Mercury in the Global Atmosphere: Chemistry, deposition, and land-atmosphere interactions

or

Mercury rising...and falling: What climate scientists can learn from Hg pollution

Noelle Eckley Selin
Joint Program on the Science and Policy of Global Change
Center for Global Change Science
Massachusetts Institute of Technology

DISCCRS Symposium
November, 2008

A science and policy challenge

Most U.S. states have instituted dietary advice on fish consumption for pregnant women, children to minimize methylmercury exposure [U.S. EPA/FDA, 2008]

Ice core records (Wyoming) show increasing Hg deposition since industrialization [Schuster et al., ES&T 2002]

Arctic concern due to bioaccumulation, human exposure

Mercury in polar bear fur up 5-12X since 1890, [Dietz et al., ES&T 2006]

Major source: coal-fired power plants [Pacyna et al., 2006]
Long-term human influences on biogeochemical cycle

Pre-industrial mercury cycle

Amount in present-day atmosphere is 3x pre-industrial

Large reservoirs in soils, deep ocean, enriched by prior human activity

Very long time scales for burial

Pre-industrial Hg budget from GEOS-Chem global, 3D mercury model [Selin et al., 2008]
Policy challenges across spatial scales

In the Midwest/Northeast U.S., most deposition comes from domestic sources.

Southeast U.S. has the highest measured wet deposition, but a low domestic fraction.

Average over U.S.: 20% of deposition from domestic sources.

Linking domestic to international policies: cross-scale issues.

[Selin and Selin, 2006; Selin and Jacob, 2008]
Policy challenges across temporal scales

Use source-attributed deposition to drive ocean model and illustrate prospects for policy interventions.

U.S. commercial market Hg exposure will increase regardless of emissions controls!

"current emissions" scenario

[Selin et al. in prep.]
Lessons for climate, and from climate

• Mercury is a lot like the climate problem:
 – Policy challenges across space and time
 – Time lags in responding to anthropogenic actions
 – Large-scale disruptions of global biogeochemical cycles that will take centuries to millennia to return to pre-industrial levels
 – Potential for climate and land-use change to further disrupt mercury cycle

• Future challenge to mercury policy: how to balance adaptation and mitigation?