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Data assimilation in the earth sciences:

Characterize ocean, atmosphere, land surface by combining diverse data sources
and numerical model predictions → Bayesian estimation

• Problem size
Wide range of time/space scales → Large, high resolution model grids
Increasing amounts of  data at higher rates & resolution → Large estimation 
problems

• Nonlinearity
Process & instrument nonlinearities are common, often essential for 
understanding dynamics

• Uncertainty
Model & measurement uncertainties are significant but difficult to characterize

Notable features:

Methods:

Monte Carlo approximations to Bayesian estimators → Sampling problems, random 
matrices



HYDROSMotivating Problem: Chaotic Ocean Flows
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Simulated quasi-geostrophic double gyre along an eastern coastline

Characterize chaotic ocean state by using remotely sensed and in situ
measurements to update imperfect model predictions.



HYDROSBayesian Estimation for Nonlinear Dynamic Problems

Bayesian characterization of system state xt (e.g.vorticity), given measurements yt :

Consider filtering problems (estimates desired at t=T):

Time

p(xt-1|y0:t-1) 

p(xt|y0:t-1) 

p(xt|y0:t) 

t-1

Forecast

Update

t

Forecast: p(xt-1|y0:t-1)                    p(xt|y0:t-1)
ft(xt-1,ut)

Update: p(xt|y0:t-1)                          p(xt|y0:t)

Fokker-Planck Eq.

Bayes Rule

Sequential

Conditional PDFp[xt|y0:T]

xt=ft(xt-1, ut)

yt=ht(xt)+et

System model:

Measurement model: Meas. at t=0,…T

ht(xt)



HYDROSEnsemble Approximations

Between updates:
Propagate replicates with 
nonlinear state eq.

t-1 t Sample marginal 
PDF at speciifed 
pixel, time t

Propagate

xt|t

At updates:        
Adjust replicates,   
Approximate Bayes rule

Xt-1|t-1 Xt|t-1

yt-1

yt

Generate random samples                   from conditional densities ( j=1, … , Nrep ).
j

t|t
j

1t-|t xx   ,
Solve Bayesian estimation problem with ensemble methods

Basic questions:

How should we generate replicates to properly capture changing statistics, with minimal 
computational effort ?

How many replicates do we need?

Common update approx:

Ensemble Kalman filter:

Transformation matrix A(yt) 
depends on meas. &  forecast 
sample covariance

)A(yxx t
N:1

1t-|t
N:1
t|t

reprep =



HYDROSGenerating Replicates

Focus on random initial condition problems:  

Randomly generated replicates (classical Monte Carlo sampling):

1. Draw random replicates from known initial pdf (suppose Gaussian) 

2. Propagate replicates with nonlinear dynamics and construct sample statistics 
(marginal pdf’s, covariances, etc) as needed

Computational demands            small ensemble size (low rank sample covariance)

Alternatives:  Some or all replicates aligned with dominant directions of 
variability

How can we identify dominant directions?  Leading eigenvectors ?
Approach is difficult to implement for highly nonlinear systems.

For now, adopt classical random sampling approach.

Determine how sampling errors depend on sample size, time, meas. updates.



HYDROSNumerical Experiment – Unconditional (no measurement updates)

Chaotic Lorenz 1995 model
For j=1, …, 100:
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x(0) uncorrelated Gaussian, F=8

Trajectory of initial Gaussian cloud over time

Sampling procedure

1. Follow cloud of 2000 replicates over time, 
evaluating “true” covariances as required.

2. Estimate covariances from 200 replicates, 
evaluate leading eigenvalue error.  Repeat 
100 times. Evaluate resulting sampling 
error statistics.

3. Compare sampling error statistics to 
results from random matrix theory Note that replicates disperse to fill entire 

attractor -- transition to non-Gaussian 
state



HYDROSNumerical Experiment – Conditional (with measurement updates)

Trajectory with update every 80 time stepsUpdating procedure

1. Update all replicates with high quality 
measurements – measurement spacing 
= 20, 80 time steps.

2. Use Kalman update based on prior 
“true” covariance at update time

Note collapse of particle cloud around 
true value (red) at update times

Frequent measurement updates reduce 
variance and keep conditional distribution 
more Gaussian

Sampling procedure

Follow same approach as in unconditional 
case



HYDROSAnalysis of Covariance Sampling Error

Effectiveness of Kalman updating procedure depends on:

Accuracy of covariance sample estimates can be expressed in terms of:

1. Differences between eigenvalues of “true” (nrep=2000) and sample 
(nrep=200) covariances

2. Cosines of angles between eigenvectors of “true” (nrep=2000) and sample 
(nrep=200) covariances

Closed form expressions statistics of these sampling error measures are given by Paul 
(in press) for the full rank “spiked” spectrum Gaussian case where 

1≥=
x

samp

n
n

γ

1. Adequacy of normality assumption

2. Accuracy of sample covariances estimated from ensemble.

In this talk, focus on eigenvalue errors. 



HYDROSUnconditional Sample Properties
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HYDROSConditional Sample Properties
Measurement Update every 80 Time Steps 

0 100 200 300 400 500 600
-50

0

50

100

150

200

time step

E
rr

o
r(

%
)

Errors in theoretical estimates of leading eigenvalue mean and std deviation

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

time step

Normalized test-statistic 1

Mean

Non-normal 
states

Std deviationObservation 
time

Theory is generally  applicable except 
when meas. spacing is too large



HYDROSConditional Sample Properties
Measurement Update every 20 Time Steps 
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HYDROS
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HYDROS
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Slide 13

a4 The plots for openloop and the 80 time step between observations, almost always look like this.
aahanin, 7/10/2006



HYDROSConclusions

• Initial uncertainties in states of chaotic nonlinear systems (e.g. meteorological and 
oceanographic) gradually expand to fill entire attractor if there are no 
measurement updates

• Transition to non-Gaussian behavior can be slowed or stopped if replicates are 
periodically updated with measurements.

Measurement updating extends the validity of the assumptions used in 
the ensemble Kalman filter approx. and in random matrix theory

• For large nonlinear problems we need a small set of very informative replicates. 
Random matrix theory may help identify efficient replicate generation procedures.

Real spectra are rarely flat beyond leading eigenvalue – this raises 
normalization issues for theoretical approximations


