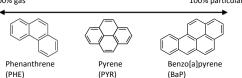
Carey L. Friedman and Noelle E. Selin

Center for Global Change Science (clf@mit.edu)

Engineering Systems Division and Department of Earth, Atmospheric, and Planetary Sciences (selin@mit.edu)

77 Massachusetts Ave., Cambridge, MA 02139 USA

Background


Polycyclic aromatic hydrocarbons (PAHs) are mutagenic byproducts of the combustion of organic material. PAHs can travel long distances in the atmosphere to remote locations, such as the Arctic, where they deposit and pose health risks. In this study, we evaluate the relative influences of a changing climate and anthropogenic emissions on global and Arctic atmospheric PAH concentrations. We use an atmospheric chemical transport model to simulate transport under the following conditions:

	Anthropogenic Emisisons		
Climate	Present	Future	
Present	Control	"PCFE"	
Future	"FCPE"	"FCFE"	

In addition, we simulate an additional scenario ("FCFE Ship") similar to FCFE but including PAH emissions from projected future Arctic shipping activity.

We simulate the transport of three PAHs that have different gasparticle partitioning to capture a range of behaviors:

100% gas 100% particulate

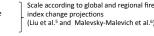
For a full background on the development, evaluation, and use of our model, please refer to the following publication:

In addition to processes described in the paper, our model includes re-volatilization of previously deposited PAHs from soil and vegetation. The importance of the sum of these "secondary emissions" is greater for PAHs that exist primarily as gases:

	PHE	PYR	BaP
Secondary/Total Emissions	16%	8%	0.01%

Revolatilization fluxes are impacted by temperature changes, primarily via changes in equilibrium partition coefficients (K) following the van't Hoff equation:

ing the van't Hoff equation:
$$K_{soil-air}(T_2) = K_{soil-air}(T_1) \times e^{\frac{-\Delta H}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)}$$


In this example, K is the partition coefficient between soil and air (unitless), T_1 and T_2 are reference and changed absolute temperatures (K), respectively, ΔH is the enthalpy of phase change (kJ/mol) and R is the ideal gas constant (kJ/mol/K).

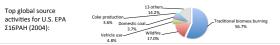

Wildfire

Precipitation

to present

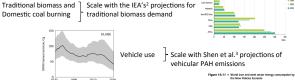
↑ 5% compared

and wildfire emissions scaling from FCPE for an overall future scenario

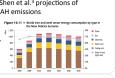

- FCFE Ship:

Projected black carbon emissions from increased shipping from transit and oil/gas extraction in the Arctic (Peters et al.7) are scaled with PAH emission factors to estimate future BaP emissions. These emissions are added to the FCFE scenario.

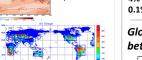
ACKNOWLEDGMENTS: Leading Technology and Policy Initiative (MIT): Yanxu Zhang (U. Washington): Eric Leibensperger (MIT): NSF Atmospheric Chemistry Grant 1053648


Methodology

We use the 2004 global emissions inventory of Zhang and Tao¹ and present day (mean of 1997-2003) climate calculated by the NASA GISS GCM.



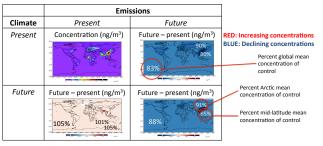
- PCFE: We scale 2004 anthropogenic emissions to 2050 in the following control regions:


Emissions from each top source are scaled according to a related activity. Overall, emissions in each region decline:

Scale with the IEA's4 projections for energy Coke production consumption in the iron and steel production sector

 FCPE: We use NASA GISS GCM projected meteorology (mean of 2047-2053 assuming IPCC A1B emissions) and scale wildfire emissions according to wildfire index change projections:

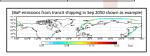
Temperature


↑ 1.6 C compared

to present climate

Results

Future emissions decrease global PAH concentrations, but climate impacts depend on gas-particle partitioning behavior


For PHENANTHRENE, we see a decrease in mean global concentrations from future emissions and an increase from future climate

For **PYRENE** and **BENZO[a]PYRENE**, we also see decreases in global mean concentrations from future emissions (even more so than for PHE). In a future climate, we see balanced increases and decreases for PYR that result in a negligible net change; for BaP, future climate causes a small decrease in the global mean:

	Emissions				
	PYRENE		BENZO[a]PYRENE		
Climate	Present	Future	Present	Future % of control mean: 67% 86%	
Present Global Arctic	Mean concs (ng/m³): 0.048 0.036	% of control mean: 77% 89%	Mean concs (ng/m³): 2.4e-2 7.8e-3		
Mid-latitude Future	% of control mean:	73% % of control mean:	5.2e-2 % of control mean:	65% % of control mean:	
Global	102%	80%	97%	66% 66%	
Arctic Mid-latitude	101% 102%	91% 76%	99% 98%	86% → 89% 64% 64%	

Applying future Arctic shipping BaP emissions to the FCFE simulation leads to a 4% increase in Arctic concentrations and a 0.1% increase in the global mean

Global concentrations in a future climate are a balance between increasing deposition and secondary emissions

	BaP	<u>PYR</u>	<u>PHE</u>
Change in deposition	↑ 4%	↑ 5%	↑ 5%
Change in % secondary of total	0 %	↑ 2%	↑ 3%
emissions	(0.01% to 0.01%)	(8% to 10%)	(16% to 19%)

Projected future emissions will reduce global PAH concentrations, but there will be a "climate penalty" that lessens gas-phase reductions

	<u>BaP</u>	<u>PYR</u>	PHE
Future climate penalty (reduction in expected decrease	-1 %	+13%	+30%