Global fluctuations for the β -Hermite and β -Laguerre ensembles

Ioana Dumitriu

joint work with Ofer Zeitouni

University of Washington (starting 09/06)

July 13, 2006

Outline.

- 1. β -ensembles: Hermite as generalized GOE, GUE, GSE, Laguerre as generalized $Wishart\ real$, complex, quaternion.
- 2. Semicircular laws and global fluctuations.
- 3. Sketch of proof for the Hermite case.

Gaussian orthogonal, unitary, and symplectic ensembles.

$$\bullet \mathbb{R}, \beta = 1: A = \text{randn(n)}, S = (A + A')/2;$$

•
$$\mathbb{C}$$
, $\beta = 2$: $A = \text{randn(n)} + i * \text{randn(n)}$, $H = (A + A')/2$;

•
$$\mathbb{H}$$
, $\beta = 4$: $A = \text{randn(n)} + i * \text{randn(n)} + j * \text{randn(n)} + k * \text{randn(n)}$, $D = (A + A')/2$.

Eigenvalue $(\Lambda := (\lambda_1, \dots, \lambda_n))$ distributions:

$$\rho_{\beta}(\Lambda) \propto \prod_{1 \leq i < j \leq n} |\lambda_i - \lambda_j|^{\beta} e^{-\sum_{i=1}^n \lambda_i^2/2}$$

$$\equiv |\Delta(\Lambda)|^{\beta} e^{-\sum_{i=1}^n \lambda_i^2/2}.$$

General β -Hermite (β -Gaussian) ensembles.

Defined through eigenvalue p.d.f. for $\beta > 0$:

$$\alpha \qquad \prod_{1 \le i < j \le n} |\lambda_i - \lambda_j|^{\beta} e^{-\sum_{i=1}^n \lambda_i^2/2}$$

$$\equiv |\Delta(\Lambda)|^{\beta} e^{-\sum_{i=1}^n \lambda_i^2/2}.$$

General β -Hermite (β -Gaussian) ensembles.

...or, equivalently, through their matrix model (with eigenvalue p.d.f. shown before):

$$H_{\beta} \sim \frac{1}{\sqrt{2}} \begin{pmatrix} N(0,2) & \chi_{(n-1)\beta} \\ \chi_{(n-1)\beta} & N(0,2) & \chi_{(n-2)\beta} \\ & \ddots & \ddots & \ddots \\ & & \chi_{2\beta} & N(0,2) & \chi_{\beta} \\ & & & \chi_{\beta} & N(0,2) \end{pmatrix}$$

(D. and Edelman, 2001)

Wishart real, complex, and quaternion ensembles.

•
$$\mathbb{R}$$
, $\beta = 1$: $A = \text{randn(m,n)}$; $W_1 = AA'$;

•
$$\mathbb{C}$$
, $\beta = 2$: $A = \text{randn}(m,n) + i*\text{randn}(m,n)$; $W_2 = AA'$;

•
$$\mathbb{H}$$
, $\beta = 4$: $A = \text{randn}(m,n) + i*\text{randn}(m,n) + ...$
 $j*\text{randn}(m,n) + k*\text{randn}(m,n)$; $W_4 = AA'$.

Eigenvalue $(\Lambda := (\lambda_1, \dots, \lambda_m))$ distributions:

$$\rho_{\beta,n}(\Lambda) \propto \prod_{1 \le i < j \le m} |\lambda_i - \lambda_j|^{\beta} \prod_{i=1}^m \lambda_i^{\beta(n-m+1)/2-1} e^{-\sum_{i=1}^m \lambda_i/2}$$

$$\equiv |\Delta(\Lambda)|^{\beta} \det(\Lambda)^{\beta(n-m+1)/2-1} e^{-\sum_{i=1}^m \lambda_i/2}.$$

General β -Laguerre (β -Wishart) ensembles.

