GLOBAL CYCLING AND DEPOSITION OF MERCURY: CONSTRAINTS ON THE CONTRIBUTION FROM NORTH AMERICAN ANTHROPOGENIC SOURCES

Noelle E. Selin (selin@mit.edu)1,2, D.J. Jacob1, R.M. Yantosca1, S. Strode3, L. Jaegle3, E.M. Sunderland4
1Harvard University 2Now at Massachusetts Institute of Technology 3University of Washington 4U.S. EPA

Introduction

We develop the first global 3D atmospheric model for mercury that accounts for cycling with the surface ocean and land reservoirs. We use this model to construct and interpret the pre-industrial and present-day global biogeochemical budgets of mercury. We then compare our model to measured seasonal and latitudinal patterns of wet deposition fluxes of mercury in the United States, to test our understanding of the factors controlling mercury deposition and the contribution from North American anthropogenic emissions. We estimate that North American anthropogenic emissions contribute 20% of total mercury deposition in the US (up to 50% in the industrial Midwest and Northeast).

GEOS-Chem Mercury Simulation

Model: GEOS-Chem version 7.04 (http://www-as.harvard.edu/cmi/geos/) at 4°x5°1, using assimilated meteorology from NASA Goddard Earth Observing System (GEOS-4). Includes elemental (Hg0), divalent (HgII), and primary particulate (HgP) mercury.

Sources: GEIA emissions inventory for 2000 [2]; incorporates coupled land-ocean-atmosphere model [3,4,5].

Chemistry: Hg0 oxidation by OH (k = 9 x 10^-14 cm^3 s^-1 [6,7]) and ozone (k = 3 x 10^-12 cm^3 s^-1 [8]); HgII aqueous-phase, photochemical reduction.

Deposition: Wet deposition of HgII and HgP includes rainout and washout from large-scale and convective precipitation, and scavenging in convective updrafts [9]. Dry deposition of Hg0 to land, of HgII, and of HgP are simulated with a standard resistance-in-series scheme [10,11]. Dry deposition of Hg0 to the ocean is simulated as part of a bi-directional exchange model [3].

Mercury in the model has a relatively short lifetime in the atmosphere (0.55 y) and in the surface ocean (0.60 y) while its lifetime in soils is much longer (1000 y). Emitted Hg0 is transferred to the soil and deep ocean reservoirs in equal amounts, even though deposition to the ocean is twice as large.

Present-day vs. Pre-industrial Mercury Cycles

Dry deposition is highest in the subtropics, reflecting high boundary layer concentrations of HgII brought down by subsidence in the general circulation.

Wet deposition is highest where this subtropical downwelling interacts with regional circulation regimes promoting precipitation, such as in the southeast U.S.

Deposition from North American Sources

GEOS-Chem reproduces the large-scale spatial patterns in wet deposition data from the Mercury Deposition Network (MDN) for 2004-2005 [19] (r^2=0.73, mean bias 1.7%). The latitudinal gradient explains 60% of variation in the MDN data (r^2=0.60).

We attribute seasonal variation at northern latitudes to a greater scavenging efficiency of HgII in summer.

The amplitude of seasonal variation in wet deposition decreases with increasing latitude.

The overall contribution of North American sources to deposition in the U.S. is 20%, but it is up to 50% in the industrial Midwest/Northeast.

References

17. Now at Massachusetts Institute of Technology
18. Harvard University.

Acknowledgments: This work was funded by the Atmospheric Chemistry Program of the US National Science Foundation and by a U.S. EPA STAR Graduate Fellowship to NES. EPA has not officially endorsed this publication and the views expressed herein may not reflect the views of EPA.