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Overview

N Universality

N Local eigenvalue statistics

N Fluctuations of the largest eigenvalue

N Connections outside RMT

N Zeros of Riemann zeta function

N Non-intersecting Brownian paths

N Tiling problem

N Unitary ensembles

N Determinantal point process

N Precise formulation of universality

N Universality in regular cases

N Universality classes in singular cases

N Singular cases I and II and Painlevé equations

N Spectral singularity
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Gaussian ensembles

N Simplest ensembles are Gaussian ensembles.

N Matrix entries have normal distribution with mean zero. The entries are

independent up to the constraints that are imposed by the symmetry class.

N Gaussian Unitary Ensemble GUE: complex Hermitian matrices

N Gaussian Orthogonal Ensemble GOE: real symmetric matrices

N Gaussian Symplectic Ensemble GSE: self-dual quaternionic matrices

N Where are the eigenvalues?
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Wigner’s semi-circle law

N Histogram of eigenvalues of large Gaussian matrix, size 104 × 104

N After scaling of eigenvalues with a factor
√
n, there is a limiting mean

eigenvalue distribution, known as Wigner’s semi-circle law

N This is special for Gaussian ensembles (non-universal). Other limiting

distributions for Wishart ensembles, Jacobi ensembles,...
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Universality 1: Local eigenvalue statistics

N Global statistics of eigenvalues depend on the particular random matrix

ensemble in contrast to local statistics. Distances distances between

consecutive eigenvalues show regular behavior.

N Rescale eigenvalues around a certain value so that mean distance is one.

plot shows only a few rescaled eigenvalues of a very large GUE matrix

N This is the same behavior as seen in energy spectra in quantum physics.

N The repulsion between neighboring eigenvalues is very different from

Poisson spacings.

SEA’06@MIT, Workshop on Stochastic Eigen-Analysis and its Applications, MIT, Cambridge, July 11, 2006. – p.5/30



Universality 1: Local eigenvalue statistics

N This local behavior of eigenvalues is not special for GUE.

N It holds for large class of unitary ensembles
1

Zn
e−n Tr V (M)dM

these are ensembles that have the same symmetry property as GUE.

Deift, Kriecherbauer, McLaughlin, Venakides, Zhou (1999)

N Local eigenvalue statistics is different for GOE and GSE which have

different symmetry properties. Proof of universality for orthogonal and

symplectic ensembles is more recent result Deift, Gioev (arxiv 2004)

N Universality fails at special points, such as end points of the spectrum, or

points where eigenvalue density vanishes.

N This gives rise to new universality classes.
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Universality 2: Largest eigenvalue

N Fluctuations of the largest eigenvalues of random matrices also show a

universal behavior (depending on the symmetry class).

N For n× n GUE matrix, the largest eigenvalue grows like
√

2n and has a

standard deviation of the order n−1/6.

N Centered and rescaled largest eigenvalue

√
2n1/6

(

λmax −
√

2n
)

converges in distribution as n → ∞ to a ran-

dom variable with the Tracy-Widom distribution,

described by Tracy, Widom in 1994.

N Same limit holds generically for unitary random

matrix ensembles.

N Different TW-distributions for orthogonal and

symplectic ensembles.
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Tracy-Widom distribution

N There is no simple formula for the Tracy-Widom distribution F (s).

N First formula is as a Fredholm determinant:

F (s) = det(I −As)

where As is the integral operator acting on L2(s,∞) with kernel

Ai(x) Ai′(y) − Ai′(x) Ai(y)

x − y
Airy kernel

and Ai is the Airy function.

N Second formula

F (s) = exp

(

−

∫

∞

s

(x − s)q2(x)dx

)

where q(s) is a special solution of the Painlevé II equation

q′′(s) = sq(s) + 2q3(s)
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Limit laws outside RMT

N Distribution functions of random matrix theory appear in various other

domains of mathematics and physics.

N Number theory

N Riemann zeta-function, L-functions, . . .

N Representation theory

N Young tableaux, large classical groups, . . .

N Random combinatorial structures

N random permutations, random tilings, . . .

N Growth models in statistical physics

N last passage percolation, polynuclear growth, . . .

N . . . , as well as in applications in statistics, finance, information theory, . . .
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Riemann zeta function

N The zeta function ζ(s) =
∞
∑

k=1

1
ks has an ana-

lytic continuation to the complex plane.

N The non-trivial zeros of the zeta function are

believed to be on the line Re s = 1/2.

(Riemann hypothesis)
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N Computational evidence: no non-real zeros have been found off the

critical line.

N 1, 500, 000, 000 zeros have been found on the critical line.

