

Simulation and Rapid Prototyping Environment for Underwater
Acoustic Communications: Reconfigurable Modem

Ethem M. Sözer, MIT Sea Grant College Program

Cambridge, MA, 02139, USA
emsozer@mit.edu

Abstract - Acoustic communications and networking
research depends heavily on validation of the proposed
algorithms through experiments. These experiments are
usually carried out by off-line processing of data recorded in
real channels. In this paper, we present a new simulation
and rapid prototyping environment called the reconfigurable
modem (rModem). The rModem can model acoustic
communication and networking systems, simulate the system
behavior, and generate C code based on the system model
that can be run on a DSP board for real-time experimental
studies.

I. INTRODUCTION

Acoustic communications is an important part of underwater

research. The mass amount of data collected by sub-sea devices
can be made available to the scientific community in real-time
with the utilization of acoustic modems configured in a network
setting. Such networks may have fixed bottom nodes, gateway
nodes on surface vehicles or buoys, and mobile nodes such as
autonomous underwater vehicles (AUVs).

Unlike the radio channel, the underwater acoustic (UWA)
channel does not have a widely accepted mathematical model.
Currently, simulations are carried out employing modified radio
channel models and experiments are the key process to validate
any new algorithms. Experiments are usually performed over a
point-to-point link by recording acoustic signals sent through a
real channel. The data are then processed off-line using
computers. This type of experiments restricts the validation of
multi-user network algorithms. In some cases, over-the-counter
modems are used to experiment with UWA sensory networks [1].
However, these modems have hard coded parameters that cannot
be changed and development of software to implement additional
network layers requires extensive engineering work.

We are developing an acoustic modem that will be flexible
enough to test different communication algorithms including
networking protocols. Due to its highly flexible structure, we
call this modem the Reconfigurable Modem or the rModem.
The main purpose of the rModem is to bring simulation and rapid
prototyping environments together. By this way, algorithms
developed by researchers and tested using simulation can be
rapidly prototyped and proven in real world scenarios.

The development of the modem is carried out using
MathWorks tools, such as Matlab®, Simulink®, and Real-Time
Workshop®. Matlab has been the choice of the scientific
community for developing new algorithms. We created a
common simulation environment using Matlab® and Simulink®.
Once the algorithms are tested using the simulation environment,
we generate real-time code using Real-Time Workshop®. The
generated real-time code can be run on a digital signal processor
(DSP). Using a DSP based hardware platform, we can test the
algorithms in real channels.

In the Simulink® environment, algorithms are defined using
functional blocks. We can exploit this property and design a
highly modular acoustic modem. A researcher can only focus
on one of the functional blocks, say the equalizer, and develop a
new algorithm. By simply changing the equalizer block in the
reconfigurable modem, we can test this new algorithm and
generate real-time code for experimental validation.

The rModem hardware has four major parts: the DSP board,
analog-digital interface, power amplifier, and transducer. The
DSP board contains a Texas Instruments TMS320C6713 chip.
The analog-digital interface contains four analog-to-digital and
digital-analog (AD/DA) channels, which will enable us to
develop multi-input-multi-output (MIMO) [2] modems. The
power amplifier board is able to drive different acoustic
transducers with minimal engineering effort.

In the next section, we will describe the hardware
components of the rModem. In Section II, we will discuss the
software components of the rModem. Section III and section IV
are devoted to examples of simulations and experiments
performed with the rModem. We will finish with conclusions
and future directions.

II. RECONFIGURABLE MODEM HARDWARE

The reconfigurable modem hardware has four major parts:

power supply carrier board, the DSP board, analog-digital
interface, power amplifier, and transducer(s). All boards are
compatible with the micro-line interface defined by Orsys Orth
Systems, gmbh [3]. In the following we describe these
hardware modules.

A. Power Supply Carrier Board

The first layer of the hardware boards is the power supply
carrier board. This board functions as a base for a micro-line
stack of DSP, analog-digital interface and the power amplifier
boards. It delivers power to the micro-line stack and provides
additional services such as a UART communications connector
and a hard reset button.

