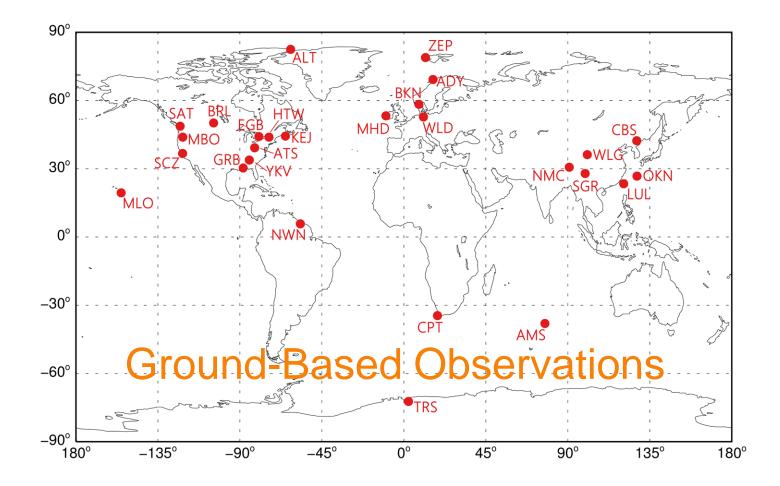
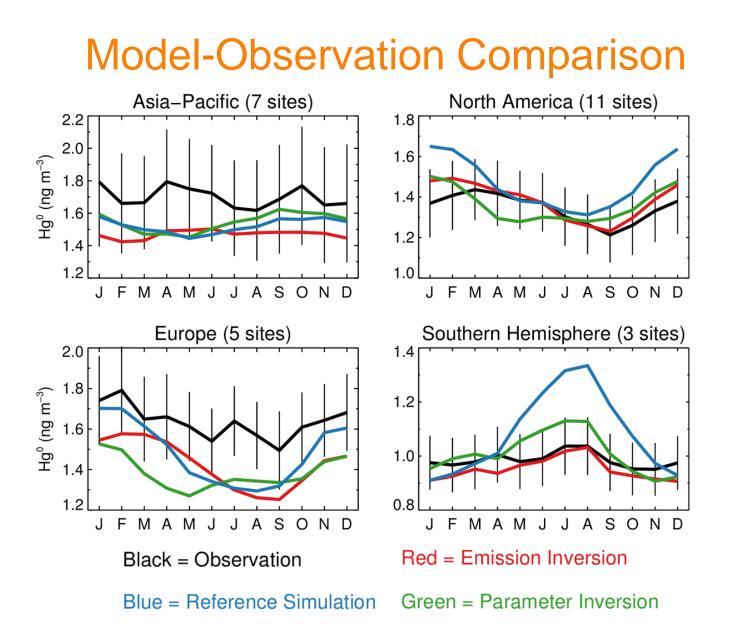

Top-down constraints on Hg emissions at global and regional scales: combining atmospheric observations and modeling

Shaojie Song¹, Noelle E. Selin^{1,2}, Anne L. Soerensen³, Viral Shah⁴, Amanda Giang², Lynne Gratz⁵, Jesse L. Ambrose⁵, Daniel A. Jaffe^{4,5}, Lyatt Jaeglé⁴, Lisa Kaser⁶, Bin Yuan⁷, Eric Apel⁶, Rebecca Hornbrook⁶, Alan Hills⁶, Daniel Riemer⁶, Nicola Blake⁶, Hélène Angot⁸, Richard Artz⁹, Steve Brooks¹⁰, E.-G. Brunke¹¹, Gary Conley¹², Aurélien Dommergue⁸, Ralf Ebinghaus¹³, Thomas M. Holsen¹⁴, Shichang Kang¹⁵, Paul Kelley⁹, Winston T. Luke⁹, Olivier Magand⁸, Kohji Marumoto¹⁶, Katrine A. Pfaffhuber¹⁷, Xinrong Ren⁹, Guey-Rong Sheu¹⁸, Franz Slemr¹⁹, Andreas Weigelt¹³, Peter Weiss-Penzias²¹, Dennis C. Wip²², Qianggong Zhang²³

An inverse modeling study at global scale


This study quantitatively estimates present-day mercury emission sources combining ground-based observations and a global chemical transport model (the GEOS-Chem CTM). Several key parameters in GEOS-Chem (including two ocean parameters) are also investigated to explain the emission changes.



Bayesian Inversion Approach

- The optimized emissions depend on the *a priori* uncertainties associated with the reference emissions and Hg⁰ observations.
- The 1-σ uncertainties of reference emissions are set as 50%.
- The total observation/model errors contain mismatch, instrumental precision, sampling frequency, and intercomparison errors (the most important).

