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Abstract - Acoustic communications and networking 
research depends heavily on validation of the proposed 
algorithms through experiments.  These experiments are 
usually carried out by off-line processing of data recorded in 
real channels.  In this paper, we present a new simulation 
and rapid prototyping environment called the reconfigurable 
modem (rModem).  The rModem can model acoustic 
communication and networking systems, simulate the system 
behavior, and generate C code based on the system model 
that can be run on a DSP board for real-time experimental 
studies. 

 
I. INTRODUCTION 

 
Acoustic communications is an important part of underwater 

research.  The mass amount of data collected by sub-sea devices 
can be made available to the scientific community in real-time 
with the utilization of acoustic modems configured in a network 
setting.  Such networks may have fixed bottom nodes, gateway 
nodes on surface vehicles or buoys, and mobile nodes such as 
autonomous underwater vehicles (AUVs).  

Unlike the radio channel, the underwater acoustic (UWA) 
channel does not have a widely accepted mathematical model.  
Currently, simulations are carried out employing modified radio 
channel models and experiments are the key process to validate 
any new algorithms.  Experiments are usually performed over a 
point-to-point link by recording acoustic signals sent through a 
real channel.  The data are then processed off-line using 
computers.  This type of experiments restricts the validation of 
multi-user network algorithms.  In some cases, over-the-counter 
modems are used to experiment with UWA sensory networks [1].  
However, these modems have hard coded parameters that cannot 
be changed and development of software to implement additional 
network layers requires extensive engineering work. 

We are developing an acoustic modem that will be flexible 
enough to test different communication algorithms including 
networking protocols.  Due to its highly flexible structure, we 
call this modem the Reconfigurable Modem or the rModem.  
The main purpose of the rModem is to bring simulation and rapid 
prototyping environments together.  By this way, algorithms 
developed by researchers and tested using simulation can be 
rapidly prototyped and proven in real world scenarios.  

The development of the modem is carried out using 
MathWorks tools, such as Matlab®, Simulink®, and Real-Time 
Workshop®.  Matlab has been the choice of the scientific 
community for developing new algorithms.  We created a 
common simulation environment using Matlab® and Simulink®.  
Once the algorithms are tested using the simulation environment, 
we generate real-time code using Real-Time Workshop®.  The 
generated real-time code can be run on a digital signal processor 
(DSP).  Using a DSP based hardware platform, we can test the 
algorithms in real channels.  

In the Simulink® environment, algorithms are defined using 
functional blocks.  We can exploit this property and design a 
highly modular acoustic modem.  A researcher can only focus 
on one of the functional blocks, say the equalizer, and develop a 
new algorithm.  By simply changing the equalizer block in the 
reconfigurable modem, we can test this new algorithm and 
generate real-time code for experimental validation.  

The rModem hardware has four major parts: the DSP board, 
analog-digital interface, power amplifier, and transducer.  The 
DSP board contains a Texas Instruments TMS320C6713 chip.  
The analog-digital interface contains four analog-to-digital and 
digital-analog (AD/DA) channels, which will enable us to 
develop multi-input-multi-output (MIMO) [2] modems.  The 
power amplifier board is able to drive different acoustic 
transducers with minimal engineering effort.  

In the next section, we will describe the hardware 
components of the rModem.  In Section II, we will discuss the 
software components of the rModem.  Section III and section IV 
are devoted to examples of simulations and experiments 
performed with the rModem.  We will finish with conclusions 
and future directions. 

 
II. RECONFIGURABLE MODEM HARDWARE 

 
The reconfigurable modem hardware has four major parts: 

power supply carrier board, the DSP board, analog-digital 
interface, power amplifier, and transducer(s). All boards are 
compatible with the micro-line interface defined by Orsys Orth 
Systems, gmbh [3].  In the following we describe these 
hardware modules.  

 
A. Power Supply Carrier Board 

The first layer of the hardware boards is the power supply 
carrier board.  This board functions as a base for a micro-line 
stack of DSP, analog-digital interface and the power amplifier 
boards.  It delivers power to the micro-line stack and provides 
additional services such as a UART communications connector 
and a hard reset button. 

