From random matrices to stochastic operators

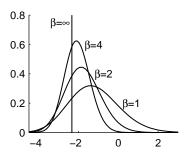
Brian D. Sutton

13 July 2006

Acknowledgment

Work with/inspired by Alan Edelman and Ioana Dumitriu.

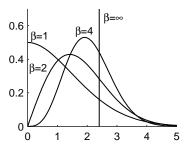
Result 1. The soft edge (aka Tracy-Widom) distributions



describe the eigenvalues of the stochastic Airy operator,

$$\left(-\frac{d^2}{dx^2}+x+\frac{2}{\sqrt{\beta}}B'\right)f=\lambda f, \qquad f(0)=f(\infty)=0.$$

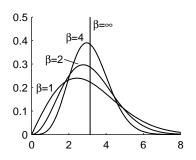
Result 2. The hard edge distributions



describe the singular values of the stochastic Bessel operator,

$$\left(-\frac{d}{dx}+\frac{2a+1}{2x}+\sqrt{\frac{2}{\beta}}\frac{1}{\sqrt{x}}B'\right)f=\sigma g, \qquad f(1)=0, \ g(0)=0.$$

Result 3. The bulk (aka universal spacing) distributions



describe the eigenvalues of the stochastic sine operator,

$$\left(\left\lceil\frac{-\frac{d}{dx}}{\frac{d}{dx}}\right\rceil + \mathsf{noise}\right)\left\lceil\frac{f}{g}\right\rceil = \lambda\left\lceil\frac{f}{g}\right\rceil, \qquad f(1) = 0, \ g(0) = 0.$$

▶ Question: How were the SDOs discovered?

Question: How were the SDOs discovered? Answer:

classical random matrix models

= finite difference schemes for SDOs

Question: How were the SDOs discovered? Answer:

classical random matrix models

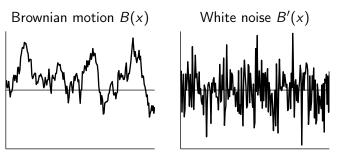
= finite difference schemes for SDOs

Question: What is white noise? Does it cause problems?

Question: How were the SDOs discovered? Answer:

classical random matrix models
= finite difference schemes for SDOs

Question: What is white noise? Does it cause problems? Answer:



By changing variables, we can express the SDOs in terms of Brownian motion instead of white noise.

Advantages of SDOs:

Advantages of SDOs:

1. SDOs are operators, not just arrays of numbers. They have meaningful eigenfunctions.

Advantages of SDOs:

- 1. SDOs are operators, not just arrays of numbers. They have meaningful eigenfunctions.
- 2. Universality.

```
\mbox{Hermite} \searrow \\ \mbox{stochastic Airy operator} \rightarrow \mbox{soft edge} \\ \mbox{Laguerre} \nearrow
```

Advantages of SDOs:

- 1. SDOs are operators, not just arrays of numbers. They have meaningful eigenfunctions.
- 2. Universality.

 $\mbox{Hermite} \searrow \\ \mbox{stochastic Airy operator} \rightarrow \mbox{soft edge} \\ \mbox{Laguerre} \nearrow$

3. General β . There is no "threefold way" ($\beta=1,2,4$).

Advantages of SDOs:

- 1. SDOs are operators, not just arrays of numbers. They have meaningful eigenfunctions.
- 2. Universality.

 $\mbox{Hermite} \searrow \\ \mbox{stochastic Airy operator} \rightarrow \mbox{soft edge} \\ \mbox{Laguerre} \nearrow$

- 3. General β . There is no "threefold way" ($\beta = 1, 2, 4$).
- Wigner's original idea.
 Random operator ↔ typical Hamiltonian.

The talk begins now.

Background

- 1. Matrix models
 - Hermite (Gaussian)
 - Laguerre (Wishart)
 - Jacobi (MANOVA)
- 2. Local eigenvalue statistics
 - Soft edge
 - ► Hard edge
 - ▶ Bulk spacings
- 3. Sturm-Liouville problems
- 4. Finite differences

Matrix models

Hermite (Gaussian)

- Hermitian with independent Gaussian entries
- ► All *n* eigenvalues:

Laguerre (Wishart)

- Rectangular with independent Gaussian entries
- ► All *n* singular values:

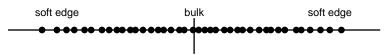
Jacobi (MANOVA)

- Uniform distribution on unitary matrices
- ► All *n* CS values [S, Edelman]:

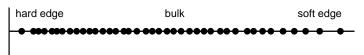
Local eigenvalue statistics

Different random matrix distributions exhibit the same local eigenvalue behavior.

