

Luminant Carbon Management Program

Aqueous Piperazine as a New Standard for Amine Scrubbing Technology

Gary Rochelle, Eric Chen, Stephanie Freeman,
Thu Nguyen, David Van Wagner, Qing Xu, Alex Voice
Luminant Carbon Management Program
Post-Combustion CO₂ Capture Workshop
July 12, 2010
eric.chen@mail.utexas.edu

Luminant Carbon Management Program

Outline

- Amine Scrubbing Technology
- Energy Analysis
 - Irreversibility
 - Maximizing Temperature Swing
- Reagent Robustness
 - Degradation
 - Volatility
 - Reclaiming
- Conclusions

The "MEA" Standard

- Amine scrubbing with absorption/stripping
 - Post-combustion technology
 - 80 years experience in acid gas treating
 - Amine capture processes (Econamine & KS-1)
- 30 wt% (7 m) MEA benchmark (1st generation)
 - NETL detailed evaluations
 - Most comparisons made to 30 wt% MEA
 - Proprietary solvents make it difficult to compare improvements and new developments

Luminant Carbon Management Program

Background

Concentrated Piperazine (8 m, 40 wt%)

- Second generation amine technology
- Extensive performance data available
- Proprietary 2G solvent technology data unavailable for comparison
- High-temperature 2-stage flash process for piperazine
- Propose concentrated piperazine as new standard for technology comparisons and evaluations

8 m Concentrated Piperazine

	7 m MEA	8 m PZ
CO ₂ Abs Rate (mol/s-Pa-m- ²)	4.3×10^7	2X
Working Capacity (mol/eq)	0.48	1.8X
Volatility – Lean (ppm)	30	7
Thermal Stability (°C)	120	150
Oxidative Degradation	18%/wk	Neglig.
Reclaiming – Boil Pt (°C)	170	146
Energy Use (kWh/tonne)	250	10-20% <

Luminant Carbon Management Program

Background

Piperazine Species

Piperazine (PZ)