N More computational evidence: Spacings between consecutive zeros on

the critical line Re s = 1/2 (after appropriate scaling) show the same

behavior as the spacings between eigenvalues of a large GUE matrix

Zeros of ζ(s) on the critical line have the same

local behavior as the eigenvalues of a large random matrix
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Non-intersecting Brownian motion paths

N Take n independent 1-dimensional Brownian motions with time in [0, 1]

conditioned so that:

N All paths start and end at the same point.

N The paths do not intersect at any intermediate time.
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Five non-intersecting Brownian bridges
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Non-intersecting Brownian motion

N Remarkable fact: At any intermediate time the positions of the paths have

exactly the same distribution as the eigenvalues of an n× n GUE matrix

(up to a scaling factor).
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Positions of five non-intersecting Brownian paths behave

the same as the eigenvalues of a 5 × 5 GUE matrix

N This interpretation is basic for the connection of random matrix theory

with growth models of statistical physics.
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A random tiling problem

N Hexagonal tiling with rhombi.

N May also be viewed as packing of boxes in a corner.

N Take a tiling at random.

N What does a typical tiling look like, if the number of rhombi increases?
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Typical random tiling

N Observation:

N frozen regions near the corners,

N disorder in the center.

SEA’06@MIT, Workshop on Stochastic Eigen-Analysis and its Applications, MIT, Cambridge, July 11, 2006. – p.14/30



Non-intersecting random walk

N Consider only blue and red rhombi.
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Non-intersecting random walk

N We can connect the left and the right with non-intersecting paths.

N A random tiling is the same as a number of non-intersecting random walks.

N As size increases: Tracy-Widom distribution governs the transition

between frozen region and disordered region.

Baik, Kriecherbauer, McLaughlin, Miller, (arxiv 2003)
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Other examples

N Longest increasing subsequence of random permutations

Baik, Deift, Johansson (1999)

N Polynuclear growth model (PNG)

Totally asymmetric exclusion process (TASEP) Praehofer, Spohn, Ferrari

Imamura, Sasamoto

N Buses in Cuernavaca, Mexico Krbalek, Seba

Baik, Borodin, Deift, Suidan

N Airplane boarding problem Bachmat
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Universality classes in unitary ensembles

N Probability measure on n× n Hermitian matrices

1

Zn
e−n Tr V (M)dM

where dM =
∏

j dMjj

∏

j<k dReMjkd ImMjk

N This is a Gaussian ensemble for V (x) = 1
2x

2

N Joint eigenvalue density

1

Z̃n

∏

i<j

|xi − xj |2
n

∏

j=1

e−nV (xj)

wher
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Determinantal point process

N It is special about unitary ensembles that the eigenvalues follow a

determinantal point process. This means means that there is a kernel

Kn(x, y) so that all eigenvalue correlation functions are expressed as

determinants

Rm(x1, x2, . . . , xk) = det [Kn(xi, xj)]i,j=1,...,m

N

b
∫

a

Kn(x, x)dx is expected number of eigenvalues in [a, b]

N

b
∫

a

d
∫

c

∣

∣

∣

∣

∣

∣

Kn(x, x) Kn(x, y)

Kn(y, x) Kn(y, y)

∣

∣

∣

∣

∣

∣

dxdy is expected number of pairs of

eigenvalues in [a, b] × [c, d], etc.
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Orthogonal polynomial kernel

N Let Pk,n(x) be the kth degree monic orthogonal polynomial with respect

to e−nV (x)

∫

∞

−∞

Pk,n(x)Pj,n(x)e−nV (x)dx = hk,nδj,k.

N Correlation kernel is equal to

Kn(x, y) = e−
1

2
n(V (x)+V (y))

n−1
∑

k=0

1

hk,n

Pk,n(x)Pk,n(y)

= e−
1

2
n(V (x)+V (y)) hn,n

hn−1,n

Pn,n(x)Pn−1,n(y) − Pn−1,n(x)Pn,n(y)

x − y

Christoffel-Darboux formula
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Asymptotical questions

N All information is contained in the correlation kernel Kn.

N Asymptotic questions deal with the global regime

ρV (x) = lim
n→∞

1

n
Kn(x, x)

N and with the local regime

N Choose x∗ and center and scale eigenvalues around x∗

λ 7→ (cn)γ(λ− x∗)

N This is a determinantal point process with rescaled kernel

1

(cn)γ
Kn

(

x∗ +
x

(cn)γ
, x∗ +

y

(cn)γ

)

N Determine γ and calculate limit of rescaled kernel. Limits turn out to

be universal, depending only on the nature of x∗ in the global regime.
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Global regime

N In limit n→ ∞, the mean eigenvalue density has a limit ρ = ρV which

minimizes

∫∫

log
1

|x− y|ρ(x)ρ(y)dxdy +

∫

V (x)ρ(x)dx

among density functions ρ ≥ 0,
∫

ρ(x)dx = 1.

