
# CO<sub>2</sub> capture by solvents; challenges and possibilities

Post-Combustion CO<sub>2</sub> Capture Workshop Talloires, July 11-13, 2010

Hallvard F. Svendsen Norwegian University of Science and Technology (NTNU) Trondheim, NORWAY





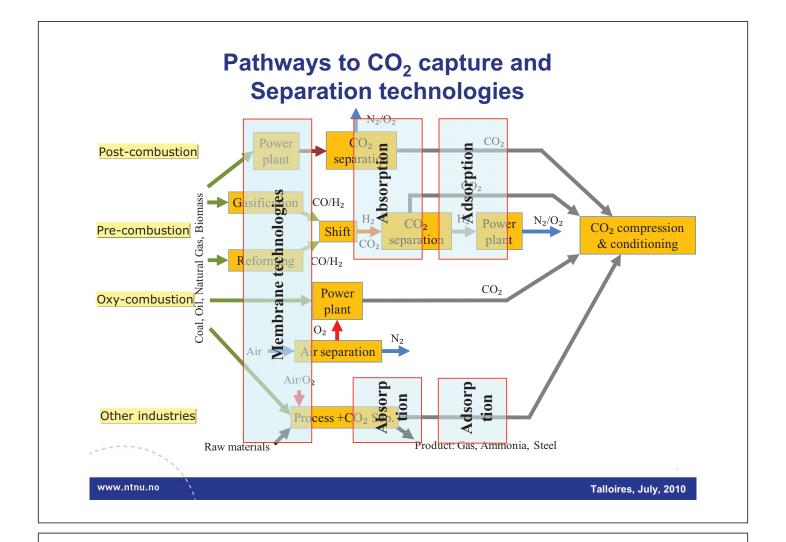




www.ntnu.no

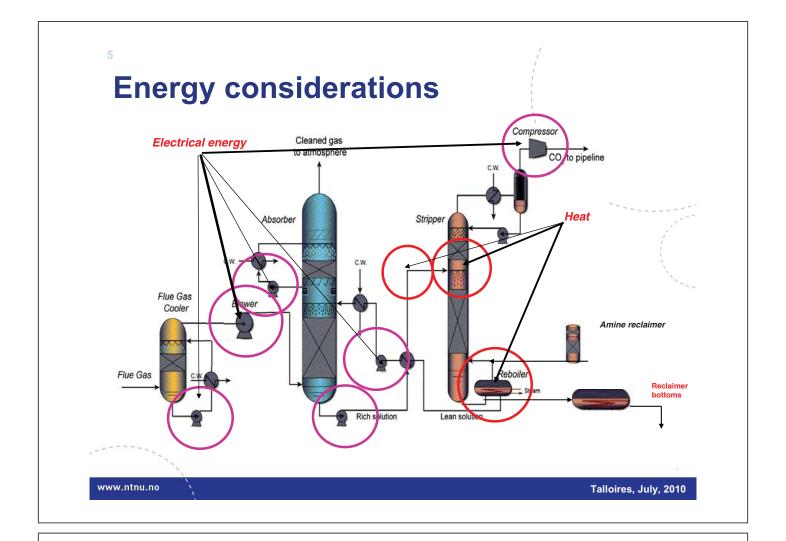
Talloires, July, 2010

2


## **Outline**

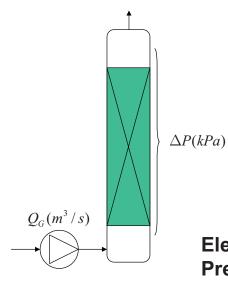
#### Introduction

Post combustion CO<sub>2</sub> capture by reactive absorption


- Energy requirements
  - Heat
  - Electricity
- Equipment size
- Degradation
- Environmental issues


www.ntnu.no \talloires, July, 2010




- High requirements of thermal and electrical energy
- Costly process and large space requirements
- Production of waste products
- Possible emissions of volatile amines and degradation products

www.ntnu.no \talloires, July, 2010









**Coal example:** 

400 MW pulverized coal fired power station

**Exhaust gas rate:** 

1000000 m<sup>3</sup>/h flue gas

12 % CO<sub>2</sub>

2200000 tons CO<sub>2</sub>/year

Heat required for CO<sub>2</sub> capture:

