Universality of distribution functions in random matrix theory

Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

Overview

- **▲** Universality
 - **▲** Local eigenvalue statistics
 - ▲ Fluctuations of the largest eigenvalue
- ▲ Connections outside RMT
 - **▲** Zeros of Riemann zeta function
 - **▲ Non-intersecting Brownian paths**
 - **▲ Tiling problem**
- **▲** Unitary ensembles
 - **▲** Determinantal point process
 - **▲** Precise formulation of universality
 - **▲** Universality in regular cases
- ▲ Universality classes in singular cases
 - ▲ Singular cases I and II and Painlevé equations
 - ▲ Spectral singularity

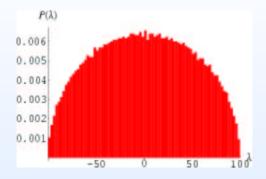
Gaussian ensembles

- ▲ Simplest ensembles are Gaussian ensembles.
- ▲ Matrix entries have normal distribution with mean zero. The entries are independent up to the constraints that are imposed by the symmetry class.
 - **▲** Gaussian Unitary Ensemble GUE: complex Hermitian matrices
 - ▲ Gaussian Orthogonal Ensemble GOE: real symmetric matrices
 - ▲ Gaussian Symplectic Ensemble GSE: self-dual quaternionic matrices

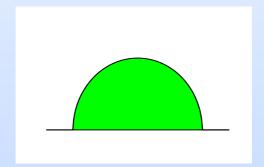
▲ Where are the eigenvalues?

Wigner's semi-circle law

 \blacktriangle Histogram of eigenvalues of large Gaussian matrix, size $10^4 \times 10^4$



lacktriangle After scaling of eigenvalues with a factor \sqrt{n} , there is a limiting mean eigenvalue distribution, known as Wigner's semi-circle law



▲ This is special for Gaussian ensembles (non-universal). Other limiting distributions for Wishart ensembles, Jacobi ensembles,...

Universality 1: Local eigenvalue statistics

- ▲ Global statistics of eigenvalues depend on the particular random matrix ensemble in contrast to local statistics. Distances distances between consecutive eigenvalues show regular behavior.
- ▲ Rescale eigenvalues around a certain value so that mean distance is one.

plot shows only a few rescaled eigenvalues of a very large GUE matrix

- ▲ This is the same behavior as seen in energy spectra in quantum physics.
- ▲ The repulsion between neighboring eigenvalues is very different from Poisson spacings.

Universality 1: Local eigenvalue statistics

- ▲ This local behavior of eigenvalues is not special for GUE.
 - ▲ It holds for large class of unitary ensembles $\boxed{\frac{1}{Z_n}e^{-n\operatorname{Tr} V(M)}dM}$ these are ensembles that have the same symmetry property as GUE.

Deift, Kriecherbauer, McLaughlin, Venakides, Zhou (1999)

- ▲ Local eigenvalue statistics is different for GOE and GSE which have different symmetry properties. Proof of universality for orthogonal and symplectic ensembles is more recent result

 Deift, Gioev (arxiv 2004)
- ▲ Universality fails at special points, such as end points of the spectrum, or points where eigenvalue density vanishes.
 - ▲ This gives rise to new universality classes.

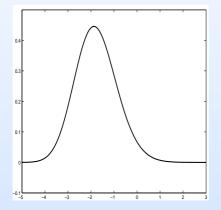
Universality 2: Largest eigenvalue

- ▲ Fluctuations of the largest eigenvalues of random matrices also show a universal behavior (depending on the symmetry class).
- ▲ For $n \times n$ GUE matrix, the largest eigenvalue grows like $\sqrt{2n}$ and has a standard deviation of the order $n^{-1/6}$.
- ▲ Centered and rescaled largest eigenvalue

$$\sqrt{2}n^{1/6}\left(\lambda_{\max}-\sqrt{2n}\right)$$

converges in distribution as $n \to \infty$ to a random variable with the Tracy-Widom distribution, described by Tracy, Widom in 1994.

- ▲ Same limit holds generically for unitary random matrix ensembles.
- ▲ Different TW-distributions for orthogonal and symplectic ensembles.