 
B. DSP Board 

The DSP platform is an of-the-shelf Orsys micro-line 
embedded development board.  The micro-line board features a 
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Fig.  1. The packet structure of rModem consists of a preamble, 
dead time, training symbols, and data symbols. Packets are divided 
into frames. In this version, we use a frame size of 256 symbols. 



 

 

Texas Instruments TMS320C6713 DSP chip and a Xilinx 
Virtex-II FPGA.  This board provides an open micro-line bus 
interface for integrating peripheral hardware directly with DSP or 
FPGA resources.  

The TMS320C6713 is a 225 MHz floating-point DSP 
processor with a theoretical maximum performance of 1350 
MFLOPS.  We decided to utilize a floating-point processor to 
minimize the time required to convert simulation software into 
real-time code.  The processing power of this DSP is enough to 
minimize the hand optimization effort for rapid prototyping.  

The price we pay for high performance with floating point 
functionality is high power consumption as compared to the 
C5000 series low power DSP chips.  As we intend to employ the 
rModem as a research-based rapid prototyping environment, we 
decided to choose ease of programming over low power 
consumption.  We assume that these modems will not be 
employed for extended periods without maintenance or will be 
deployed within a system which does not have strict power 
consumption requirements for its peripherals, such as an AUV. 

The micro-line C6713 compact board also features 64 Mbyte 
on board SDRAM as nonvolatile memory space together with a 
Resident Flash File system for easy software downloading and 
handling.  The Resident Flash File system enables us to store 
multiple modem definitions in the on board memory and select 
the required definition at the boot time.  Therefore, we can test 
multiple communication algorithms within one deployment 
without the need for multiple downloads. 

Since one of the deployment platforms of the rModem is 
AUV, we paid special attention to the size of the system.  The 
micro-line board dimensions are 120 x 67 mm (4.72” x 2.64”). 
The peripheral boards stack on the DSP board.  The final size of 
the system depends on the number of peripherals.  

 
C. Analog-Digital Interface Board 

The analog-digital interface board features four 
analog-to-digital and digital-to-analog (AD/DA) channels.  By 
employing multiple input and output channels, we will be able to 
develop and test multi-input-multi-output (MIMO) modems.  

Each channel on this board can sample at 250 kHz and has a 
built in anti-aliasing filter with cut-off frequency at 100 kHz.  
However, we can program the board to provide us with a lower 
sampling rate, by decimating the signals in the on board FPGA.  
We can program the sampling rate of the A/D converter, the 
decimation rate, and the decimation filter coefficients.  The 
same coefficients are used to interpolate the signals going to the 
D/A channels.  The coefficients can be programmed during start 
up.  

 
D. Power Amplifier Board 

Power amplifier board will be placed on top of the 
analog-digital interface and drive the acoustic transducers.  This 
board will utilize high-efficiency linear amplifiers.  The 
amplifier gain can be controlled by the DSP, enabling us to 
experiment with power control algorithms for network 
optimization.  The power amplifier board also hosts an 
automatic gain controller, which adjusts the gain of the receiver 
amplifier based on the commands sent by the DSP.  The board 
can be reconfigured for different transducers by changing a 
couple of components without changing the basic design.  

 
II. RECONFIGURABLE MODEM SOFTWARE 

 
We are developing the rModem software using the 

Simulink® platform.  Simulink® provides an environment 
where the rModem can be modeled in a block diagram fashion. 
Each block defines a separate task of the rModem, such as 
filtering, synchronization, or equalization. The rModem 
functional blocks can be tested by running simulations. In 
addition to simulations, using the Real-Time Workshop tool, we 
can convert the Simulink® block diagram into real-time C code. 
This generated code can be compiled and downloaded to our 
hardware using Code Composer Studio (Texas Instruments 
Development Environment).  

We created custom blocks to model the rModem functionality. 
Each block is made up of three files: the s-function file, the task 
file, and the target language compiler (TLC) file. The s-function 

Fig.  2. Highest level block diagram for rModem defined in Simulink®. 



 

 

file defines the block properties such as the number and type of 
inputs and outputs, state information, and parameters. We define 
the relationship between the inputs and the outputs, or the 
behavior of the block, in a separate function called the task 
function. The task function defines the underlying algorithm of 
the block. In this way, we can wrap previously developed C code 
with s-functions and employ them in our rModem models. The 
TLC file is used to convert the block definition into C code.  