B. DSP Board

The DSP platform is an of-the-shelf Orsys micro-line
embedded development board. The micro-line board features a

preamble

Dead time
Training
symbols

Data
symbols

Fig. 1. The packet structure of rModem consists of a preamble,
dead time, training symbols, and data symbols. Packets are divided
into frames. In this version, we use a frame size of 256 symbols.

Texas Instruments TMS320C6713 DSP chip and a Xilinx
Virtex-II FPGA. This board provides an open micro-line bus
interface for integrating peripheral hardware directly with DSP or
FPGA resources.

The TMS320C6713 is a 225 MHz floating-point DSP
processor with a theoretical maximum performance of 1350
MFLOPS. We decided to utilize a floating-point processor to
minimize the time required to convert simulation software into
real-time code. The processing power of this DSP is enough to
minimize the hand optimization effort for rapid prototyping.

The price we pay for high performance with floating point
functionality is high power consumption as compared to the
C5000 series low power DSP chips. As we intend to employ the
rModem as a research-based rapid prototyping environment, we
decided to choose ease of programming over low power
consumption. We assume that these modems will not be
employed for extended periods without maintenance or will be
deployed within a system which does not have strict power
consumption requirements for its peripherals, such as an AUV.

The micro-line C6713 compact board also features 64 Mbyte
on board SDRAM as nonvolatile memory space together with a
Resident Flash File system for easy software downloading and
handling. The Resident Flash File system enables us to store
multiple modem definitions in the on board memory and select
the required definition at the boot time. Therefore, we can test
multiple communication algorithms within one deployment
without the need for multiple downloads.

Since one of the deployment platforms of the rModem is
AUV, we paid special attention to the size of the system. The
micro-line board dimensions are 120 x 67 mm (4.72” x 2.64”).
The peripheral boards stack on the DSP board. The final size of
the system depends on the number of peripherals.

C. Analog-Digital Interface Board

The analog-digital interface board features four
analog-to-digital and digital-to-analog (AD/DA) channels. By
employing multiple input and output channels, we will be able to
develop and test multi-input-multi-output (MIMO) modems.

Each channel on this board can sample at 250 kHz and has a
built in anti-aliasing filter with cut-off frequency at 100 kHz.
However, we can program the board to provide us with a lower
sampling rate, by decimating the signals in the on board FPGA.
We can program the sampling rate of the A/D converter, the
decimation rate, and the decimation filter coefficients. The
same coefficients are used to interpolate the signals going to the
D/A channels. The coefficients can be programmed during start
up.

D. Power Amplifier Board

Power amplifier board will be placed on top of the
analog-digital interface and drive the acoustic transducers. This
board will utilize high-efficiency linear amplifiers. The
amplifier gain can be controlled by the DSP, enabling us to
experiment with power control algorithms for network
optimization. The power amplifier board also hosts an
automatic gain controller, which adjusts the gain of the receiver
amplifier based on the commands sent by the DSP. The board
can be reconfigured for different transducers by changing a
couple of components without changing the basic design.

II. RECONFIGURABLE MODEM SOFTWARE

We are developing the rModem software using the

Simulink® platform. Simulink® provides an environment
where the rModem can be modeled in a block diagram fashion.
Each block defines a separate task of the rModem, such as
filtering, synchronization, or equalization. The rModem
functional blocks can be tested by running simulations. In
addition to simulations, using the Real-Time Workshop tool, we
can convert the Simulink® block diagram into real-time C code.
This generated code can be compiled and downloaded to our
hardware using Code Composer Studio (Texas Instruments
Development Environment).

We created custom blocks to model the rModem functionality.
Each block is made up of three files: the s-function file, the task
file, and the target language compiler (TLC) file. The s-function

Fig. 2. Highest level block diagram for rModem defined in Simulink®.

file defines the block properties such as the number and type of
inputs and outputs, state information, and parameters. We define
the relationship between the inputs and the outputs, or the
behavior of the block, in a separate function called the task
function. The task function defines the underlying algorithm of
the block. In this way, we can wrap previously developed C code
with s-functions and employ them in our rModem models. The
TLC file is used to convert the block definition into C code.

MathWorks also provides the Stateflow® toolbox.
Stateflow® charts define state machines that can be used in the
Simulink® environment. We use these charts to define the logical
behavior of the rModem. State machines are especially useful in
modeling network layers of a communication system.