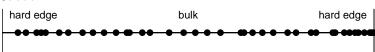
► Hermite



► Laguerre



Jacobi



Background

- 1. Matrix models
 - Hermite (Gaussian)
 - Laguerre (Wishart)
 - Jacobi (MANOVA)
- 2. Local eigenvalue statistics
 - Soft edge
 - ► Hard edge
 - ▶ Bulk spacings
- 3. Sturm-Liouville problems
- 4. Finite differences

Sturm-Liouville problems

The simplest Sturm-Liouville problem:

$$-\frac{d^2}{dx^2}f = \lambda f, \qquad f(0) = f(\pi) = 0.$$

Finite differences

Examples.

$$\frac{1}{h}D_1 = \frac{1}{h} \begin{bmatrix} -1 & 1 & & & \\ & -1 & 1 & & \\ & & \ddots & \ddots & \\ & & & -1 & 1 \\ & & & & -1 \end{bmatrix} \approx \frac{d}{dt}$$

$$\frac{1}{h^2}D_2 = \frac{1}{h^2} \begin{bmatrix} -2 & 1 & & & \\ 1 & -2 & 1 & & \\ & 1 & -2 & 1 & \\ & & \ddots & \ddots & \ddots \\ & & & 1 & -2 & 1 \\ & & & & 1 & -2 \end{bmatrix} \approx \frac{d^2}{dt^2}$$

How does a random matrix produce a stochastic Sturm-Liouville problem?

Classical random matrix models are finite difference schemes for SDOs.

Classical random matrix models are finite difference schemes for SDOs.

▶ Soft edge \longleftrightarrow stochastic Airy op.

$$-\frac{d^2}{dx^2} + x + \frac{2}{\sqrt{\beta}}B'$$

- ▶ Hard edge \longleftrightarrow stochastic Bessel op. $-\frac{d}{dx} + \frac{2a+1}{2x} + \sqrt{\frac{2}{\beta}} \frac{1}{\sqrt{x}} B'$
- $\blacktriangleright \ \, \mathsf{Bulk} \longleftrightarrow \mathsf{stochastic} \,\, \mathsf{sine} \,\, \mathsf{op}.$

$$\left[\begin{array}{c|c} -\frac{d}{dx} \\ \hline \frac{d}{dx} \end{array}\right] + \text{noise}$$

Classical random matrix models are finite difference schemes for SDOs.

▶ Soft edge \longleftrightarrow stochastic Airy op.

$$-\frac{d^2}{dx^2} + x + \frac{2}{\sqrt{\beta}}B'$$

- ▶ Hard edge \longleftrightarrow stochastic Bessel op. $-\frac{d}{dx} + \frac{2a+1}{2x} + \sqrt{\frac{2}{\beta}} \frac{1}{\sqrt{x}} B'$
- ▶ Bulk ←→ stochastic sine op.

$$\left[\begin{array}{c|c} & -\frac{d}{dx} \\ \hline \frac{d}{dx} & \end{array}\right] + \text{noise}$$

Plan:

1. How were the SDOs discovered? Hermite (scaled at right edge) \rightarrow stochastic Airy operator

Classical random matrix models are finite difference schemes for SDOs.

- ▶ Soft edge \longleftrightarrow stochastic Airy op.
- $-\frac{d^2}{dx^2} + x + \frac{2}{\sqrt{\beta}}B'$
- ▶ Hard edge \longleftrightarrow stochastic Bessel op. $-\frac{d}{dx} + \frac{2a+1}{2x} + \sqrt{\frac{2}{\beta}} \frac{1}{\sqrt{x}} B'$
- ▶ Bulk ←→ stochastic sine op.

$$\left[\begin{array}{c|c} & -\frac{d}{dx} \\ \hline \frac{d}{dx} & \end{array}\right] + \text{noise}$$

Plan:

- How were the SDOs discovered?
 Hermite (scaled at right edge) → stochastic Airy operator
- What is white noise? Change of variables replaces B' with B.