MathWorks also provides the Stateflow® toolbox. 
Stateflow® charts define state machines that can be used in the 
Simulink® environment. We use these charts to define the logical 
behavior of the rModem. State machines are especially useful in 
modeling network layers of a communication system.  

Since the hardware development of the rModem is still in 
progress, we started the software development and testing using 
the TI C6713 DSP Starter Kit (DSK). This DSK combines the 
power supply board, DSP board, and the analog-digital interface 
by providing a voice codec. We will be able to use the same 
system model on the original hardware by only changing the 
hardware dependent driver blocks in the system. 

We defined a communication packet as a collection of a 
preamble, dead time, training symbols, and data symbols, as 
shown in Fig. 1.  Packets are divided into frames.  The frame 
size can be selected by the user.  Currently, we use frames of 
256 symbols.  The physical layer sends one frame worth of data 
to the analog-to-digital converter at each clock tick.  At the 
receiving side, the rModem processes one frame of symbols at 
each clock tick.  If we select QPSK modulation, this means the 
demodulator block will output two times the frame size (or 512) 
bits.   

Fig. 2 shows the highest level block diagram of the rModem. 
During the development of the rModem, we loosely followed the 
OSI layering structure [4]. This version of the rModem software 
defines the Physical Layer (or Layer 1), the Transport Layer 
(Layer 4), and the UART interface for serial communications 
with the modem. In the future versions, we will include the 
Network Layer (Layer 3) and the Data Link Control Layer (Layer 
2). Each layer is connected to its higher level through two queues 
(or FIFO buffers), one for downstream communications and one 
for upstream communications.  

 

A. Physical Layer 
The physical layer consists of the transmitter, the receiver, 

controllers, and AD/DA converters, as shown in Fig. 3. The 
controller blocks are state machines that define the sequence of 
events during transmission and reception of acoustic packets. The 
AD/DA converter blocks are device drivers for the 
analog-to-digital and digital-to-analog converter hardware. 
During simulations they do nothing but pass the signals through, 
probably to a channel simulation block. The transmitter and 
receiver blocks enclose the basic blocks of the physical layer.   

 
i. Transmitter 

The transmitter handles the actual conversion of the bits into 
acoustic signals. Fig. 4 shows the block diagrams for the 
transmitter. The data bits are first passed through the 
convolutional encoder and encoded according to the coding 
scheme determined by the transmitter controller. The controller 
may indicate no coding, in which case the bits pass through the 
encoder block without any modification. The encoded bits are 
then interleaved and passed to a circular buffer. The circular 
buffer outputs one frame duration of bits every clock tick. These 
bits are passed through an interpolation filter. Finally, the signals 
are carrier modulated and sent to the D/A converter. Each block 
in the transmitter can be replaced with custom designed blocks to 
change the coding scheme, interleaver matrix, or symbol 
mapping.  

 
ii. Receiver 

The acoustic receiver consists of two major parts: the 
Preamble Process block and the Demodulator block (see Fig. 5). 
The samples received from the A/D converter are first down 
converted to baseband. The baseband samples are then passed 
through a decimator filter. The output of the decimator filter is 
fed to both the Preamble Process block and the Demodulator 
block.  

When the rModem is not transmitting, the receiver controller 
enables the Preamble Process block. The received samples are 

Fig.  3. The physical layer (Layer 1) of rModem consists of the 
transmitter, the receiver, controllers, and AD/DA converters. 

Fig.  4. The Xmit block converts data bits into symbols. The symbols 
are then are passed through an interpolation filter and carrier modulated.



 

 

further down sampled before correlating with the known 
preamble to reduce the computational cost. This block is also 
responsible for providing an estimate of the Doppler shift present 
in the received signal. If the correlation value exceeds a threshold, 
this block issues a detection signal together with the position of 
the preamble and the Doppler shift estimate. 

Following the detection of a preamble, the controller disables 
the Preamble Processor block and enables the Demodulator 
block. The received samples are first passed through a Doppler 
compensator, synchronizer, and decimator. The output of the 
Sync Doppler Decim block is fed into the equalizer. The 
equalized symbols are demapped into soft bit values. The 
Deinterleaver block has an internal buffer where the soft bits of a 
data packet are buffered until the whole packet is received. Then 
the soft bits are deinterleaved and decoded in the Viterbi Decoder 
block.  