Since the hardware development of the rModem is still in
progress, we started the software development and testing using
the TI C6713 DSP Starter Kit (DSK). This DSK combines the
power supply board, DSP board, and the analog-digital interface
by providing a voice codec. We will be able to use the same
system model on the original hardware by only changing the
hardware dependent driver blocks in the system.

We defined a communication packet as a collection of a
preamble, dead time, training symbols, and data symbols, as
shown in Fig. 1. Packets are divided into frames. The frame
size can be selected by the user. Currently, we use frames of
256 symbols. The physical layer sends one frame worth of data
to the analog-to-digital converter at each clock tick. At the
receiving side, the rModem processes one frame of symbols at
each clock tick. If we select QPSK modulation, this means the
demodulator block will output two times the frame size (or 512)
bits.

Fig. 2 shows the highest level block diagram of the rModem.
During the development of the rModem, we loosely followed the
OSI layering structure [4]. This version of the rModem software
defines the Physical Layer (or Layer 1), the Transport Layer
(Layer 4), and the UART interface for serial communications
with the modem. In the future versions, we will include the
Network Layer (Layer 3) and the Data Link Control Layer (Layer
2). Each layer is connected to its higher level through two queues
(or FIFO buffers), one for downstream communications and one
for upstream communications.

A. Physical Layer
The physical layer consists of the transmitter, the receiver,

controllers, and AD/DA converters, as shown in Fig. 3. The
controller blocks are state machines that define the sequence of
events during transmission and reception of acoustic packets. The
AD/DA converter blocks are device drivers for the
analog-to-digital and digital-to-analog converter hardware.
During simulations they do nothing but pass the signals through,
probably to a channel simulation block. The transmitter and
receiver blocks enclose the basic blocks of the physical layer.

i. Transmitter

The transmitter handles the actual conversion of the bits into
acoustic signals. Fig. 4 shows the block diagrams for the
transmitter. The data bits are first passed through the
convolutional encoder and encoded according to the coding
scheme determined by the transmitter controller. The controller
may indicate no coding, in which case the bits pass through the
encoder block without any modification. The encoded bits are
then interleaved and passed to a circular buffer. The circular
buffer outputs one frame duration of bits every clock tick. These
bits are passed through an interpolation filter. Finally, the signals
are carrier modulated and sent to the D/A converter. Each block
in the transmitter can be replaced with custom designed blocks to
change the coding scheme, interleaver matrix, or symbol
mapping.

ii. Receiver

The acoustic receiver consists of two major parts: the
Preamble Process block and the Demodulator block (see Fig. 5).
The samples received from the A/D converter are first down
converted to baseband. The baseband samples are then passed
through a decimator filter. The output of the decimator filter is
fed to both the Preamble Process block and the Demodulator
block.

When the rModem is not transmitting, the receiver controller
enables the Preamble Process block. The received samples are

Fig. 3. The physical layer (Layer 1) of rModem consists of the
transmitter, the receiver, controllers, and AD/DA converters.

Fig. 4. The Xmit block converts data bits into symbols. The symbols
are then are passed through an interpolation filter and carrier modulated.

further down sampled before correlating with the known
preamble to reduce the computational cost. This block is also
responsible for providing an estimate of the Doppler shift present
in the received signal. If the correlation value exceeds a threshold,
this block issues a detection signal together with the position of
the preamble and the Doppler shift estimate.

Following the detection of a preamble, the controller disables
the Preamble Processor block and enables the Demodulator
block. The received samples are first passed through a Doppler
compensator, synchronizer, and decimator. The output of the
Sync Doppler Decim block is fed into the equalizer. The
equalized symbols are demapped into soft bit values. The
Deinterleaver block has an internal buffer where the soft bits of a
data packet are buffered until the whole packet is received. Then
the soft bits are deinterleaved and decoded in the Viterbi Decoder
block.

B. Transport Layer
The transport layer is responsible for dividing the data to be

transmitted into packets and assembling the received packets. We
modeled the transport layer with two parallel state machines:
Transport_Xmt_Ctrl and Transport_Rcv_Ctrl.

