \lambda)|_{\lambda=1}, \quad m \ge 0,$$

where $\beta = 1, 4$ and $F_{\beta}(s, 0) \equiv 0$

Theorem (Clarkson, McLeod, '88). : There exist a unique solution $q(x,\lambda)$ to the Painlevé II equation

$$q'' = x q + 2 q^3$$

such that $q \to \sqrt{\lambda}$ Ai as $x \to \infty$ and Ai(x) is the solution to the Airy equation that decays like $\frac{1}{2}\pi^{-1/2}x^{-1/4} \, \exp\left(-\frac{2}{3}\,x^{3/2}\right)$ at $+\infty$.

Theorem (Clarkson, McLeod, '88). : There exist a unique solution $q(x,\lambda)$ to the Painlevé II equation

$$q'' = x q + 2 q^3$$

such that $q \to \sqrt{\lambda}$ Ai as $x \to \infty$ and Ai(x) is the solution to the Airy equation that decays like $\frac{1}{2}\pi^{-1/2}x^{-1/4} \, \exp\left(-\frac{2}{3}\,x^{3/2}\right)$ at $+\infty$.

Definition.

$$\mu(s,\lambda) := \int_{s}^{\infty} q(x,\lambda) dx,$$
$$\tilde{\lambda} := 2\lambda - \lambda^{2},$$

We have the following (computationally useful) Painlevé representations

We have the following (computationally useful) Painlevé representations

Theorem (Tracy & Widom '94).

$$D_2(s,\lambda) = \exp\left[-\int_s^\infty (x-s) q^2(x,\lambda) dx\right].$$

We have the following (computationally useful) Painlevé representations

Theorem (Tracy & Widom '94).

$$D_2(s,\lambda) = \exp\left[-\int_s^\infty (x-s) q^2(x,\lambda) dx\right].$$

Theorem (Dieng '05).

$$D_1(s,\lambda) = D_2(s,\tilde{\lambda}) \frac{\lambda - 1 - \cosh\mu(s,\tilde{\lambda}) + \sqrt{\tilde{\lambda}} \sinh\mu(s,\tilde{\lambda})}{\lambda - 2},$$

$$D_4(s,\lambda) = D_2(s,\lambda) \cosh^2\left(\frac{\mu(s,\lambda)}{2}\right).$$

We have the following (computationally useful) Painlevé representations

Theorem (Tracy & Widom '94).

$$D_2(s,\lambda) = \exp\left[-\int_s^\infty (x-s) q^2(x,\lambda) dx\right].$$

Theorem (Dieng '05).

$$D_1(s,\lambda) = D_2(s,\tilde{\lambda}) \frac{\lambda - 1 - \cosh\mu(s,\tilde{\lambda}) + \sqrt{\tilde{\lambda}} \sinh\mu(s,\tilde{\lambda})}{\lambda - 2},$$

$$D_4(s,\lambda) = D_2(s,\lambda) \cosh^2\left(\frac{\mu(s,\lambda)}{2}\right).$$

Software: http://math.arizona.edu/~momar

If S_n is a sum of i.i.d. random variables X_j , each with mean μ and variance σ^2 , the distribution F_n of the normalized random variable $(S_n - n\mu)/(\sigma\sqrt{n})$ satisfies the Edgeworth expansion

$$F_n(x) - \Phi(x) = \phi(x) \sum_{j=3}^r n^{-\frac{1}{2}j+1} R_j(x) + o(n^{-\frac{1}{2}r+1})$$

uniformly in x; Φ is the standard normal distribution with density ϕ , and R_j are polynomials depending only on $\mathbb{E}(X_j^k)$ but not on n and r (or the underlying distribution of the X_j).