200-310  $MW_{steam} \sim 50-77.5 MW_{el}$ 

**Electricity required** 

Pressure drop in absorber:  $\sim 3.5 \text{ MW}_{\text{el}}$ 

Recompression: ~ 27 MW<sub>el</sub>

Miscellaneous: ~ 2 MW<sub>el</sub>

1

www.ntnu.no

 $W \approx Q_G \cdot \Delta P$ 

Talloires, July, 2010

## How can solvents influence these factors

· High requirements of thermal and electrical energy

**Heat of reaction** 

**Equilibrium temperature sensitivity** 

**Equilibrium approcah** 

**Cyclic capacity** 

**Water solubility** 

**Costly process and large space requirements** 

Rate of reaction/Mass transfer rates

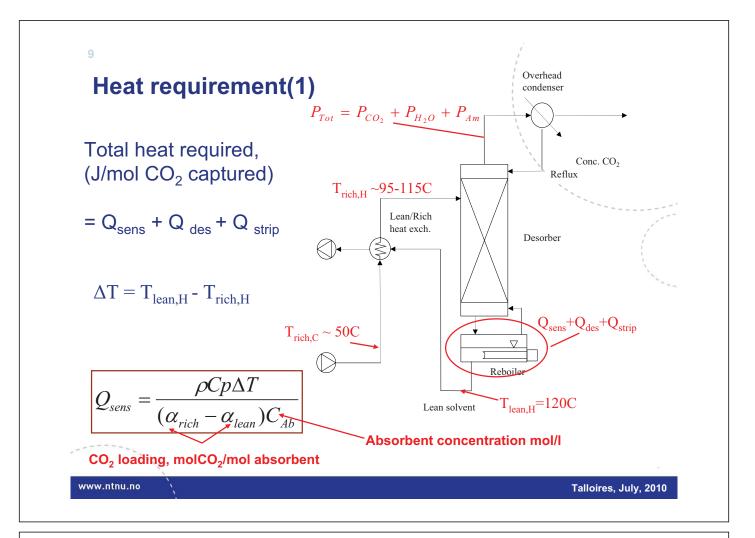
Cyclic capacity

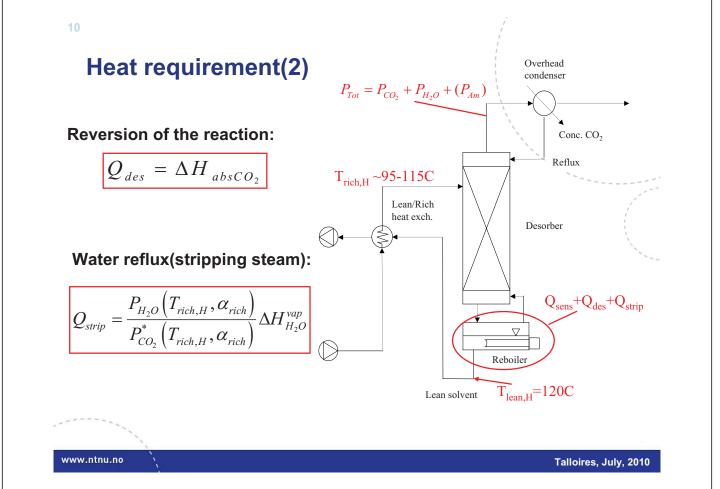
**Foaming properties** 

Corrosion

**Production of waste products** 

**Chemical stability** 


Possible emissions of volatile products


**Ecotoxicity** 

**Biodegradability** 

Volatility

www.ntnu.no





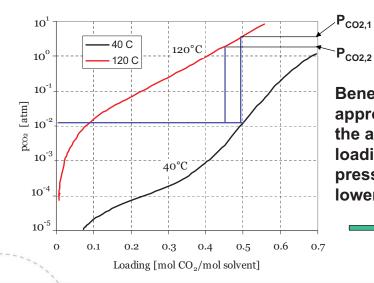
# How reduce the heat requirement?