The Transport_Xmt_Ctrl state machine represents the
controller for the transmitter side. The details of the state machine
are shown in Fig. 6. When the controller detects a packet in the
queue, it issues a popXmtQ signal and initializes a session. The
initialization involves assigning a session number, determining
the number of bits in a Layer 3 packet based on the physical layer
setting. The physical layer settings that affect the Layer 3 packet
size are the modulation and coding types.

Once the packet is received from the queue, the controller
determines the number of Layer 3 packets needed to carry the
information. Then the controller enters a loop of length
xmtNumPackets. At each execution of the loop, the controller
creates a new Layer 3 packet, enters the header information, and
copies the payload bits. The created Layer 3 packets are pushed
into the lower layer’s queue.

Upon completion of the loop, the controller checks for a new
packet in its queue. If there is a new packet, it issues a popXmtQ
signal and initializes a new session. Otherwise, the controller
returns to the Idle state.

The current version of the transport layer transmitter
controller does not check for queue overflows. Therefore, if the
rate of new data arrival to the transport layer is more then the rate
of the lower layers, packets may be lost. For now, it is the upper
layers’ responsibility to ensure that no queue overflow will occur.

The Transport_Rcv_Ctrl state machine represents the
controller for the transmitter side. The details of the state machine
are shown in Fig. 7. The controller waits in the Idle state until a
packet appears in its queue. Upon detection of the packet, the
controller issues a popRcvQ signal and determines the expected
payload size of the received Layer 3 packet based on the current
physical layer settings. When the controller receives the packet
from the queue, it first checks the CRC and determines if the
packet is valid. If it is a valid packet, then the controller reads the
header to determine the session number, number of packets in
this session, packet number, and the size of the data in this packet.
If this is the first packet of a session and there is no open session,
the controller starts a new session. If there is an open session, the
packet is ignored. The current version of the transport layer can
handle one session at a time. If the packet is accepted by the
transport layer, it is placed into the reassembly buffer.

If the session requires more packets, the controller checks the
queue for a new packet. If there is a new packet, then the process

Fig. 6. The state machine for the transport layer transmitter
controller. Fig. 7. The state machine for the transport layer receiver controller..

Fig. 5. The receiver first determines the packet presence based on the
pre-amble. The receiver controller activates the receiver block, where the
symbols are converted into data bits.

is repeated for the new packet. Otherwise, the controller sets a
timer and waits for a new packet from the queue. If the timer
expires before the arrival of a packet, then the session is closed
before completion. If all the packets of a session are received
successfully, then the reassembled Layer 4 packet is sent to the
higher level.

IV. SIMULATIONS WITH RECONFIGURABLE MODEM

In the previous sections, we described the modem structure

that can be used in the real-time reconfigurable modem system.
In the real-time system, we have to process the communication
signals in frames rather then packets. At each clock tick, we
process a frame worth of data. Most of the blocks are used to
control the data flow through the modem based on this framed
structure. In a simulation environment, we don’t need to follow
such a frame based scheme. We can process the whole packet
in one simulation time instance. Also, we can make sure that
the transmitter and receiver are synchronized in time and
eliminate the pre-amble processing unit.

These relaxed requirements reduce the complexity of the
system and speed up the simulations. We can further reduce the
complexity by focusing on individual blocks of the system. For
example, we can compare performance of different types of
equalization algorithm by omitting error correction coding.
With the help of simulations, we can optimize modem parameters
under various simulated channel conditions and obtain an insight
to the system before actual experimental work.

The rModem blocks can be used in both simulations and the
real-time system model. This portability can be assured by
designing blocks that are able to process frame based data as well
as packet based data. Therefore, we can design our system

within the simulation environment and insert the tested blocks in
the real-time system model for experimental studies.

Fig. 8 shows the simulation model for an APSK [5]
modulation system. The receiver employs a linear equalizer
with LMS adaptations [6]. For this particular system, we chose a
static multipath channel with frequency offset. With this model,
we were able to test the sensitivity of the adaptive equalizer to
frequency offset, which may be a result of Doppler shift or clock
mismatch.

