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Air Pollution Trends and Impacts:
A Systems Approach

[ Research Focus: Understanding how present and potential future
human activities influence air pollution and its impacts, and informing
more effective management

[0 Current Research Topics:
B Assessing impacts of air pollution and climate policies

B Transport and fate of toxic pollutants (e.g. mercury, persistent
organic pollutants, other air toxics)

B Science and policy of hazardous substance management
[l Tools:

B Atmospheric chemistry modeling

B Economic and health impact modeling

B Social science techniques
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Air Pollution:
What'’s the Problem?
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Transport contributes a large
fraction of pollutant emissions
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NOx Emissions in New England for 2002
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O Large industry such as manufacturing, pulp & paper mills, and electric utilities

B Smaller combustion sources like those used by the commercial and residential sectors

0O Automobiles and trucks

0O Offroad engines such as construction equipment, vessels, and lawn and garden equipment




U.S. EPA Air Quality Regulations

OZONE

1997 Standard: 0.08 ppm (8-hour)
2008 Standard: 0.075 ppm (8-hour)

2010-2011 revisions: will be proposed
between 0.060-0.070 ppm by July 2011

ér —f x To meet the standard: 3-year average of
}

4th highest daily maximum O; at each
monitor over a year.
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Links between Air Pollution and Climate
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[IPCC, 2007]
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Links between Climate and Air Pollution

« Climate change affects ozone, PM
« Ozone, PM affect climate change

* Policies to mitigate air pollution and climate change
affect same sources — can be win-win, lose-lose
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[Jacob and Winner, 2009]



Links between Climate and Air Pollution

2050 climate — 2000
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Figure 1b. Same as Figure la, but for annual mean afternoon (1300—1700 local time (LT) Wace
ozone in ppb and with perturbations shown as absolute differences. Note differences in scales. ueta m



How will transportation technologies impact air
quality and human health in 20507

Our approach: Develop
coupled methodology to
assess future air guality and
human impacts (&
associated uncertainties),
qguantify costs and benéefits,
and benchmark through
Northeast US case study

U.S. EPA STAR Grant, 2009-2012,

with M. Webster (ESD) and P. Amar (NESCAUM)

Case Study of Northeast
U.S. and electric vehicles

Hybrid, Plug-in hybrid
& electric vehicles




Challenges to integrated assessment of
air pollution and health impacts

« Lack of coupling: assessment of impacts not
necessarily consistent with atmospheric model
assumptions, and feedbacks not usually taken into
account

* Uncertainty assessment: often not taken into
account, and detailed regional modeling is too
computationally-intensive to apply quantitative
uncertainty analysis



Framework for assessing air pollution impacts

.. Environmental modeling

Emissions of Concentration
NOx, VOCs, Pollutant transport of ozone

S02, BC, OC, Atmospheric chemistry particula’tes
GHGs Climate interactions

Integrated models & tools

U Population health impacts

Economic activities & Hospital visits
Pollution controls Policy choices Mortalities

Technology changes i
Y J Economic modeling (acute_/ c_:hronlc)
IQ deficits
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Methodology I: Atmospheric Modeling

« Models: GEOS-
Chem, CAM,
CAMXx

e Climate and air
quality
simulations

« Develop ways to deal with scale, < Scale: regional
uncertainty, computational issues to global

« Enforce emissions consistency
and improve policy and impacts
analysis




Methodology ll: MIT EPPA Health Effects Model

Emissions Prediction and Policy Analysis model: general equilibrium economic model

Concentration of O3, particulates (data,
model): Population-weighted
concentration per global region

(16 regions)