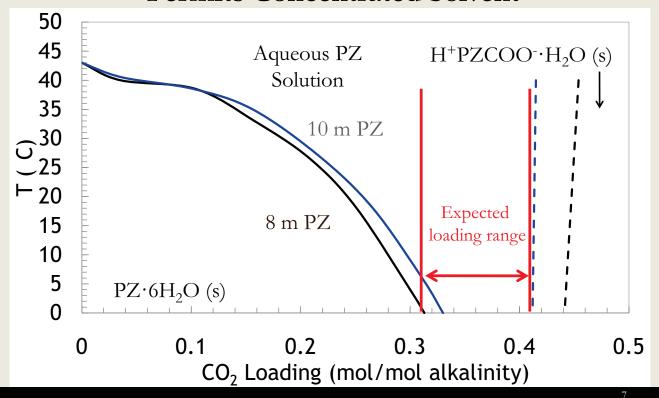
$$H-N$$
 $N-H$

Protonated PZ Carbamate

$$H$$
 N N O

PZ Carbamate

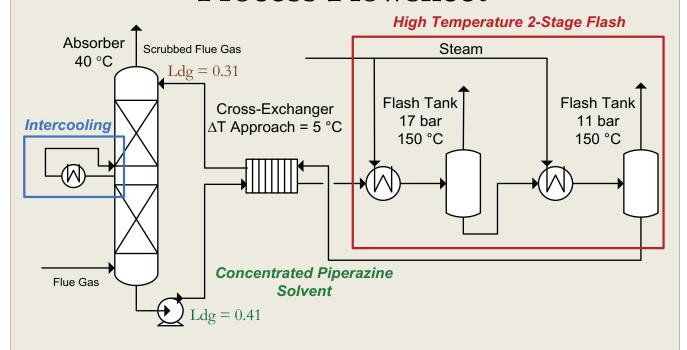
$$H-N$$
 N
 O


Protonated PZ

PZ Dicarbamate

$$0 \qquad N \qquad 0$$

Solubility Envelope for Piperazine Permits Concentrated Solvent

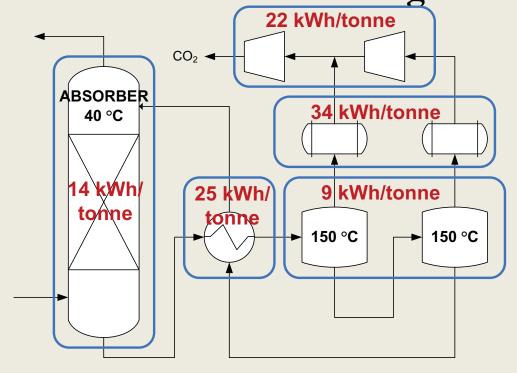

Luminant Carbon Management Program

Irreversibility

Maximizing Temperature Swing

ENERGY ANALYSIS

PZ High Temperature 2-Stage Flash Process Flowsheet



the university of texas at austin

Luminant Carbon Management Program

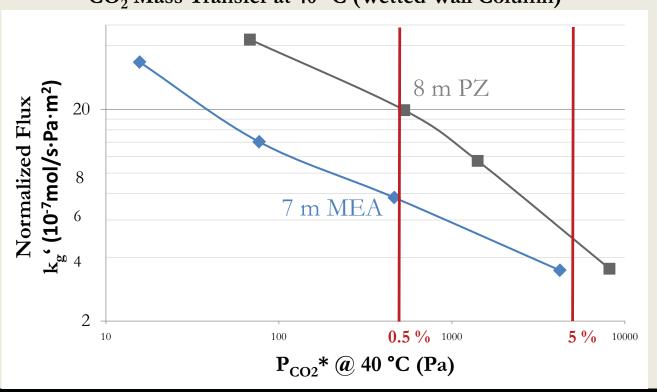
Energy Analysis

Irreversibilities of Two Stage Flash

W_{IDEAL} = 104 kWh/tonne, W_{REAL} = 219 kWh/tonne

ABSORBER IRREVERSIBILITY

11



Luminant Carbon Management Program

Energy Analysis

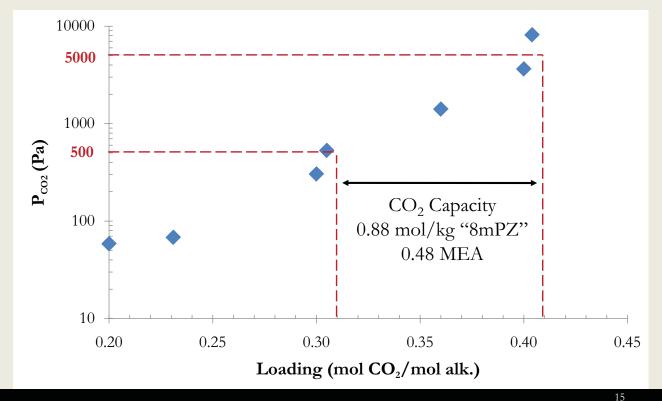
Absorber Driving Force

CO₂ Mass Transfer at 40 °C (Wetted Wall Column)

12

Absorber Exergy Loss – 14 kWh/tonne Estimated Packing Area from k_g'

- Ln mean $k_g'\Delta P = 2.4e-3 \text{ gmol/s-m}^2$
 - Lean: $k_g'(P_{out}-P_{lean}^*)=2.2e-6*(0.012-0.005)*10^5$
 - Rich: $k_g'(P_{in}-P_{rich}^*) = 5e-7*(0.12-0.05)*10^5$
- Absorber packing volume
 - 1.9e3 m^3 for 800 MW, 250 m^2/m^3
 - 0.9 tonne CO₂ removed/MW-hr
 - **25** x 25 x 13.5 m
 - 1.5 m/s gas velocity
- Exergy lost/mole CO₂
 - $RTln(P_g/P_{bulk liq}^*) = RTln(0.12/0.05) = 14 \text{ kwh/tonne CO}_2$


13

Luminant Carbon Management Program

CROSS-EXCHANGER IRREVERSIBILITY

CO₂ Solubility in 8 m PZ (40 °C)

Luminant Carbon Management Program

Energy Analysis

Cross-Exchanger Exergy Loss – 25 kWh/tonne Steam Makeup for Unrecovered Sensible Heat Loss

$$Q = C_p \Delta T / \text{capacity}$$

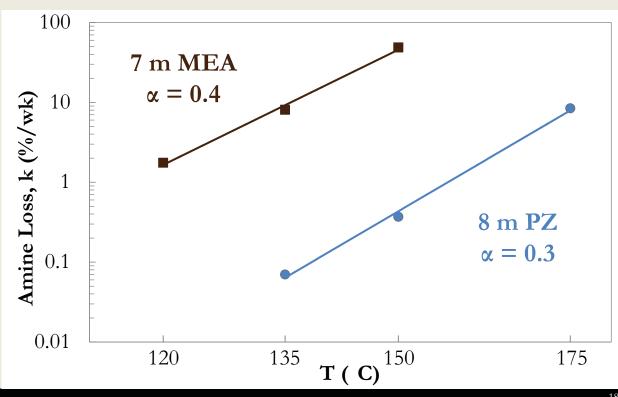
$$= (3.5 \text{ J/mole} - \text{K}) * 5 \text{K} / (0.88 \text{ mole/kg})$$