Density of Tracy-Widom distribution. The density is non-symmetric with top at -1.8 and different decay rates for $x\to +\infty$ and $x\to -\infty$

Tracy-Widom distribution

- lacktriangle There is no simple formula for the Tracy-Widom distribution F(s).
- ▲ First formula is as a Fredholm determinant:

$$F(s) = \det(I - A_s)$$

where A_s is the integral operator acting on $L^2(s,\infty)$ with kernel

$$\frac{\operatorname{Ai}(x)\operatorname{Ai}'(y) - \operatorname{Ai}'(x)\operatorname{Ai}(y)}{x - y}$$
 Airy kernel

and Ai is the Airy function.

Second formula

$$F(s) = \exp\left(-\int_{s}^{\infty} (x-s)q^{2}(x)dx\right)$$

where q(s) is a special solution of the Painlevé II equation

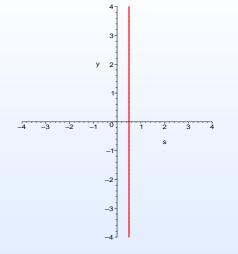
$$q''(s) = sq(s) + 2q^3(s)$$

Limit laws outside RMT

- ▲ Distribution functions of random matrix theory appear in various other domains of mathematics and physics.
 - **▲ Number theory**
 - \blacktriangle Riemann zeta-function, L-functions, ...
 - **▲** Representation theory
 - ▲ Young tableaux, large classical groups, ...
 - Random combinatorial structures
 - ▲ random permutations, random tilings, ...
 - **▲ Growth models in statistical physics**
 - ▲ last passage percolation, polynuclear growth, ...
- ▲ ..., as well as in applications in statistics, finance, information theory, ...

Riemann zeta function

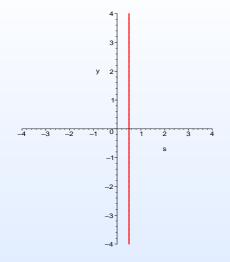
- \blacktriangle The zeta function $\zeta(s)=\sum\limits_{k=1}^{\infty}\frac{1}{k^s}$ has an analytic continuation to the complex plane.
- ▲ The non-trivial zeros of the zeta function are believed to be on the line ${\rm Re}\,s=1/2$. (Riemann hypothesis)



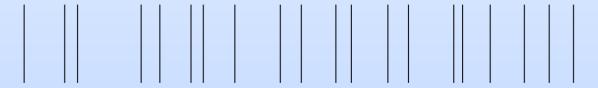
- ▲ Computational evidence: no non-real zeros have been found off the critical line.
- lacktriangleq 1,500,000,000 zeros have been found on the critical line.

Riemann zeta function

- ▲ The zeta function $\zeta(s) = \sum\limits_{k=1}^{\infty} \frac{1}{k^s}$ has an analytic continuation to the complex plane.
- ▲ The non-trivial zeros of the zeta function are believed to be on the line ${\rm Re}\,s=1/2$. (Riemann hypothesis)



▲ More computational evidence: Spacings between consecutive zeros on the critical line ${\rm Re}\,s=1/2$ (after appropriate scaling) show the same behavior as the spacings between eigenvalues of a large GUE matrix

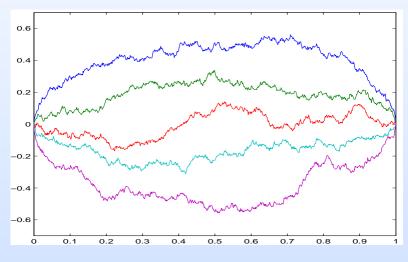


Zeros of $\zeta(s)$ on the critical line have the same

local behavior as the eigenvalues of a large random matrix

Non-intersecting Brownian motion paths

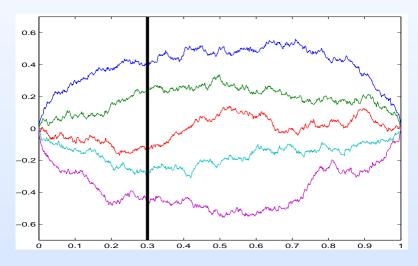
- ▲ Take n independent 1-dimensional Brownian motions with time in [0,1] conditioned so that:
 - ▲ All paths start and end at the same point.
 - ▲ The paths do not intersect at any intermediate time.



Five non-intersecting Brownian bridges

Non-intersecting Brownian motion

Remarkable fact: At any intermediate time the positions of the paths have exactly the same distribution as the eigenvalues of an $n \times n$ GUE matrix (up to a scaling factor).