The emission inversion better reproduces groundbased Hg⁰ observations (particularly for sites in the Southern Hemisphere and North America, note seasonal variability) than the reference simulation, and matches measured Hg⁰ over the North Atlantic Ocean and wet deposition fluxes in North America.

Atmosphere-surface exchange of Hg⁰ over the Eastern USA and Northwest Atlantic

NOMADSS

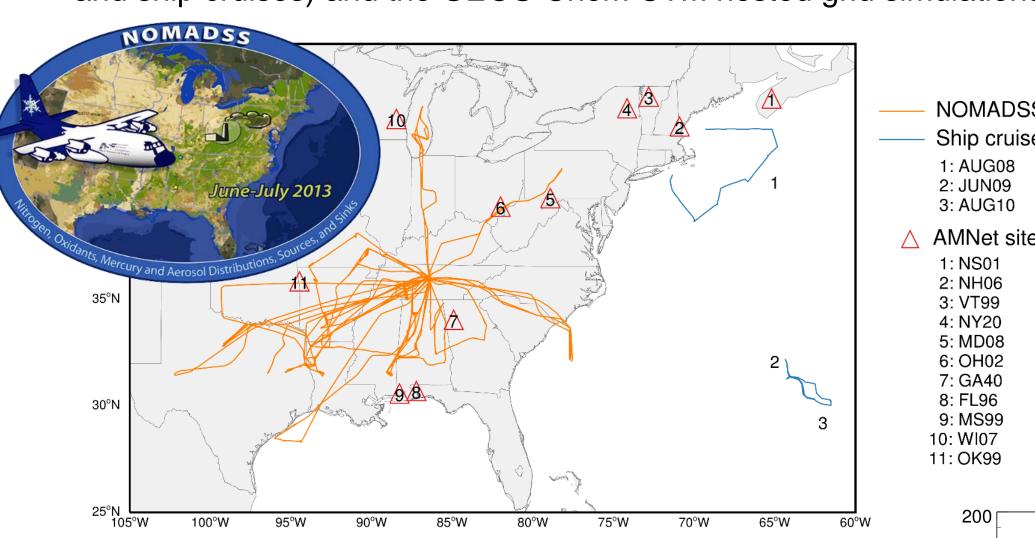
Ship cruise

1: AUG08 2: JUN09

3: AUG10

1: NS01 2: NH06

3: VT99

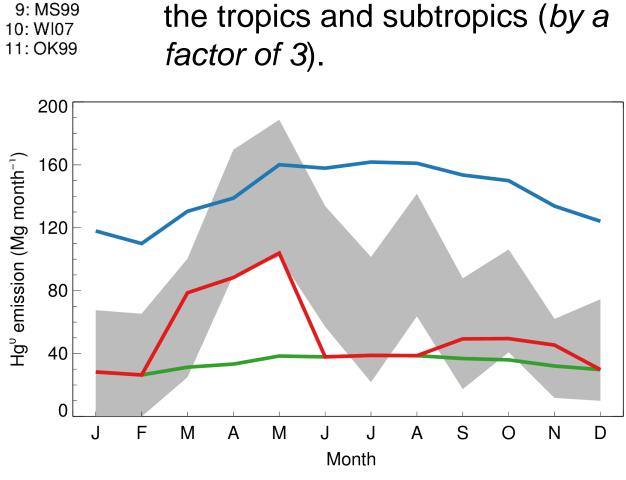

4: NY20

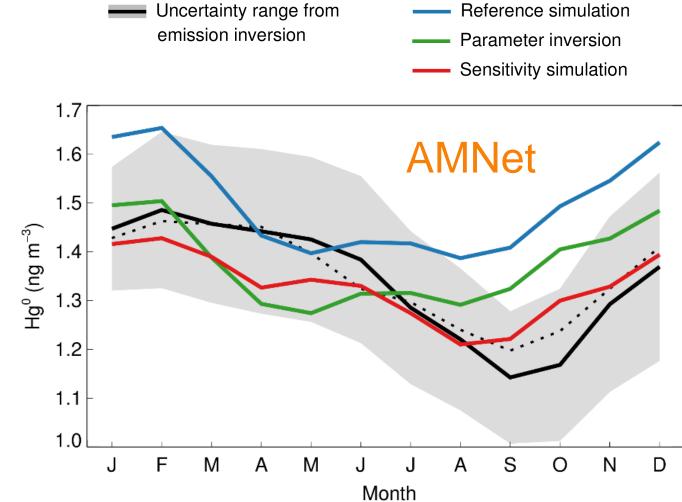
5: MD08

6: OH02 7: GA40

8: FL96

■ This study combines three types of mercury measurements (ground-based stations, aircraft campaign, and ship cruises) and the GEOS-Chem CTM nested grid simulations.