 

B. Transport Layer 
The transport layer is responsible for dividing the data to be 

transmitted into packets and assembling the received packets. We 
modeled the transport layer with two parallel state machines: 
Transport_Xmt_Ctrl and Transport_Rcv_Ctrl.  

The Transport_Xmt_Ctrl state machine represents the 
controller for the transmitter side. The details of the state machine 
are shown in Fig. 6. When the controller detects a packet in the 
queue, it issues a popXmtQ signal and initializes a session. The 
initialization involves assigning a session number, determining 
the number of bits in a Layer 3 packet based on the physical layer 
setting. The physical layer settings that affect the Layer 3 packet 
size are the modulation and coding types.  

Once the packet is received from the queue, the controller 
determines the number of Layer 3 packets needed to carry the 
information. Then the controller enters a loop of length 
xmtNumPackets. At each execution of the loop, the controller 
creates a new Layer 3 packet, enters the header information, and 
copies the payload bits. The created Layer 3 packets are pushed 
into the lower layer’s queue. 

Upon completion of the loop, the controller checks for a new 
packet in its queue. If there is a new packet, it issues a popXmtQ 
signal and initializes a new session. Otherwise, the controller 
returns to the Idle state. 

The current version of the transport layer transmitter 
controller does not check for queue overflows. Therefore, if the 
rate of new data arrival to the transport layer is more then the rate 
of the lower layers, packets may be lost. For now, it is the upper 
layers’ responsibility to ensure that no queue overflow will occur.  

The Transport_Rcv_Ctrl state machine represents the 
controller for the transmitter side. The details of the state machine 
are shown in Fig. 7. The controller waits in the Idle state until a 
packet appears in its queue. Upon detection of the packet, the 
controller issues a popRcvQ signal and determines the expected 
payload size of the received Layer 3 packet based on the current 
physical layer settings. When the controller receives the packet 
from the queue, it first checks the CRC and determines if the 
packet is valid. If it is a valid packet, then the controller reads the 
header to determine the session number, number of packets in 
this session, packet number, and the size of the data in this packet. 
If this is the first packet of a session and there is no open session, 
the controller starts a new session. If there is an open session, the 
packet is ignored. The current version of the transport layer can 
handle one session at a time. If the packet is accepted by the 
transport layer, it is placed into the reassembly buffer.  

If the session requires more packets, the controller checks the 
queue for a new packet. If there is a new packet, then the process 

Fig.  6. The state machine for the transport layer transmitter 
controller. Fig.  7. The state machine for the transport layer receiver controller.. 

Fig.  5. The receiver first determines the packet presence based on the 
pre-amble. The receiver controller activates the receiver block, where the 
symbols are converted into data bits. 



 

 

is repeated for the new packet. Otherwise, the controller sets a 
timer and waits for a new packet from the queue. If the timer 
expires before the arrival of a packet, then the session is closed 
before completion. If all the packets of a session are received 
successfully, then the reassembled Layer 4 packet is sent to the 
higher level. 

 
IV. SIMULATIONS WITH RECONFIGURABLE MODEM 

 
In the previous sections, we described the modem structure 

that can be used in the real-time reconfigurable modem system.  
In the real-time system, we have to process the communication 
signals in frames rather then packets.  At each clock tick, we 
process a frame worth of data.  Most of the blocks are used to 
control the data flow through the modem based on this framed 
structure.  In a simulation environment, we don’t need to follow 
such a frame based scheme.  We can process the whole packet 
in one simulation time instance.  Also, we can make sure that 
the transmitter and receiver are synchronized in time and 
eliminate the pre-amble processing unit.   

These relaxed requirements reduce the complexity of the 
system and speed up the simulations.  We can further reduce the 
complexity by focusing on individual blocks of the system.  For 
example, we can compare performance of different types of 
equalization algorithm by omitting error correction coding.  
With the help of simulations, we can optimize modem parameters 
under various simulated channel conditions and obtain an insight 
to the system before actual experimental work.   