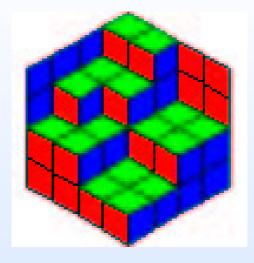


Positions of five non-intersecting Brownian paths behave the same as the eigenvalues of a 5×5 GUE matrix

▲ This interpretation is basic for the connection of random matrix theory with growth models of statistical physics.

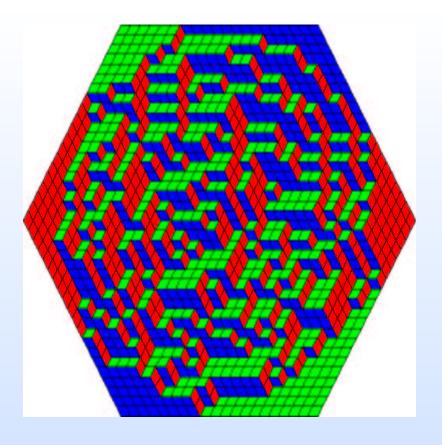
A random tiling problem

Hexagonal tiling with rhombi.



- ▲ May also be viewed as packing of boxes in a corner.
- ▲ Take a tiling at random.
 - ▲ What does a typical tiling look like, if the number of rhombi increases?

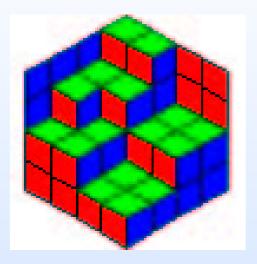
Typical random tiling

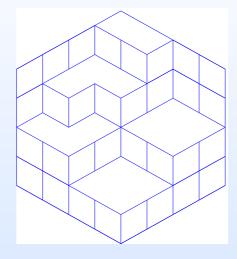


- **▲** Observation:
 - **▲** frozen regions near the corners,
 - **▲** disorder in the center.

Non-intersecting random walk

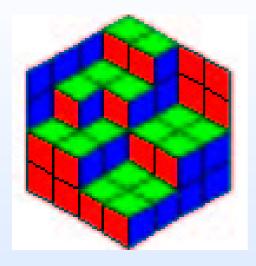
▲ Consider only blue and red rhombi.

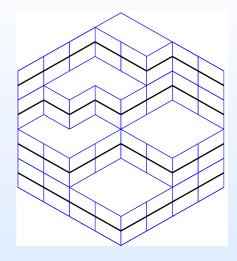




Non-intersecting random walk

▲ We can connect the left and the right with non-intersecting paths.





- ▲ A random tiling is the same as a number of non-intersecting random walks.
- ▲ As size increases: Tracy-Widom distribution governs the transition between frozen region and disordered region.

Baik, Kriecherbauer, McLaughlin, Miller, (arxiv 2003)

Other examples

▲ Longest increasing subsequence of random permutations

Baik, Deift, Johansson (1999)

▲ Polynuclear growth model (PNG)
Totally asymmetric exclusion process (TASEP)

Praehofer, Spohn, Ferrari

Imamura, Sasamoto

Buses in Cuernavaca, Mexico

Krbalek, Seba

Baik, Borodin, Deift, Suidan

▲ Airplane boarding problem

Bachmat

Universality classes in unitary ensembles

lacktriangle Probability measure on $n \times n$ Hermitian matrices

$$\frac{1}{Z_n}e^{-n\operatorname{Tr}V(M)}dM$$

where $dM = \prod_j dM_{jj} \prod_{j < k} d\operatorname{Re} M_{jk} d\operatorname{Im} M_{jk}$

- ▲ This is a Gaussian ensemble for $V(x) = \frac{1}{2}x^2$
- ▲ Joint eigenvalue density

$$\frac{1}{\tilde{Z}_n} \prod_{i < j} |x_i - x_j|^2 \prod_{j=1}^n e^{-nV(x_j)}$$

wher

Determinantal point process

It is special about unitary ensembles that the eigenvalues follow a determinantal point process. This means means that there is a kernel $K_n(x,y)$ so that all eigenvalue correlation functions are expressed as determinants

$$\mathcal{R}_m(x_1, x_2, \dots, x_k) = \det [K_n(x_i, x_j)]_{i,j=1,\dots,m}$$

 $\mathcal{R}_m(x_1,x_2,\dots,x_k) = \det\left[K_n(x_i,x_j)\right]_{i,j=1,\dots,m}$ \Lambda \int_a^b K_n(x,x)dx is expected number of eigenvalues in [a, b]