Morbidity and mortality outcomes and costs

Concentration— A

response 95% confidence Cost EU®  Std error Cost China
Outcome function® interval® ($2000) costd ($2000)
Mortality from acute exposure 0.03%* (0.01%, 0.04%) 23000 3100 690
Respiratory hospital admission 1.25 x 103 (=5.0 x 107%,3.0 x 107%) 1800 570 290
(adults >65 years)
Respiratory symptom day 3.3 x 1072 (5.7 x 1073,6.3 x 1072) 35 11 <1
Minor restricted activity day 1.15 x 1072 (4.4 x 1073, 1.9 x 1072) 35 11 <1
Asthma attack 4.29 x 107 (33 x107%,83x 107" 49 16 4.6
Bronchodilator usage 7.30 x 1072 (—2.6 x 1072, 1.6 x 10°1)  0.92 0.29 <1
Lower respiratory symptoms 1.60 x 1072 (—4.3x1072,8.1 x 1072) 35 11 <1

(wheeze) in children

@ Units are cases yr—! person~! pg=! m?.

" Normal distributions applied for symmetric confidence intervals, and beta distributions applied for asymmetric confidence
intervals. Confidence intervals are cut off at zero and negative values are not assessed.

¢ Converted from €2000 using exchange rate $1 = €1.085 (mean for year 2000).

4 Normal distributions applied for costs.

¢ Units are A annual mortality rate tg~" m? 1

Loss of labor, capital and equilibrium economic effects

(2000-2100); global economic activity and emissions
[Selin et al., ERL, 2010]



US Regional Energy Policy (USREP) Model
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Health impacts module under development
(following global EPPA methodology) by R. Saari (ESD PhD 15t year)
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[Rausch et al., 2010, Saari, Rausch & Selin in prep]




Health Costs of Air Pollution in Europe

Applied historical concentrations from measurements, models
(EU15+Norway, Iceland, Switzerland)
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Concentration Level qag/m?)

Compared economy with historical pollution vs. “no pollution case”

Air pollution results in annual consumption loss of €220 billion

(year 2000 prices), or 3% of total consumption.
Uncertainty range: €107-335 billion

Total welfare loss: €370 billion (taking into account leisure)
Uncertainty range: €209-550 billion
About half of losses from accumulated damages
[Nam, Selin et al., Energy Policy, 2010]



Global Impacts of Ozone Pollution in 2050

a) ortalities: Climate (TotaI—SOOO) b) AMotaities: Emissions (TotaI:817,000) P 03 fro m A 1 B

scenario [Wu et
al., 2008] to
2050

e (Calculate change
in mortalities due
¢) AMortalities: Climate+Emissions (Total: 812,000) d)AMortaIities:O3>10ppb(TotaI:2.6x106) to health ImpaCtS
— - = : of ozone
changes,
separately for
emissions and
climate drivers

[ —— | | —— |
-200  -100 0 100 200 people -200 -100 0 100 200 people

e EE e,
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e 2050 mortalities from O, climate only scenario: -4600
e 2050 mortalities from climate+precursor changes: 800,000

e 2050 mortalities from all O; above background: >2 million
[Selin et al., ERL, 2009]




What is the impact of model resolution on calculating
exposure to and impacts of air pollutants? (1 hr O3)

120.0 56 120.0 48
90.0 90.0
60.0 60.0
30.0 30.0
00 1 0.0 19
PPM PPM
August 29,2006 0:00:00 . August 29,2006 0:00:00
Min= 0.0 at{1.1). Max= 97.7 at{53.22) Min= 49.6 at(45.48), Max= 96.5 at(33.25)
120.0 38 120.0 186
90.0 90.0
60.0 60.0
30.0 30.0
00 29 0.0 13 i
PPM 34 48 PPM 14 20
August 29,2006 0:00:00 August 29,2006 0:00:00

Min= 51.4 at(48,33), Max= 105.2 at(43,29) — Min= 52.6 at(20,16), Max= 83.0 at(17,13)
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What is the impact of model resolution on calculating

I 300000666

2250000
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0

exposure to and impacts of air pollutants?