Defined through eigenvalue p.d.f. for $\beta > 0$, $a > \frac{\beta}{2}(n-1)$:

$$\propto \prod_{1 \leq i < j \leq n} |\lambda_i - \lambda_j|^{\beta} \prod_{i=1}^n \lambda_i^{a - \frac{\beta}{2}(n-1) - 1} e^{-\lambda_i/2}$$

$$\equiv |\Delta(\Lambda)|^{\beta} \prod_{i=1}^n \lambda_i^{a - \frac{\beta}{2}(n-1) - 1} e^{-\lambda_i/2}.$$

General β -Laguerre (β -Wishart) ensembles.

...or, equivalently, through their matrix model (with eigenvalue p.d.f. shown before):

$$L_{\beta} = B_{\beta} B_{\beta}^{T} ,$$

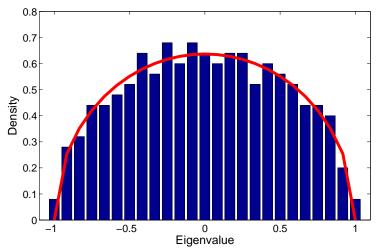
where

ore):
$$L_{\beta} = B_{\beta}B_{\beta}^{T},$$

$$B_{\beta} \sim \begin{pmatrix} \chi_{2a} & & \\ \chi_{\beta(m-1)} & \chi_{2a-\beta} & & \\ & \ddots & \ddots & \\ & & \chi_{\beta} & \chi_{2a-\beta(m-1)} \end{pmatrix}$$
 delman, 2001)

(D. and Edelman, 2001)

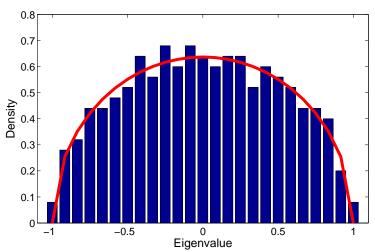
Semicircle Law.



Histogram of eig(S), where n = 300, A = randn(n), $S = (A + A')/(2\sqrt{2n})$

Works for all β -Hermite ensembles!

Semicircle Law.

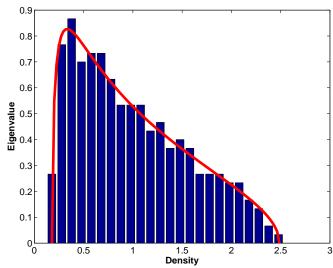


Histogram of eig(S), where $n=300,\,A=\mathrm{randn}(n),\,S=(A+A')/(2\sqrt{2n})$

Rigorously: Given any suitable function $h: [-1, 1] \to \mathbb{R}$,

$$\frac{1}{n} \sum_{i=1}^{n} h(\lambda_i) \to \frac{2}{\pi} \int_{-1}^{1} h(x) \sqrt{1 - x^2} \, dx$$

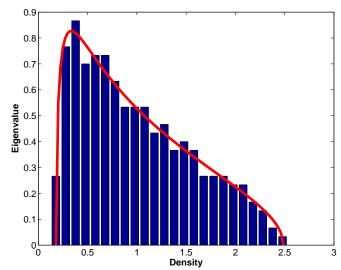
Marčenko-Pastur Law.



Histogram of eig(W), where $m=300,\ n=900,\ \gamma=1/3,\ A={\rm randn}(m,n), W=AA'\ \sqrt{\gamma/m}$

Works for all β -Laguerre ensembles!

Marčenko-Pastur Law.



Histogram of eig(W), where $m = 300, n = 900, \gamma = 1/3, A = randn(m, n), W = AA' \sqrt{\gamma/m}$

Rigorously: Given any suitable function $h: [-1,1] \to \mathbb{R}$, let $a = (1 - \sqrt{\gamma})^2$, $b = (1 + \sqrt{\gamma})^2$, then

$$\frac{1}{n} \sum_{i=1}^{n} h(\lambda_i) \rightarrow \frac{1}{2\pi\gamma} \int_{a}^{b} h(x) \frac{\sqrt{(b-x)(x-a)}}{x} dx$$

What about fluctuations from semicircle and Marčenko-Pastur laws?...