Orthogonal polynomial kernel

Let $P_{k,n}(x)$ be the kth degree monic orthogonal polynomial with respect to $e^{-nV(x)}$

$$\int_{-\infty}^{\infty} P_{k,n}(x)P_{j,n}(x)e^{-nV(x)}dx = h_{k,n}\delta_{j,k}.$$

Correlation kernel is equal to

$$K_n(x,y) = e^{-\frac{1}{2}n(V(x)+V(y))} \sum_{k=0}^{n-1} \frac{1}{h_{k,n}} P_{k,n}(x) P_{k,n}(y)$$

$$= e^{-\frac{1}{2}n(V(x)+V(y))} \frac{h_{n,n}}{h_{n-1,n}} \frac{P_{n,n}(x) P_{n-1,n}(y) - P_{n-1,n}(x) P_{n,n}(y)}{x-y}$$

Christoffel-Darboux formula

Asymptotical questions

- lacktriangle All information is contained in the correlation kernel K_n .
- ▲ Asymptotic questions deal with the global regime

$$\rho_V(x) = \lim_{n \to \infty} \frac{1}{n} K_n(x, x)$$

- ▲ and with the local regime
 - lacktriangle Choose x^* and center and scale eigenvalues around x^*

$$\lambda \mapsto (cn)^{\gamma}(\lambda - x^*)$$

▲ This is a determinantal point process with rescaled kernel

$$\frac{1}{(cn)^{\gamma}}K_n\left(x^* + \frac{x}{(cn)^{\gamma}}, x^* + \frac{y}{(cn)^{\gamma}}\right)$$

lacktriangle Determine γ and calculate limit of rescaled kernel. Limits turn out to be universal, depending only on the nature of x^* in the global regime.

Global regime

 \blacktriangle In limit $n\to\infty$, the mean eigenvalue density has a limit $\rho=\rho_V$ which minimizes

$$\iint \log \frac{1}{|x-y|} \rho(x) \rho(y) dx dy + \int V(x) \rho(x) dx$$

among density functions $\rho \geq 0$, $\int \rho(x) dx = 1$.

▲ Equilibrium conditions

$$2\int\log\frac{1}{|x-y|}\rho(y)dy+V(x)=const \text{ on support of }\rho$$

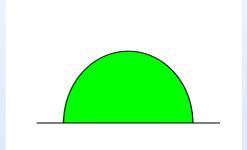
$$2\int\log\frac{1}{|x-y|}\rho(y)dy+V(x)\geq const \text{ outside support }$$

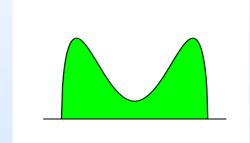
Regular and singular cases

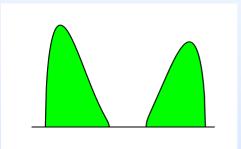
lacktriangle If V is real analytic, then

Deift, Kriecherbauer, McLaughlin (1998)

- lack supp(
 ho) is a finite union of disjoint intervals,
- lacktriangleq
 ho(x) is analytic on the interior of each interval
- $ho(x) \sim |x-a|^{2k+1/2}$ at an endpoint a for some $k=0,1,2,\ldots$



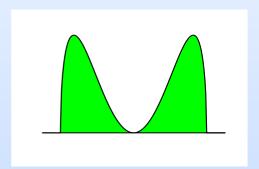


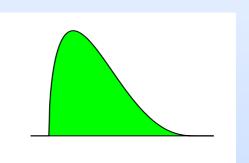


▲ Regular case: positive in interior, square root vanishing at endpoints, and strict inequality in

$$2\int \log \frac{1}{|x-y|} \rho(y) dy + V(x) > const$$
 outside the support of ρ

- lacktriangle Singular cases correspond to possible change in number of intervals if parameters in the external field V change.
 - lacktriangle Singular case I: ho vanishes at an interior point
 - ▲ Singular case II: ρ vanishes to higher order than square root at an endpoint.
 - ▲ Singular case III: equality in equilibrium inequality somewhere outside the support