Following Tracy and Widom we define

$$u_i := u_i(s) = \int_s^\infty q(x)x^i \operatorname{Ai}(x) dx,$$
 $v_i := v_i(s) = \int_s^\infty q(x)x^i \operatorname{Ai}'(x) dx$

and

$$w_i := w_i(s) = \int_s^\infty q'(x)x^i \operatorname{Ai}'(x) dx + u_0(s)v_i(s)$$

Following Tracy and Widom we define

$$u_i := u_i(s) = \int_s^\infty q(x)x^i \operatorname{Ai}(x) dx,$$

$$v_i := v_i(s) = \int_s^\infty q(x) x^i \operatorname{Ai}'(x) dx$$

and

$$w_i := w_i(s) = \int_s^\infty q'(x)x^i \operatorname{Ai}'(x) dx + u_0(s)v_i(s)$$

Let c be an arbitrary constant (tuning parameter) and

$$E(s) = 2w_1 - 3u_2 + (-20c^2 + 3)v_0 + u_1v_0 - u_0v_1 + u_0v_0^2 - u_0^2w_0,$$

Theorem (Choup '06). Setting

$$t = (2(n+c))^{\frac{1}{2}} + 2^{-\frac{1}{2}}n^{-\frac{1}{6}}s$$

Then as $n \to \infty$

$$F_{n,2}(t) = F_2(s)\left\{1 + c u_0(s) n^{-\frac{1}{3}} - \frac{1}{20} E(s) n^{-\frac{2}{3}}\right\} + O(n^{-1})$$

uniformly in s.

One key consequence of Choup's work is the expansion for $R_n(x,y)=(I-K_{n,2}\chi_{(s,\infty)})$.

One key consequence of Choup's work is the expansion for $R_n(x,y)=(I-K_{n,2}\chi_{(s,\infty)})$. Let

$$x = (2(n+c))^{\frac{1}{2}} + 2^{-\frac{1}{2}}n^{-\frac{1}{6}}X, \quad y = (2(n+c))^{\frac{1}{2}} + 2^{-\frac{1}{2}}n^{-\frac{1}{6}}Y$$

$$Q_i(s) := (I - K_{\mathsf{A}\mathsf{i}})X^i\,\mathsf{A}\mathsf{i}(X)$$
 and $P_i(s) := (I - K_{\mathsf{A}\mathsf{i}})X^i\,\mathsf{A}\mathsf{i}'(X)$

One key consequence of Choup's work is the expansion for $R_n(x,y)=(I-K_{n,2}\chi_{(s,\infty)})$. Let

$$x = (2(n+c))^{\frac{1}{2}} + 2^{-\frac{1}{2}}n^{-\frac{1}{6}}X, \quad y = (2(n+c))^{\frac{1}{2}} + 2^{-\frac{1}{2}}n^{-\frac{1}{6}}Y$$

$$Q_i(s) := (I - K_{Ai})X^i \operatorname{Ai}(X)$$
 and $P_i(s) := (I - K_{Ai})X^i \operatorname{Ai}'(X)$

Then

$$R_{n}(x,y) = R(X,Y) - c Q \otimes Q n^{-1/3} + \frac{n^{-2/3}}{20} [P_{1} \otimes P + P \otimes P_{1} - Q_{2} \otimes Q - Q_{1} \otimes Q_{1}]$$

$$-Q \otimes Q_{2} + \frac{3 - 20 c^{2}}{2} (P \otimes Q + Q \otimes P) + \frac{1}{2} (P \otimes Q \otimes Q) + O(n^{-1})$$

In the $\beta=1,4$ cases we have the formulas (Tracy and Widom)

$$F_{n,1}(t) = (1 - \tilde{v}_{\varepsilon}) \left(1 - \frac{1}{2} \mathcal{R}_{1}\right) - \frac{1}{2} (q_{\varepsilon} - c_{\varphi}) \mathcal{P}_{1},$$

$$F_{n,4}(t/\sqrt{2}) = (1 - \tilde{v}_{\varepsilon}) \left(1 + \frac{1}{2} \mathcal{R}_{4}\right) + \frac{1}{2} q_{\varepsilon} \mathcal{P}_{4},$$

In the $\beta=1,4$ cases we have the formulas (Tracy and Widom)

$$F_{n,1}(t) = (1 - \tilde{v}_{\varepsilon}) \left(1 - \frac{1}{2} \mathcal{R}_{1}\right) - \frac{1}{2} (q_{\varepsilon} - c_{\varphi}) \mathcal{P}_{1},$$

$$F_{n,4}(t/\sqrt{2}) = (1 - \tilde{v}_{\varepsilon}) \left(1 + \frac{1}{2} \mathcal{R}_{4}\right) + \frac{1}{2} q_{\varepsilon} \mathcal{P}_{4},$$

All quantities are expressible in terms of $R_n(x,y)$ and other quantities whose known expansions can be used in the above formulas. Details are rather messy, so we leave them for private discussions.