### 1) Sensible heat loss:

$$Q_{sens} = \frac{\rho C p \Delta T}{(\alpha_{rich} - \alpha_{lean}) C_{Ab}}$$

Reduce cross flow heat exchanger temperature approach:

Increase cyclic capacity:  $CC = (\alpha_{rich} - \alpha_{lean})C_{Ab} = C_{CO_2,rich} - C_{CO_2,lean}$ 


- High rich loading
  - Amine class
  - **Polyamines**
  - **Fast amines**
- Low lean loading
  - Close to intersection between steam and heat limited regimes

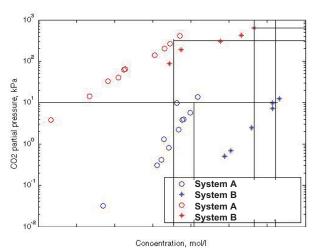
www.ntnu.no Talloires, July, 2010

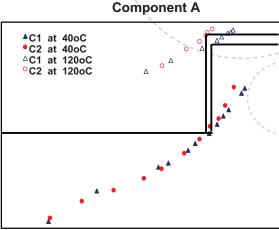
**12** 

## 2) Stripping steam requirement(1):

$$Q_{strip} = \frac{P_{H_2O}\left(T_{rich,H}, \alpha_{rich}\right)}{P_{CO_2}^*\left(T_{rich,H}, \alpha_{rich}\right)} \Delta H_{H_2O}^{vap}$$




Beneficial with close approach to equilibrium at the absorber bottom: high loading gives high CO<sub>2</sub> pressure in desorber, and lower Q<sub>strip</sub>


P<sub>CO2,1</sub>

**Fast absorbent** 

www.ntnu.no

# 2) Stripping steam requirement(2): Effect of amine system and concentration





Left side: Two systems with different temperature sensitivity Right side: Also amine concentration may affect temperature sensitivity

www.ntnu.no

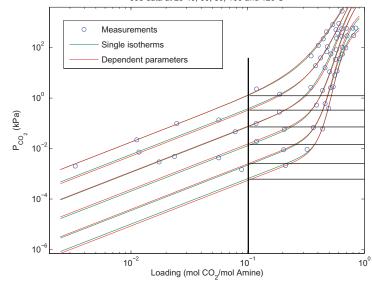
14

Talloires, July, 2010

2) Stripping steam requirement(3):

How to take advantage of the increased  $CO_2$  pressure?

- a) Reduce reboiler temperature: Little or no saving in energy but in exergy
- b) Increase pressure in stripper and maintain reboiler temperature: Improves CO<sub>2</sub>/H<sub>2</sub>O ratio in vapour leaving stripper, thereby reducing stripping steam requirement


www.ntnu.no \ Talloires, July, 2010



## 3) Heat of desorption(1)

$$Q_{des} = \Delta H_{absCO_2}$$

Jou data at 25 40, 60, 80, 100 and 120 C



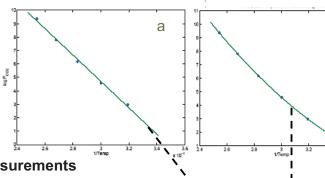
From Gibbs-Helmholtz equation:

$$\frac{\partial \ln p_{CO_2}}{\partial (1/T)} = \frac{\Delta H_{abs}}{R}$$

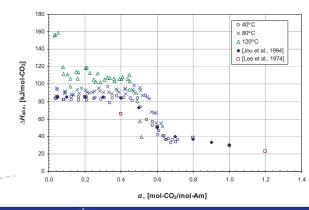
High temperature sensitivity of  $p_{CO2}$  gives high heat of reaction.

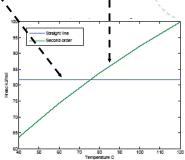
www.ntnu.no

Talloires, July, 2010


b

#### 16


## 3) Heat of desorption(2)


From equilibrium function with the Gibbs-Helmholtz equation:

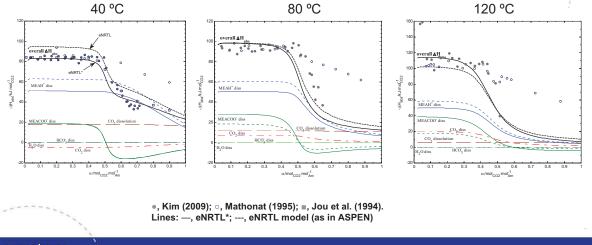
$$\frac{\partial \ln p_{CO_2}}{\partial (1/T)} = \frac{\Delta H_{abs}}{R}$$