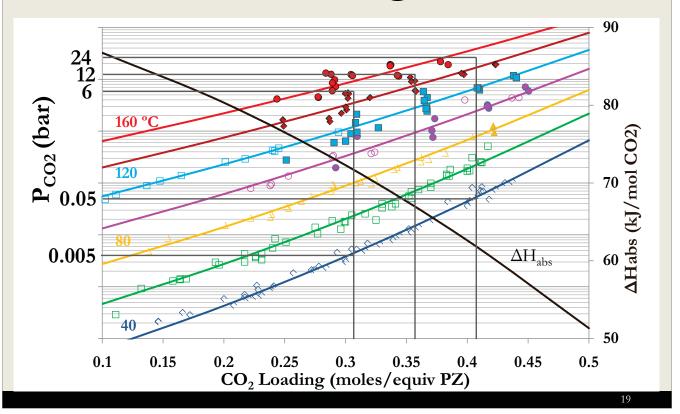
$$= 20 \text{ kJ/mole CO}_2 \text{ Steam at } 155 \text{ °C}$$

$$W_{loss} = 0.75Q \frac{T_{stm} - T_{sink}}{T_{stm}}$$

$$= 0.75 * 20 * \frac{155 - 40}{155 + 273} \frac{1e6}{44 * 3600}$$

$$= 25 \text{ kWh/tonne CO}_{2}$$


TWO-STAGE FLASH **IRREVERSIBILITY**


Luminant Carbon Management Program

Energy Analysis

Thermal Stability Permits 150 °C Stripping

8 m PZ Provides High P at 150 °C

Luminant Carbon Management Program

Energy Analysis

Two-Stage Flash Regeneration Exergy Losses - 43 kWh/tonne

- Flash losses 9 kWh/tonne
 - Pressure loss of finite flash stages 4 kWh/tonne
 - $W_{loss} = 0.25RTln(29/17) + 0.25RTln(17/11)$
 - Temperature driving force 5 kWh/tonne
 - $W_{loss} = 0.75Q_{flash}\Delta T/T = 0.75*95*5/423$
- Condenser loss 34 kWh/tonne
 - 0.625 moles H₂O/mole CO₂
 - Condense at 125 °C
 - $\mathbf{W}_{loss} = 0.625*40*(125-40)/(125+273)$

Total Equivalent Work

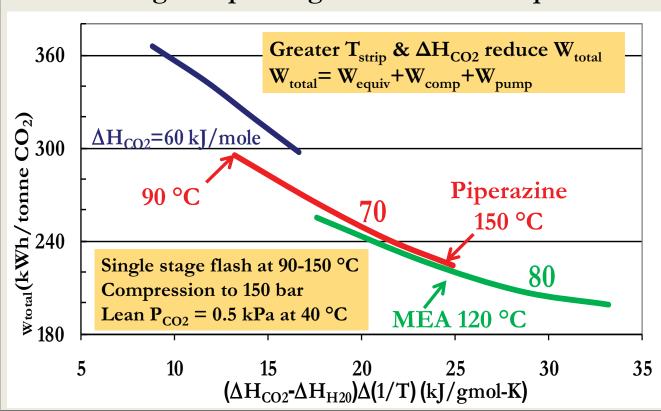
Single Stage Flash

- Calculate total equivalent work for generic single stage flash
- ΔH_{CO2} for 60, 70, 80 kJ/mol
- $T = 90 \text{ to } 150 \,^{\circ}\text{C}$

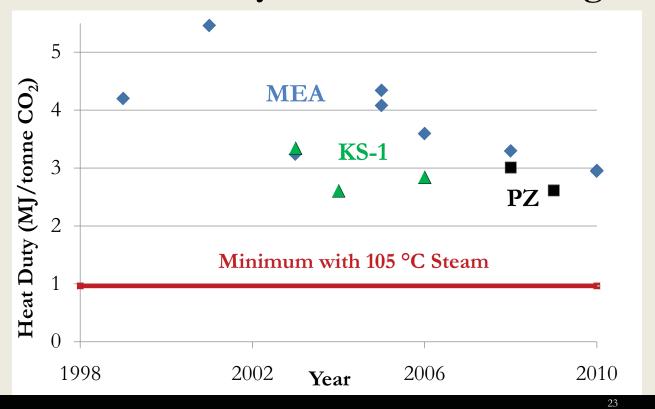
• Correlate to
$$(\Delta H_{CO2} - \Delta H_{H2O})\Delta \left(\frac{1}{T}\right) = \left(\frac{kJ}{gmol - K}\right)$$