Hermite matrix model (rescaled) = finite difference scheme for the stochastic Airy operator

Hermite matrix model (rescaled)

= finite difference scheme for the stochastic Airy operator

$$\frac{1}{\sqrt{2}} \begin{bmatrix} \sqrt{2}G & G & G & \cdots & G \\ G & \sqrt{2}G & G & \cdots & G \\ G & G & \sqrt{2}G & \cdots & G \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ G & G & G & \cdots & \sqrt{2}G \end{bmatrix}$$

 \downarrow tridiagonalization \downarrow

$$\frac{1}{\sqrt{2}} \begin{bmatrix} \sqrt{2}G & \chi_{n-1} & & & \\ \chi_{n-1} & \sqrt{2}G & \chi_{n-2} & & & \\ & \ddots & \ddots & \ddots & \\ & & \chi_2 & \sqrt{2}G & \chi_1 \\ & & & \chi_1 & \sqrt{2}G \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} \sqrt{2}G & \chi_{n-1} & & & \\ \chi_{n-1} & \sqrt{2}G & \chi_{n-2} & & & \\ & \ddots & \ddots & \ddots & \\ & & \chi_2 & \sqrt{2}G & \chi_1 \\ & & & \chi_1 & \sqrt{2}G \end{bmatrix}$$

 \downarrow diagonal similarity \downarrow

$$\frac{1}{\sqrt{2}} \begin{bmatrix}
\sqrt{2}G & 1 & & & \\
\chi_{n-1}^2 & \sqrt{2}G & 1 & & & \\
& \ddots & \ddots & \ddots & \\
& & \chi_2^2 & \sqrt{2}G & 1 \\
& & & \chi_1^2 & \sqrt{2}G
\end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} \sqrt{2}G & 1 & & & \\ \chi_{n-1}^2 & \sqrt{2}G & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & \chi_2^2 & \sqrt{2}G & 1 \\ & & & \chi_1^2 & \sqrt{2}G \end{bmatrix}$$

↓ translate, rescale, and rename ↓

$$-rac{1}{h^2}D_2 + ext{diag}_{-1}(x_1, \dots, x_{n-1}) + rac{2}{\sqrt{eta}} \cdot rac{1}{\sqrt{h}} rac{1}{\sqrt{2}} egin{bmatrix} G & & & & & & \\ ilde{\chi}_{n-1}^2 & G & & & & & & \\ & & \ddots & \ddots & & & & \\ & & & ilde{\chi}_2^2 & G & & & \\ & & & & ilde{\chi}_1^2 & G \end{bmatrix}$$

 $h = n^{-1/3}$, $x_i = hi$, $E[\tilde{\chi}_r^2] = 0$, $Var[\tilde{\chi}_r^2] \approx 1$.

$$-\frac{1}{h^2}D_2 + \operatorname{diag}_{-1}(x_1, \dots, x_{n-1}) + \frac{2}{\sqrt{\beta}} \cdot \frac{1}{\sqrt{h}} \frac{1}{\sqrt{2}} \begin{bmatrix} G & & & & \\ \tilde{\chi}_{n-1}^2 & G & & & & \\ & \ddots & \ddots & & & \\ & & \tilde{\chi}_2^2 & G & \\ & & & \tilde{\chi}_1^2 & G \end{bmatrix}$$

 \downarrow finite difference interpretation \downarrow

$$\mathcal{A}^{\beta} = -\frac{d^2}{dx^2} + x + \frac{2}{\sqrt{\beta}}B'$$

This is the stochastic Airy operator.

$$\lambda_k(\mathcal{A}^\beta) \sim \text{soft edge}(\beta, k)$$

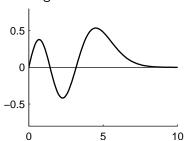
Classical Airy operator

$$\mathcal{A}^{\infty} = -\frac{d^2}{dx^2} + x$$

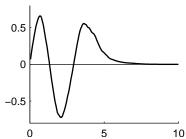
Stochastic Airy operator

$$A^{\beta} = -\frac{d^2}{dx^2} + x + \frac{2}{\sqrt{\beta}}B'$$

eigenfunction of \mathcal{A}^{∞}



eigenvector of Hermite



Replacing white noise with Brownian motion

Stochastic Airy operator:

$$A^{\beta} = -\frac{d^2}{dx^2} + x + \frac{2}{\sqrt{\beta}}B'$$

B' is white noise, which is potentially problematic. (Itô vs. Stratonovich, etc.)

Replacing white noise with Brownian motion

Stochastic Airy operator:

$$A^{\beta} = -\frac{d^2}{dx^2} + x + \frac{2}{\sqrt{\beta}}B'$$

 B^\prime is white noise, which is potentially problematic. (Itô vs. Stratonovich, etc.)