Local regime

Limit of rescaled kernel

$$\frac{1}{(cn)^{\gamma}}K_n\left(x^* + \frac{x}{(cn)^{\gamma}}, x^* + \frac{y}{(cn)^{\gamma}}\right)$$

lacktriangle For x^* in the bulk, we take $\gamma=1$, $c=
ho(x^*)$, and limit is the sine

kernel
$$\frac{\sin \pi (x-y)}{\pi (x-y)}$$

Pastur, Shcherbina (1997), Bleher, Its (1999)

Deift, Kriecherbauer, McLaughlin, Venakides, Zhou (1999)

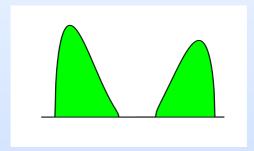
- Scaling limit of kernel follows from detailed asymptotics of the orthogonal polynomials $P_{n,n}$ and $P_{n-1,n}$ as $n\to\infty$, which is available in the GUE case since then the orthogonal polynomials are Hermite polynomials.
- For more general cases a powerful new technique was developed: steepest descent analysis of Riemann-Hilbert problems

Regular endpoint

A For a regular endpoint of the support, we take $\gamma=\frac{2}{3}$, and the scaling limit is the Airy kernel

$$\frac{\operatorname{Ai}(x)\operatorname{Ai}'(y) - \operatorname{Ai}'(x)\operatorname{Ai}(y)}{x - y}$$

▲ This always gives rise to the Tracy Widom distribution for the fluctations of the extreme eigenvalues.



Unitary ensemble

$$\frac{1}{Z_n}e^{-n\operatorname{Tr}V(M)}dM$$

Reference point x^*

- ▲ Regular interior point:
- ▲ Regular endpoint:
- ▲ Singular case I:
- ▲ Singular case II:
- ▲ Singular case III:

Unitary ensemble

$$\frac{1}{Z_n}e^{-n\operatorname{Tr}V(M)}dM$$

Reference point x^*

- ▲ Regular interior point: sine kernel
- ▲ Regular endpoint: Airy kernel
- ▲ Singular case I:
- ▲ Singular case II:
- ▲ Singular case III:

Unitary ensemble

$$\frac{1}{Z_n}e^{-n\operatorname{Tr}V(M)}dM$$

Reference point x^*

- ▲ Regular interior point: sine kernel
- Regular endpoint: Airy kernel
- lacktriangle Singular case I: kernels built out of ψ functions associated with the Hastings-Mcleod solution of Painlevé II Claeys, AK (2006)
- ▲ Singular case II:
- ▲ Singular case III:

Unitary ensemble

$$\frac{1}{Z_n}e^{-n\operatorname{Tr}V(M)}dM$$

Reference point x^*

- ▲ Regular interior point: sine kernel
- Regular endpoint: Airy kernel
- lacktriangle Singular case I: kernels built out of ψ functions associated with the Hastings-Mcleod solution of Painlevé II Claeys, AK (2006)
- ▲ Singular case II: second member of Painlevé I hierarchy

Claeys, Vanlessen (in progress)

▲ Singular case III:

Unitary ensemble

$$\frac{1}{Z_n}e^{-n\operatorname{Tr}V(M)}dM$$

Reference point x^*

- ▲ Regular interior point: sine kernel
- Regular endpoint: Airy kernel
- lacktriangle Singular case I: kernels built out of ψ functions associated with the Hastings-Mcleod solution of Painlevé II Claeys, AK (2006)
- ▲ Singular case II: second member of Painlevé I hierarchy

Claeys, Vanlessen (in progress)

▲ Singular case III: ??

Extra factor in random matrix model

$$\frac{1}{Z_n} |\det M|^{2\alpha} e^{-n \operatorname{Tr} V(M)} dM$$

The extra factor does not change the global behavior but it does change the local behavior around the reference point $x^{\ast}=0$

- ▲ Regular interior point:
- ▲ Regular endpoint:

- ▲ Singular case I:
- ▲ Singular case II:
- ▲ Singular case III:

Extra factor in random matrix model

$$\frac{1}{Z_n} |\det M|^{2\alpha} e^{-n \operatorname{Tr} V(M)} dM$$

The extra factor does not change the global behavior but it does change the local behavior around the reference point $x^{\ast}=0$

▲ Regular interior point: Bessel kernel

AK, Vanlessen (2003)

▲ Regular endpoint:

- ▲ Singular case I:
- ▲ Singular case II:
- ▲ Singular case III:

Extra factor in random matrix model

$$\frac{1}{Z_n} |\det M|^{2\alpha} e^{-n \operatorname{Tr} V(M)} dM$$

The extra factor does not change the global behavior but it does change the local behavior around the reference point $x^{\ast}=0$

▲ Regular interior point: Bessel kernel

AK, Vanlessen (2003)

A Regular endpoint: general Painlevé II with parameter $2\alpha + \frac{1}{2}$

$$q'' = sq + 2q^3 - 2\alpha - \frac{1}{2}$$

Its, AK, Östensson (in progress)

- ▲ Singular case I:
- ▲ Singular case II:
- Singular case III:

Extra factor in random matrix model

$$\frac{1}{Z_n} |\det M|^{2\alpha} e^{-n \operatorname{Tr} V(M)} dM$$

The extra factor does not change the global behavior but it does change the local behavior around the reference point $x^{\ast}=0$

▲ Regular interior point: Bessel kernel

AK, Vanlessen (2003)

A Regular endpoint: general Painlevé II with parameter $2\alpha + \frac{1}{2}$

$$q'' = sq + 2q^3 - 2\alpha - \frac{1}{2}$$

Its, AK, Östensson (in progress)

- lacktriangle Singular case I: Painlevé II with parameter lpha Claeys, AK, Vanlessen (arxiv 2005)
- ▲ Singular case II:
- Singular case III:

Extra factor in random matrix model

$$\frac{1}{Z_n} |\det M|^{2\alpha} e^{-n \operatorname{Tr} V(M)} dM$$

The extra factor does not change the global behavior but it does change the local behavior around the reference point $x^{\ast}=0$

▲ Regular interior point: Bessel kernel

AK, Vanlessen (2003)

A Regular endpoint: general Painlevé II with parameter $2\alpha + \frac{1}{2}$

$$q'' = sq + 2q^3 - 2\alpha - \frac{1}{2}$$

Its, AK, Östensson (in progress)

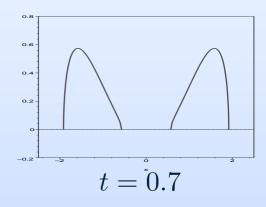
- lacktriangle Singular case I: Painlevé II with parameter lpha Claeys, AK, Vanlessen (arxiv 2005)
- ▲ Singular case II: ??
- ▲ Singular case III: ??

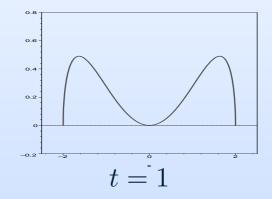
Singular case I

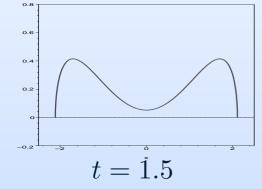
- Quartic external field $V(x)=rac{1}{4}x^4-x^2$ is simplest singular case I.
- Transition from two-interval to one-interval. If

$$V_t(x) = \frac{1}{t} \left(\frac{1}{4} x^4 - x^2 \right)$$

then for t < 1: two intervals, and for t > 1: one interval







Consider singular case in double scaling limit where we rescale

eigenvalues

$$\lambda\mapsto (c_1n)^{1/3}(\lambda-x^*)$$
 and we let $t o 1$ as $n o\infty$

such that

$$n^{2/3}(t-1) = c_2 s$$

Double scaling limit in singular case I

 \blacktriangle One-parameter family of limiting kernels, depending on s , but independent of V

$$-\frac{\Phi_1(x;s)\Phi_2(y;s) - \Phi_2(x;s)\Phi_1(y;s)}{2\pi i(x-y)}$$

 $lack \Phi_1$ and Φ_2 satisfy a differential equation

$$\frac{d}{dx} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix} = \begin{pmatrix} -4ix^2 - i(s+2q^2) & 4xq + 2ir \\ 4xq - 2ir & 4ix^2 + i(s+2q^2) \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix}$$

with parameters s,q and r that are such that q=q(s) satisfies Painlevé II:

$$q^{\prime\prime}=sq+2q^3$$
 and $r=r(s)=q^\prime(s)$. for critical quartic V : Bleher, Its (2003)

for real analytic $V\colon \mathbf{Claeys}, \mathbf{AK}$ (arxiv 2005)

for less smooth, even V: Shcherbina (arxiv 2006)

lacktriangle Our proof uses the fact that Φ_1 and Φ_2 solve a RH problem that can be used as a local parametrix in the steepest descent analysis.