$$W_{total} = W_{equiv} + W_{comp} + W_{pump}$$

$$W_{equiv} = 0.75Q_{flash} \frac{T_{flash} + 5 - T_{sink}}{T_{flash} + 5}$$

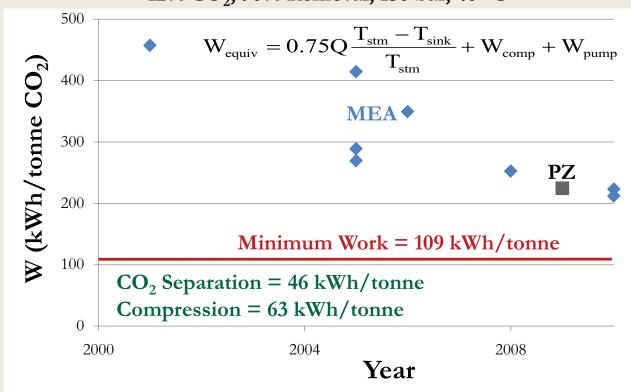

21

Luminant Carbon Management Program


Energy Analysis

Maximizing Temp Swing Reduces Total Equiv Work

Reboiler Duty of Amine Scrubbing



Luminant Carbon Management Program

Energy Analysis

Estimated Total Equivalent Work

12% CO₂, 90% Removal, 150 bar, 40° C

Thermal Degradation Oxidative Degradation Amine Volatility Corrosion Result Solvent Reclaiming

ROBUST SOLVENT MANAGEMENT

THE UNIVERSITY OF TEXAS AT AUSTIN Luminant Carbon Management Program

Solvent Robustness

Thermal Degradation at 135 °C

Amine	Structure	k (%/wk)
PZ	HN NH	0.07
AMP	HO CH ₃	1.2
DGA	H_2N O OH	2.1
HEP	HN OH	2.8
MEA	H ₂ N OH	8.1
EDA	H_2N NH_2	10.1

27

600

65

60

0

Luminant Carbon Management Program

 $\alpha = 0.4$

200

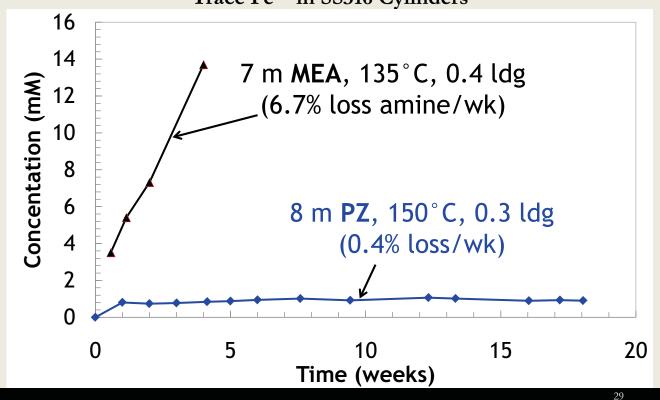
100

Solvent Robustness


500

400

Amine Volatility at 40 °C


300

Time (hours)

Thermal Degradation Experiment

Trace Fe²⁺ in SS316 Cylinders

Luminant Carbon Management Program

Solvent Robustness

Reclaiming Concepts

- Traditional Thermal or distillation Reclaiming
 - Atm or vacuum
 - Boiling Point (°C): PZ=146, MEA=170
 - PZ thermally stable
- Ion Exchange or electrodialysis as with MEA
- K₂SO₄ crystallization with addition of KOH
 - 0.17 m sulfate solubility

Conclusions for Concentrated PZ

- A published amine system that requires only 2.6 MJ_t or 220 kWh_e per tonne CO₂ ($\eta = 50\%$)
- 10-20% less energy than 30 wt% MEA
 - Double the CO₂ mass transfer rate
 - 1.8 x capacity
 - High P (17 11 bar) stripping at 150 °C
- Easier solvent management than MEA
 - Thermally stable
 - Oxidatively stable
 - Less volatile than 7 m MEA
 - Good opportunities for reclaiming

31

THE UNIVERSITY OF TEXAS AT AUSTIN

Luminant Carbon Management Program

Questions?