We conduct three GEOS-Chem simulations: reference simulation, parameter inversion, and a sensitivity simulation. The sensitivity simulation is based on the parameter inversion with elevated springtime soil emission in the mid-latitude region (by a factor of 4) and elevated summertime bromine columns in the tropics and subtropics (by a factor of 3).


An increase of springtime soil emission is consistent with the emission inversion. Agricultural activities and a larger land surface Hg pool due to deposition in the snow may contribute to such seasonal pattern.

Comparison between model results and different types of observations

NOMADSS within boundary layer

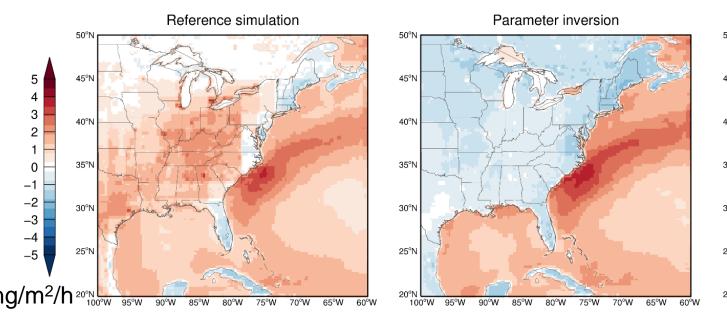
		•	<i>y</i>
	Over-land	Over-ocean	M-W U test
Measurement	1.44 ± 0.09	1.56 ± 0.11	p < 0.001
Reference simulation	1.40 ± 0.04	1.32 ± 0.03	p < 0.001
Parameter inversion	1.30 ± 0.03	1.28 ± 0.02	p < 0.001
Sensitivity simulation	1.29 ± 0.06	1.26 ± 0.05	p < 0.001
N of samples	356	69	

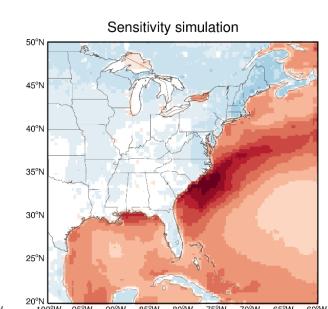
Observation 2013

· · · · Observation 2009–2012

Ship cruises

Table. Measured and modeled concentrations of air and aqueous Hg in the Northwest Atlantica Sensitivity simulation #1


Ship cruise		AUG08			JUN09			AUG10	
Hg species ^b	air Hg ⁰	$\mathrm{Hg_{aq}}^0$	$Hg_{aq}{}^{T} \\$	air Hg ⁰	$\mathrm{Hg_{aq}}^0$	$Hg_{aq}{}^{T} \\$	air Hg ⁰	$\mathrm{Hg_{aq}}^0$	$\mathrm{Hg_{aq}}^{\mathrm{T}}$
Measurement	1.4 ± 0.2	133 ± 14	1.3-2.9	1.4 ± 0.1	120 ± 7	NAc	NA	196 ± 34	1.2-1.6
Reference simulation	1.40	110	1.3	1.33	78	0.9	1.31	91	1.1
Parameter inversion	1.37	117	1.6	1.31	94	1.2	1.30	96	1.3
Sensitivity simulation #1	1.32	143	1.9	1.32	98	1.3	1.17	123	1.6


^a Ship cruise measurement data are from Soerensen et al. (2013). For the cruise of August 2008, we exclude aqueous Hg data measured in the coastal region because they are affected by anomalously high freshwater inputs.

^b The units of air Hg⁰, Hg_{aq}⁰, and Hg_{aq}^T (filtered total aqueous mercury) are ng m⁻³, fM (10⁻¹² mol m⁻³), and pM (10⁻⁹ mol m⁻³), respectively.

- The sensitivity simulation best captures the seasonal pattern of the AMNet Hg⁰ concentration.
- In 2013 June/July, the sensitivity simulation has a small bias (-0.03 ng/m³) when compared to the AMNet.
- The sensitivity simulation gives the closest Hg_{aq}⁰, but still 8-40% less than ship cruises measurements. ■ The median Hg⁰ in NOMADSS is 1.46 ng/m³, ~ 10% higher than the sensitivity simulation (1.29 ng/m³).

Modeled Hg⁰ emission fluxes from the land and ocean in JJA

Reference simulation

Parameter inversion

Take-home message: GEOS-Chem simulations and observations suggest that the Eastern US terrestrial ecosystem is a net sink of Hg⁰ while the Northwestern Atlantic Ocean is a source.