What about fluctuations from semicircle and Marčenko-Pastur laws?...

Fluctuations define Gaussian process.

Global fluctuations from semicircle and Marčenko-Pastur Laws.

CLT for Hermite. (Zeitouni and D., -)

Let h be a "nice" function, and λ_i , $i = \overline{1, n}$ the *scaled* eigenvalues of the β -Hermite ensemble. Then

$$\sum_{i=1}^{n} h(\lambda_i) - \frac{2n}{\pi} \int_{-1}^{1} h(x) \sqrt{1 - x^2} dx \implies N\left(\left(1 - \frac{2}{\beta}\right) \mu(h), \frac{2}{\beta} \sigma^2(h)\right).$$

"Nice" means **Lipschitz** on $[-1 - \epsilon, 1 + \epsilon]$ for some $\epsilon > 0$.

Works for **all** β .

Global fluctuations from semicircle and Marčenko-Pastur Laws.

CLT for Laguerre. (Zeitouni and D., -)

Let h be a "nice" function, and λ_i , $i = \overline{1, n}$ the *scaled* eigenvalues of the β -Laguerre ensemble (γ, a, b) as before). Then

$$\sum_{i=1}^{n} h(\lambda_i) - \frac{n}{2\pi\gamma} \int_a^b h(x) \frac{\sqrt{(b-x)(x-a)}}{x} dx \implies N\left(\left(1 - \frac{2}{\beta}\right) \mu(h), \frac{2}{\beta} \sigma^2(h)\right).$$

"Nice" means **Lipschitz** on $[-1 - \epsilon, 1 + \epsilon]$ for some $\epsilon > 0$.

Works for **all** β .

• Johansson, 1998

CLT for Hermite ensembles, all β , h differentiable, extra conditions. Also other even-degree polynomial potentials.

• Johansson, 1998

CLT for Hermite ensembles, all β , h differentiable, extra conditions. Also other even-degree polynomial potentials.

• Bai & Silverstein, 2004

CLT for Wishart-like complex matrices, h analytic.

• Johansson, 1998

CLT for Hermite ensembles, all β , h differentiable, extra conditions. Also other even-degree polynomial potentials.

• Bai & Silverstein, 2004

CLT for Wishart-like complex matrices, h analytic.

• Kusalik, Mingo, & Speicher, 2005

CLT for Wishart complex ($\beta = 2$), explicit calculation of covariance matrix, h polynomial. Calculation of covariances for any finite number of independent matrices.

• Johansson, 1998

CLT for Hermite ensembles, all β , h differentiable, extra conditions. Also other even-degree polynomial potentials.

• Bai & Silverstein, 2004

CLT for Wishart-like complex matrices, h analytic.

• Kusalik, Mingo, & Speicher, 2005

CLT for Wishart complex ($\beta = 2$), explicit calculation of covariance matrix, h polynomial. Calculation of covariances for any finite number of independent matrices.

• D. and Edelman, 2006

CLT for all β , Hermite and Laguerre, h polynomial. Use of matrix models for all β .

Outline of rest of the talk.

Use matrix methods, together with the "h polynomial" result of Edelman and D., to extend the class of h for which the Gaussian process is defined (in the talk, we only show this for Hermite).

- **1.** Reduction to compactly supported functions h (Gershgorin).
- 2. Proof for a slightly different matrix model (Guionnet-Zeitouni).
- 3. Tying up the loose ends (Lidskii, Gershgorin, Chebyshev).

Outline of rest of the talk.

Use matrix methods, together with the "h polynomial" result of Edelman and D., to extend the class of h for which the Gaussian process is defined (in the talk, we only show this for Hermite).

- **1.** Reduction to compactly supported functions h (Gershgorin).
- 2. Proof for a slightly different matrix model (Guionnet-Zeitouni).
- 3. Tying up the loose ends (Lidskii, Gershgorin, Chebyshev).