The rModem blocks can be used in both simulations and the 
real-time system model.  This portability can be assured by 
designing blocks that are able to process frame based data as well 
as packet based data.  Therefore, we can design our system 

within the simulation environment and insert the tested blocks in 
the real-time system model for experimental studies. 

Fig. 8 shows the simulation model for an APSK [5] 
modulation system.  The receiver employs a linear equalizer 
with LMS adaptations [6]. For this particular system, we chose a 
static multipath channel with frequency offset.  With this model, 
we were able to test the sensitivity of the adaptive equalizer to 
frequency offset, which may be a result of Doppler shift or clock 
mismatch.   

We present the details of the transmitter and the receiver in 
Fig. 9.  The transmitter consists of an APSK modulator and a 
square-root raised-cosine interpolation filter.  A number of 
symbols are selected as training symbols to be used at the 
receiver.  The transmitter employs the same filter shape for 
decimation.  The output of the adaptive filter is converted into 
soft bit estimates.  We also utilize the output of the adaptive 
filter to estimate the mean square error performance.  We 
employed the same model to test a decision feedback equalizer 
(DFE).   

As an example case, we investigated the performance of a 
linear adaptive equalizer with PLL under frequency offset for 
several modulation schemes.  A sample simulation result 
obtained using this model for BPSK, 4-1-APSK (equivalent to 
QPSK), 8-1-APSK (equivalent to 8PSK), 4-2-APSK, and 
8-2-APSK is given in Fig. 10.  The interpretation of the 
simulation results is out of this manuscripts scope. 

 
IV. EXPERIMENTS WITH RECONFIGURABLE MODEM 

 
We used the APSK modulator, demodulator, and the 

equalizer blocks presented in the previous section to create a 

Fig.  8. We created a simulation model to investigate the performance of a linear equalizer with PLL under frequency offset with several 
APSK modulation schemes. 

 

b) Receiver 

a) Transmitter 

Fig.  9. The transmitter consists of an APSK modulator and a square 
-root raised-cosine interpolation filter.  A number of symbols are 
selected as training symbols.  The receiver uses the same filter, an 
adaptive equalizer, and a symbol demapper. 

Fig.  10.  Simulation results obtained using the rModem model 
presented in Fig. 8, where we investigated the performance of the 
linear equalizer with PLL under frequency offset. 



 

 

real-time modem.  We processed data recorded during an 
experiment in the Aegean see in the summer of 2004 with this 
system.  We generated real-time DSP code and downloaded the 
code to a TI 6713 DSK board.  We used the sound card of a 
laptop computer to feed the experimental data into the rModem.  
After we finished the processing of a data packet, we stopped the 
DSP and examined its memory.  Fig. 11 shows the screen 
capture of the DSP development program.  With this program, 
we were able to obtain the scattering plot at the output of the DFE, 
the adaptive filter coefficients at the end of the packet, and the 
signal at the input of the DFE.  Note that, these snapshots 
correspond to the last frame of the packet.   

A closer look to the input received signal and the DFE output 
is given in Fig. 12.  We can see that the DFE converged to a 
stable state where the scattering plot presented distinguishable 
symbol estimates.  

 
V. CONCLUSIONS AND FUTURE DIRECTIONS 

 
We are developing the initial rModem software as a basic 

communication system where information bits are encoded, 
interleaved and modulated at the transmitter and demodulated, 
deinterleaved, and decoded at the receiver.  The underlying 
algorithms that we chose to carry out these tasks can be changed 
by replacing the corresponding block.  At the time we started the 
development of the rModem, the communications blocks 
provided by Simulink® were general purpose blocks that either 
were not able to generate real-time code, or the generated code 
was inefficient.  However, through our communications with the 
developers of Simulink®, we learned that they are working on 
providing blocks that will generate specific, efficient real-time 
code.  These ready to use blocks will decrease the time to 
prototype communication algorithm even more. 

We will continue to develop network layers for the rModem.  
We will customize the target files to enable one-click code 
generation, compilation, and download.  We will conduct real 
channel experiments to test point-to-point links and networking 
algorithm. 
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Fig.  11.  This screen shot of the DSP development software is 
captured after the reception of a packet. 

Fig.  12.  The signal at the input of the DFE is shown in the upper 
plot, while the lower plot is the scattering plot for the last frame of 
the packet. 