Author affiliations & References & Acknowledgments

¹EAPS, Massachusetts Institute of Technology, Cambridge, MA, USA; ²ESD, Massachusetts Institute of Technology, Cambridge, MA, USA; ³Stockholm University, Stockholm, Sweden; ⁴University of Washington, Seattle, WA, USA; ⁵University of Washington-Bothell, Bothell, WA, USA; ⁶National Center for Atmospheric Research, Boulder, CO, USA; ⁷National Oceanic and Atmospheric Administration, Boulder, CO, USA; ⁸Univ. Grenoble Alpes, CNRS, LGGE, Grenoble, France; 9National Oceanic and Atmospheric Administration, College Park, MD, USA; 10University of Tennessee Space Institute, Tullahoma, TN, USA; ¹¹South African Weather Service c/o CSIR, Stellenbosch, South Africa; ¹²Ohio University, Athens, OH, USA; ¹³Helmholtz-Zentrum Geesthacht, Geesthacht, Germany; ¹⁴Clarkson University, Potsdam, NY, USA; ¹⁵Chinese Academy of Sciences (CAS), Lanzhou, China; ¹⁶National Institute for Minamata Disease, Kumamoto, Japan; ¹⁷Norwegian Institute for Air Research (NILU), Norway; ¹⁸National Central University, Jhongli, Taiwan; ¹⁹Max Planck Institute for Chemistry, Mainz, Germany; ²⁰University of Bremen, Germany; ²¹University of California, Santa Cruz, CA, USA; ²²Anton de Kom Universiteit van Suriname, Paramaribo, Suriname; ²³Chinese Academy of Sciences, Beijing, China

[1] Pirrone et al., doi:10.5194/acp-10-5951-2010

This work is supported by the NSF Atmospheric Chemistry Grant #1053648. We thank the NOMADSS team, Environment Canada, Ministry of the Environment (Japan), the SEARCH network, X. Feng and F. Wu (IGCAS, China), K. Crist (Ohio University), and all other investigators for providing observational data. We also acknowledge J. Kuss (IOW, Germany), C. D. Holmes (FSU), H. Amos, Y. Zhang, and E. S. Corbitt (Harvard) for helpful discussions.

Optimized and Reference Emissions / Uncertainties (Mg/y)

Source	Included in inversion? ^b	Reference emission	Optimized emission	Bottom-up estimate ^[1]
Anthropogenic ^c		1960 (420–3510)	2250 (1150–3360)	-
Asia	Υ	770 ± 390	1060 ± 110	-
Other regions	N	760	760	
Contaminated sites	N	80 (70–100)	80 (70–100)	
Oxidized Hg	N	350	350	
Net ocean		2990 (470–5510)	3160 (1160–5160)	2800 (800-5300)
Net NH ocean	Υ	1230 ± 630	1670 ± 530	_ ` `
Net SH ocean	Υ	1760 ± 880	1490 ± 680	
Net terrestrial ^d		1070 (-510-3130)	340 (-590-1750)	1600 (800-3000)
Soil	Υ	1680 ± 840	860 ± 440	_
Prompt reemission	N	520	500	
Hg ⁰ dry deposition	N	-1430	-1320	
Geogenic	N	90 (60–600)	90 (60–600)	
Biomass burning	N	210	210	
TOTAL ^e		6020 (380–12 150)	5750 (1720–10270)	-

- The global ocean accounts for 55% of the total mercury emissions. The terrestrial ecosystem is neither a net source nor a net sink of atmospheric Hg⁰, in contrast to its bottom-up estimate as a large source ^[1].
- The optimized Asian anthropogenic emissions suggest that bottom-up inventories (ranging from 550–800 Mg/y) may have underestimated their values.

Identified knowledge gaps in mercury measurements and modeling

- Effective inversions are hampered by the large intercomparison errors in measured GEM. Research aimed at quantifying/reducing the intercomparison errors should be given high priority by the community.
- More sites in some regions (e.g. the Southern Hemisphere) are necessary to further constrain emissions.
- Improving our understanding of atmospheric Hg chemistry is of great importance for emissions since it affects our inversion results (e.g. ocean emissions/parameters).

This study has been published in open access ACPD (scan the QR code right): Song, S., Selin, N. E., Soerensen, A. L., Angot, H., Artz, R., Brooks, S., Brunke, E. G., Conley, G., Dommergue, A., Ebinghaus, R., Holsen, T. M., Jaffe, D. A., Kang, S., Kelley, P., Luke, W. T., Magand, O., Marumoto, K., Pfaffhuber, K. A., Ren, X., Sheu, G. R., Slemr, F., Warneke, T., Weigelt, A., Weiss-Penzias, P., Wip, D. C., and Zhang, Q.: Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling, Atmos. Chem. Phys. Discuss., 15, 5269-5325, doi:10.5194/acpd-15-5269-2015, 2015.