Sketch of idea.

Would like to approximate a "nice" function h by a sequence of polynomials p_n (on compact sets); remainder should be small with high probability.

Let $p_n \to h$ on $C \in \mathbb{R}$, $n||p_n - h|| \to 0$ (plus some other regularity). Then

$$\int_{-1}^{1} p_n(x) \sqrt{1 - x^2} dx \to \int_{-1}^{1} h(x) \sqrt{1 - x^2} dx ;$$

Need to show (e.g.) that for any C,

$$\Pr\left[\left| \sum_{i=1}^{n} h(\lambda_i) - \sum_{i=1}^{n} p_n(\lambda_i) \right| > C \right] \leq \frac{c}{C^2} ||p_n - h||.$$

Reduction to compactly supported functions.

We are essentially concerned with $\sum_{i=1}^{n} h(\lambda_i)$; we know (semicircle law) that

$$\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i} \to \mu_s ,$$

where $d\mu_s(x) = \frac{2}{\pi} \sqrt{1 - x^2}$.

Enough to show that the probability of at least one of the eigenvalues being large (outside $[-1 - \epsilon, 1 + \epsilon]$, for fixed $\epsilon > 0$) decays *exponentially* in n.

To show this we use Gershgorin's theorem.

Reduction to compactly supported functions.

Recall the *scaled* matrix

$$H_{\beta} \sim \frac{1}{2\sqrt{n\beta}} \begin{pmatrix} N(0,2) & \chi_{(n-1)\beta} & & & \\ \chi_{(n-1)\beta} & N(0,2) & \chi_{(n-2)\beta} & & & \\ & \ddots & \ddots & \ddots & \\ & & \chi_{2\beta} & N(0,2) & \chi_{\beta} \\ & & & \chi_{\beta} & N(0,2) \end{pmatrix}$$

All Gershgorin disks have centers distributed like $\tilde{c} N(0,1)/\sqrt{n}$, typical Gershgorin radius is distributed like $c \chi_{\alpha n}/\sqrt{n}$, $0 < \alpha < 1$.

But, for $\epsilon > 0$,

$$\Pr\left[(\tilde{c} | N(0,1) | + c \chi_{\alpha n}) > (1+\epsilon)\sqrt{n} \right] \le c_1 e^{-c_2 n},$$

q.e.d.

A very useful result.

Theorem. (Guionnet-Zeitouni, 2000)

Let $A = (a_{ij})$ be a random matrix such that a_{ij} have distributions ν which satisfy the log-Sobolev inequality with uniform constant c, i.e., for all differentiable f,

$$\int f^2 \log \frac{f^2}{\int f^2 d\nu} d\nu \le 2c \int |f'|^2 d\nu ,$$

then for any Lipschitz function h, for any C,

$$\Pr\left[\left|\sum_{i=1}^{n} h(\lambda_i) - E\left[\sum_{i=1}^{n} h(\lambda_i)\right]\right| > C\right] \le 2e^{-\frac{c_1}{h_{\mathcal{L}}}C^2},$$

where $h_{\mathcal{L}}$ is the Lipschitz constant for h.

except...

except...

the χ function does not satisfy log-Sobolev constraints.

except...

the χ function does not satisfy log-Sobolev constraints.

But the Gaussian does.

Fixup: approximate χ by Gaussian:

$$\chi_r \sim N(c_r, \frac{1}{\sqrt{2}}) + small.$$

Outline of rest of the talk.

Use matrix methods, together with the "h polynomial" result of Edelman and D., to extend the class of h for which the Gaussian process is defined (in the talk, we only show this for Hermite).

- **1.** Reduction to compactly supported functions h (Gershgorin).
- 2. Proof for a slightly different matrix model (Guionnet-Zeitouni).
- 3. Tying up the loose ends (Lidskii, Gershgorin, Chebyshev).

A slightly perturbed model.