Without white noise:

$$\mathcal{A}^{\beta} = \phi \left(-\frac{d^2}{dx^2} - \frac{4}{\sqrt{\beta}} B \frac{d}{dx} + x - \frac{4}{\beta} B^2 \right) \phi^{-1}$$
$$\phi(x) = \exp \left(\frac{2}{\sqrt{\beta}} \int_0^x B(x') dx' \right)$$

Replacing white noise with Brownian motion

Stochastic Airy operator:

$$A^{\beta} = -\frac{d^2}{dx^2} + x + \frac{2}{\sqrt{\beta}}B'$$

 B^\prime is white noise, which is potentially problematic. (Itô vs. Stratonovich, etc.)

Without white noise:

$$A^{\beta} = \phi \left(-\frac{d^2}{dx^2} - \frac{4}{\sqrt{\beta}} B \frac{d}{dx} + x - \frac{4}{\beta} B^2 \right) \phi^{-1}$$
$$\phi(x) = \exp \left(\frac{2}{\sqrt{\beta}} \int_0^x B(x') dx' \right)$$

Lesson: The *i*th eigenfunction is $f_i\phi$, $f_i \in C^2$, $\phi \in C^1$.

Structure of eigenfunctions

The *i*th eigenfunction is $f_i\phi$, $f_i\in C^2$, $\phi\in C^1$.

Structure of eigenfunctions

The *i*th eigenfunction is $f_i\phi$, $f_i\in C^2$, $\phi\in C^1$.

Hermite eigenvector	$\log v $	$ abla \log v $	$\nabla^2 \log v $
1st		Mary Mary Mary Mary Mary Mary Mary Mary	
2nd	$\overline{}$	1 Lynnamin	
ratio			

More scaling limits

matrix model	scaling limit	behavior	stochastic operator
Hermite	left edge	soft	Airy
Hermite	right edge	soft	Airy
Hermite	center	bulk	sine
Laguerre	left edge	hard	Bessel
Laguerre	right edge	soft	Airy
Jacobi	left edge	hard	Bessel
Jacobi	right edge	hard	Bessel
Jacobi	center	bulk	sine

Stochastic Bessel operator

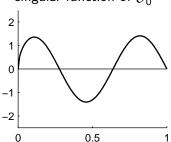
Classical Bessel operator

$$\mathcal{J}_{a}^{\infty} = -\frac{d}{dx} + \frac{2a+1}{2x}$$

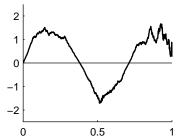
Stochastic Bessel operator

$$\mathcal{J}_{\mathsf{a}}^{\beta} = -\frac{d}{dx} + \frac{2\mathsf{a} + 1}{2\mathsf{x}} + \sqrt{\frac{2}{\beta}} \frac{1}{\sqrt{\mathsf{x}}} B'$$

singular function of \mathcal{J}_0^∞



singular vector of Jacobi



Conclusion

random matrix o stochastic differential operator $\lambda_k(\mathsf{matrix}) pprox \lambda_k(\mathsf{operator})$

Conclusion

random matrix \rightarrow stochastic differential operator $\lambda_k(\text{matrix}) \approx \lambda_k(\text{operator})$

▶ Soft edge
$$\longleftrightarrow$$
 stochastic Airy op.

$$-\frac{d^2}{dx^2} + x + \frac{2}{\sqrt{\beta}}B'$$

► Hard edge
$$\longleftrightarrow$$
 stochastic Bessel op. $-\frac{d}{dx} + \frac{2a+1}{2x} + \sqrt{\frac{2}{\beta}} \frac{1}{\sqrt{x}} B'$

▶ Bulk
$$\longleftrightarrow$$
 stochastic sine op.

$$\begin{bmatrix} -\frac{d}{dx} \\ -\frac{d}{dx} \end{bmatrix} + \text{noise}$$

Conclusion

random matrix \rightarrow stochastic differential operator

$$\lambda_k(\mathsf{matrix}) \approx \lambda_k(\mathsf{operator})$$

▶ Soft edge
$$\longleftrightarrow$$
 stochastic Airy op.

$$-\frac{d^2}{dx^2} + x + \frac{2}{\sqrt{\beta}}B'$$

► Hard edge
$$\longleftrightarrow$$
 stochastic Bessel op. $-\frac{d}{dx} + \frac{2a+1}{2x} + \sqrt{\frac{2}{\beta}} \frac{1}{\sqrt{x}} B'$

▶ Bulk
$$\longleftrightarrow$$
 stochastic sine op.

$$\left[\begin{array}{c|c} & -\frac{d}{dx} \\ \hline \frac{d}{dx} & \end{array}\right] + \text{noise}$$

Advantages:

- 1. Interesting eigenfunctions.
- One-to-one correspondence local behavior (soft/hard/bulk) ← operator (Airy/Bessel/sine)
- 3. General β .