We present the details of the transmitter and the receiver in
Fig. 9. The transmitter consists of an APSK modulator and a
square-root raised-cosine interpolation filter. A number of
symbols are selected as training symbols to be used at the
receiver. The transmitter employs the same filter shape for
decimation. The output of the adaptive filter is converted into
soft bit estimates. We also utilize the output of the adaptive
filter to estimate the mean square error performance. We
employed the same model to test a decision feedback equalizer
(DFE).

As an example case, we investigated the performance of a
linear adaptive equalizer with PLL under frequency offset for
several modulation schemes. A sample simulation result
obtained using this model for BPSK, 4-1-APSK (equivalent to
QPSK), 8-1-APSK (equivalent to 8PSK), 4-2-APSK, and
8-2-APSK is given in Fig. 10. The interpretation of the
simulation results is out of this manuscripts scope.

IV. EXPERIMENTS WITH RECONFIGURABLE MODEM

We used the APSK modulator, demodulator, and the

equalizer blocks presented in the previous section to create a

Fig. 8. We created a simulation model to investigate the performance of a linear equalizer with PLL under frequency offset with several
APSK modulation schemes.

b) Receiver

a) Transmitter

Fig. 9. The transmitter consists of an APSK modulator and a square
-root raised-cosine interpolation filter. A number of symbols are
selected as training symbols. The receiver uses the same filter, an
adaptive equalizer, and a symbol demapper.

Fig. 10. Simulation results obtained using the rModem model
presented in Fig. 8, where we investigated the performance of the
linear equalizer with PLL under frequency offset.

real-time modem. We processed data recorded during an
experiment in the Aegean see in the summer of 2004 with this
system. We generated real-time DSP code and downloaded the
code to a TI 6713 DSK board. We used the sound card of a
laptop computer to feed the experimental data into the rModem.
After we finished the processing of a data packet, we stopped the
DSP and examined its memory. Fig. 11 shows the screen
capture of the DSP development program. With this program,
we were able to obtain the scattering plot at the output of the DFE,
the adaptive filter coefficients at the end of the packet, and the
signal at the input of the DFE. Note that, these snapshots
correspond to the last frame of the packet.

A closer look to the input received signal and the DFE output
is given in Fig. 12. We can see that the DFE converged to a
stable state where the scattering plot presented distinguishable
symbol estimates.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We are developing the initial rModem software as a basic

communication system where information bits are encoded,
interleaved and modulated at the transmitter and demodulated,
deinterleaved, and decoded at the receiver. The underlying
algorithms that we chose to carry out these tasks can be changed
by replacing the corresponding block. At the time we started the
development of the rModem, the communications blocks
provided by Simulink® were general purpose blocks that either
were not able to generate real-time code, or the generated code
was inefficient. However, through our communications with the
developers of Simulink®, we learned that they are working on
providing blocks that will generate specific, efficient real-time
code. These ready to use blocks will decrease the time to
prototype communication algorithm even more.

We will continue to develop network layers for the rModem.
We will customize the target files to enable one-click code
generation, compilation, and download. We will conduct real
channel experiments to test point-to-point links and networking
algorithm.

REFERENCES

[1] R.K. Creber, J.A. Rice, P.A. Boxley, C.L. Fletcher,
“Performance of undersea acoustic networking using
RTS/CTS handshaking and ARQ retransmission,” Proc.
MTS/IEEE Oceans Conf., pp. 2083-2086, Nov. 2001.

[2] Gesbert D., et.al, “From theory to practice: an overview of
MIMO space-time coded wireless systems,” IEEE JSAC,
Vol. 21, pp.281-302, April 2003

[3] Orsys Orth Systems, gmbh, URL http://www.orsys.de/
[4] Bertsekas D. and Gallager R., Data Networks, 2nd Edition,

Prentice-Hall Inc., 1992
[5] Chow, Y.C., Nix, A.R. and McGeehan, J.P., “Analysis of

16-APSK modulation in AWGN and Rayleigh fading
channel,” Electronics Letters, Vol. 28, pp. 1608-1610 Aug.
1992

[6] Haykin S., Adaptive Filter Theory, Fourth Edition, Prentice
Hall, 2002

Fig. 11. This screen shot of the DSP development software is
captured after the reception of a packet.

Fig. 12. The signal at the input of the DFE is shown in the upper
plot, while the lower plot is the scattering plot for the last frame of
the packet.