The Guionnet-Zeitouni theorem works for

$$\tilde{H}_{\beta} \sim \frac{1}{2\sqrt{n\beta}} \begin{pmatrix} N(0,2) & N(c_{n-1},\frac{1}{2}) \\ N(c_{(n-1)},\frac{1}{2}) & N(0,2) & N(c_{(n-2)},\frac{1}{2}) \\ & \ddots & \ddots & \ddots \\ & & N(c_{2},\frac{1}{2}) & N(0,2) & N(c_{1},\frac{1}{2}) \\ & & & N(c_{1},\frac{1}{2}) & N(0,2) \end{pmatrix}$$

Outline of rest of the talk.

Use matrix methods, together with the "h polynomial" result of Edelman and D., to extend the class of h for which the Gaussian process is defined (in the talk, we only show this for Hermite).

- **1.** Reduction to compactly supported functions h (Gershgorin).
- 2. Proof for a slightly different matrix model (Guionnet-Zeitouni).
- 3. Tying up the loose ends (Lidskii, Gershgorin, Chebyshev).

Note that $H_{\text{diff}} = H_{\beta} - \tilde{H}_{\beta}$ looks, entry by entry, like

$$H_{\text{diff}} = O \begin{pmatrix} 0 & \frac{1}{\sqrt{n(n-1)}} & & \\ \frac{1}{\sqrt{n(n-1)}} & 0 & \frac{1}{\sqrt{n(n-2)}} & \\ & \ddots & \ddots & \ddots & \\ & & \frac{1}{\sqrt{2n}} & 0 & \frac{1}{\sqrt{n}} \\ & & & \frac{1}{\sqrt{n}} & 0 \end{pmatrix} \end{pmatrix}$$

and the variables have uniformly bounded variance.

If λ_i are eigenvalues of H_{β} and $\tilde{\lambda_i}$ are eigenvalues of $\tilde{H_{\beta}}$, then for a Lipschitz h (with $h_{\mathcal{L}}$)

$$\left| \sum_{i=1}^{n} h(\lambda_i) - \sum_{i=1}^{n} h(\tilde{\lambda}_i) \right| \leq h_{\mathcal{L}} \sum_{i=1}^{n} |\lambda_i - \tilde{\lambda}_i|.$$

If λ_i are eigenvalues of H_{β} and $\tilde{\lambda_i}$ are eigenvalues of $\tilde{H_{\beta}}$, then for a Lipschitz h (with $h_{\mathcal{L}}$)

$$\left| \sum_{i=1}^{n} h(\lambda_i) - \sum_{i=1}^{n} h(\tilde{\lambda}_i) \right| \leq h_{\mathcal{L}} \sum_{i=1}^{n} |\lambda_i - \tilde{\lambda}_i|.$$

By Lidskii's theorem,

$$\sum_{i=1}^{m} |\lambda_i - \tilde{\lambda_i}| \le \sum_{i=1}^{m} |\lambda_{\text{diff}_i}|,$$

where λ_{diff_i} are the eigenvalues of H_{diff} .

By Gershgorin,

$$\sum_{i=1}^{n} |\lambda_i - \tilde{\lambda_i}| \le \sum_{i=1}^{n} O\left(\frac{1}{\sqrt{n}\sqrt{i}}\right) ,$$

and thus by Chebyshev,

$$\Pr\left[\left|\sum_{i=1}^{n} h(\lambda_i) - \sum_{i=1}^{n} h(\tilde{\lambda}_i)\right| \ge C\right] \le h_{\mathcal{L}} \frac{c}{C^2}.$$

Wrap-up.

We obtained a (slightly) stronger CLT for β -Hermite and β -Laguerre ensembles, using a matrix-based analysis.

The largest class of functions we could define the Gaussian process on is **Lipschitz** on $[-1 - \epsilon, 1 + \epsilon]$, for some $\epsilon > 0$.

Natural technical condition: $\sigma^2(h) < \infty$.

Can regularity be relaxed to match this?...