N Equilibrium conditions

2

∫

log
1

|x− y|ρ(y)dy + V (x) = const on support of ρ

2

∫

log
1

|x− y|ρ(y)dy + V (x) ≥ const outside support
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Regular and singular cases

N If V is real analytic, then Deift, Kriecherbauer, McLaughlin (1998)

N supp(ρ) is a finite union of disjoint intervals,

N ρ(x) is analytic on the interior of each interval

N ρ(x) ∼ |x− a|2k+1/2 at an endpoint a for some k = 0, 1, 2, . . .

N Regular case: positive in interior, square root vanishing at endpoints, and

strict inequality in

2

∫

log
1

|x− y|ρ(y)dy + V (x) > const outside the support of ρ
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Singular cases

N Singular cases correspond to possible change in number of intervals if

parameters in the external field V change.

N Singular case I: ρ vanishes at an interior point

N Singular case II: ρ vanishes to higher order than square root at an

endpoint.

N Singular case III: equality in equilibrium inequality somewhere outside

the support
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Local regime

N Limit of rescaled kernel

1

(cn)γ
Kn

(

x∗ +
x

(cn)γ
, x∗ +

y

(cn)γ

)

N For x∗ in the bulk, we take γ = 1, c = ρ(x∗), and limit is the sine

kernel
sinπ(x− y)

π(x− y)

Pastur, Shcherbina (1997), Bleher, Its (1999)

Deift, Kriecherbauer, McLaughlin, Venakides, Zhou (1999)

N Scaling limit of kernel follows from detailed asymptotics of the orthogonal

polynomials Pn,n and Pn−1,n as n→ ∞, which is available in the GUE

case since then the orthogonal polynomials are Hermite polynomials.

N For more general cases a powerful new technique was developed:

steepest descent analysis of Riemann-Hilbert problems
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Regular endpoint

N For a regular endpoint of the support, we take γ = 2
3 , and the scaling limit

is the Airy kernel

Ai(x) Ai′(y) − Ai′(x) Ai(y)

x− y

N This always gives rise to the Tracy Widom distribution for the fluctations of

the extreme eigenvalues.
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Singular cases

Unitary ensemble
1

Zn
e−n Tr V (M)dM

Reference point x∗

N Regular interior point:

sine kernel

N Regular endpoint:

Airy kernel

N Singular case I:

kernels built out of ψ functions associated with the

Hastings-Mcleod solution of Painlevé II Claeys, AK (2006)

N Singular case II:

second member of Painlevé I hierarchy

Claeys, Vanlessen (in progress)

N Singular case III:

??
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N Singular case II: second member of Painlevé I hierarchy
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Spectral singularity

Extra factor in random matrix model

1

Zn
| detM |2αe−n Tr V (M)dM

The extra factor does not change the global behavior but it does change the

local behavior around the reference point x∗ = 0

N Regular interior point:

Bessel kernel AK, Vanlessen (2003)

N Regular endpoint:

general Painlevé II with parameter 2α+ 1
2

q′′ = sq + 2q3 − 2α− 1

2
Its, AK, Östensson (in progress)

N Singular case I:

Painlevé II with parameter α Claeys, AK, Vanlessen (arxiv 2005)

N Singular case II:

??

N Singular case III:

??
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2

q′′ = sq + 2q3 − 2α− 1

2
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Singular case I

N Quartic external field V (x) = 1
4x

4 − x2 is simplest singular case I.

N Transition from two-interval to one-interval. If

Vt(x) =
1

t

(

1

4
x4 − x2

)

then for t < 1: two intervals, and for t > 1: one interval
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x

t = 0.7 t = 1 t = 1.5

N Consider singular case in double scaling limit where we rescale

eigenvalues λ 7→ (c1n)1/3(λ− x∗) and we let t→ 1 as n→ ∞

such that n2/3(t− 1) = c2s
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Double scaling limit in singular case I

N One-parameter family of limiting kernels, depending on s, but independent

of V

−Φ1(x; s)Φ2(y; s) − Φ2(x; s)Φ1(y; s)

2πi(x− y)

N Φ1 and Φ2 satisfy a differential equation

d

dx





Φ1

Φ2



 =





−4ix2 − i(s+ 2q2) 4xq + 2ir

4xq − 2ir 4ix2 + i(s+ 2q2)









Φ1

Φ2





with parameters s, q and r that are such that q = q(s) satisfies Painlevé II:

q′′ = sq + 2q3 and r = r(s) = q′(s). for critical quartic V : Bleher, Its (2003)

for real analytic V : Claeys, AK (arxiv 2005)

for less smooth, even V : Shcherbina (arxiv 2006)

N Our proof uses the fact that Φ1 and Φ2 solve a RH problem that can be

used as a local parametrix in the steepest descent analysis.
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