Population Weighted Daily Exposure

% Change from 2k 29- | 30- | 31-

Resolution to: Aug | Aug | Aug |1-Sep|2-Sep|3-Sep
4k Resolution -0.2%-0.1%|-0.1%| 0.0% [-0.1%|-0.2%
12k Resolution -0.8%|-4.2%|-0.9%| 5.0% |-1.3%|-6.5%
36k Resolution -2.5%|-4.5%| 2.6% | 7.4% |-2.6%|-8.1%

August 29,2006 0:00:00
Min= 0 at(1,1), Max= 7261687 at (19,21)

12

August 29,2006 0:00:00
0 at (12,12), Max= 1499571 at (16,14)

 How do uncertainties in
atmospheric modeling
compare with impacts
uncertainties?

 \What is resolution
necessary for assessing
health impacts?

[Thompson, Selin et al. in prep.]




What is the relative degree of uncertainty in atmospheric
modeling vs. health impacts and economics?
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[Selin et al., in prep.]




Assessing uncertainties in coupled modeling

Monte Carlo analysis of PM2.5 health impacts and related costs:
relative uncertainties in different global PM2.5 estimates, compared
with uncertainty in health and economic variables

o] =S| gls £
80 g 5 fgé 5 : Black vertical lines:
[ |5 S calculated cost for
2ol Sl E | 7 different PM2.5
g 2 estimates/models,
= — holding health/
sS40 |f : economic functions
(@]
% - constant
20 - .
h Bottom line:
Ol .| bbb e atmospheric
700 200 300 400 500 600 700 modeling

Welfare Loss ($US billion) contributes

Pink: uncertainty range spanned by health/ substantially to
economic uncertainty, with selected PM2.5 overall uncertainty!

estimate (satellite product) held constant
[Selin et al., in prep.]




Global CO, Emissions (GtC)

Co-Benefits of Climate Policy for

PM2.5 health impacts (2050)

——— oy Emissions scenarios from MIT EPPA:
Webster et al., 2009
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Change in welfare relative to Change in welfare

no policy case relative to no policy
Climate policy ($US billion, year 2000) case (%)
No policy -- --
Climate change only $12 0.006%
Level 4 $140 0.06%
Level 3 $220 0.10%
Level 2 $330 0.15%
Level 1 $330 0.15%

[Selin et al., in prep]




Health Impacts of Vehicle Pollution

ControlinChipa________

Year 2000 BAU scenario EURO3 scenario

July
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[Saikawa et al, submitted]




Health & Economic Benefits of EURO3
implementation in China (2020)

January July

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

2020 Euro 3 - BAU monthly average PM, ; (Lg/m®) 2020 Euro 3 - BAU monthly average O; (ppbv)

Total welfare difference is $30 billion (2000 undiscounted
value), which equals 3% of China’s GDP. There is also a small
welfare gain in Japan by China’s implementation of the Euro 3
standards.

[Saikawa, Selin et al. in prep]




Impact of EV on ozone air quality in Texas
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Bottom line: Electric vehicles can have a varied impact on air

quality depending on charging scenarios, spatial distribuiton

[Thompson et al., ERL, in press]




Emissions and policy scenarios for
plug-in hybrid electric vehicles

Off-grid hybrid

Plug-in hybrid electric Electric-only vehicle

vehicle (HEV) vehicle (PHEV) (EV)

(mmtC)

Total Emissions
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Climate impact of hybrid vehicles
and technology adoption under
policy constraints incorporated in
EPPA; work ongoing on
associated air pollutant emissions
and response to pollution policy

[Karplus et al., in prep.]




Long-Range Transport of PAHs

CIE ), . |, Sl
<

Global Emissions inventory for benzo(a)pyrene
[Zhang and Tao, 2009]

What is the influence of particle-phase
atmospheric reactions on PAH long-range
transport?

Developing a GEOS-Chem POPs model
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Figure 1. Conceptual models of PAH
atmospheric fate.

[Friedman and Selin, in prep]
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