Compared to calorimetric measurements



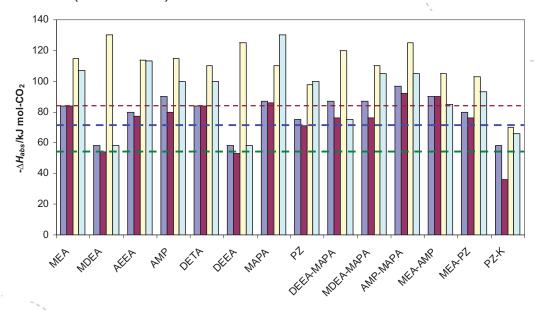



www.ntnu.no

## 3) Heat of desorption(3)

#### **Effect of different reactions**




Heats of each of the key reaction and overall heat of absorption of CO<sub>2</sub> with 30 wt % MEA solution (different sets of correlations for K-values)

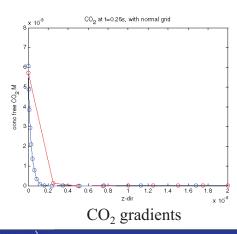


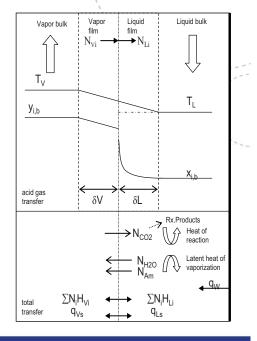
www.ntnu.no Talloires, July, 2010

# 3) Heat of desorption(4)

 $\Delta H_{abs}$  for CO<sub>2</sub> with different amine systems at 40 and 120 °C ( $\alpha$ ~0.1/0.4)




■/■, 40 °C,  $\alpha$ =0.1/0.4 mol-CO $_2$ /mol-Am;  $\blacksquare$ / $\blacksquare$  120 °C,  $\alpha$ =0.1/0.4 mol-CO $_2$ /mol-Am


www.ntnu.no

### **Mass Transfer**

## Reduce approach to equilibrium

- Kinetic rate constants
- Solubility
- Diffusivity





www.ntnu.no

Talloires, July, 2010

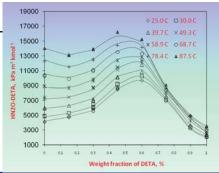
20

#### **Rate constants**

#### Termolecular mechanism

$$\mathbf{r}_{\text{CO}_2} = k_{obs} \left[ CO_2 \right], \frac{kmol}{m^3 s}$$

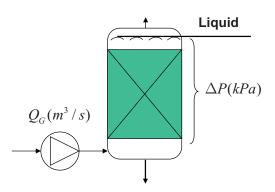
$$k_{obs} = \left\{k_{{\scriptscriptstyle AmH}}\left[{\scriptscriptstyle AmH}\right] + k_{{\scriptscriptstyle H_2O}}\left[{\scriptscriptstyle H_2O}\right] + k_{{\scriptscriptstyle OH}^-}\left[{\scriptscriptstyle OH}^-\right]\right\} \left[{\scriptscriptstyle AmH}\right]$$


| $[R_1R_2NH]$ | $10^{-3}.k_{DETA}^{T}$ $(m^{3}.kmol^{-1}s^{-1})$ | $k_{H_2O}^T $ $(m^3.kmol^{-1}s^{-1})$ | $[R_1R_2NH]$ $(kmol.m^3)$ | Source(s)                   |
|--------------|--------------------------------------------------|---------------------------------------|---------------------------|-----------------------------|
| MEA          | 1.7                                              | 73.7                                  | 0.19 - 5.50               | Aboudheir, et al., (2003)   |
|              | 1.1                                              | 140.8                                 | 0.5-5.0                   | Hartono et al. (2009)       |
| AEEA         | 2.35                                             | 161                                   | 1.19 - 3.46               | Ma'mun, et al. (2007)       |
| EDA          | 2.79*                                            | 17.72*                                | 0.026-0.068               | Li, et al. (2007)           |
| DETA         | 17.5                                             | 179.7                                 | 1.0-2.9                   | Hartono et al. (2009)       |
| Pz           | 70.1                                             | 550                                   | 0.45 - 1.5                | Cullinane & Rochelle (2002) |

Large variations, correlated with the water activity

# Solubility of CO<sub>2</sub> in amine solutions




String of discs apparatus



www.ntnu.no

# Electrical energy requirement

## Pressure drop in absorber



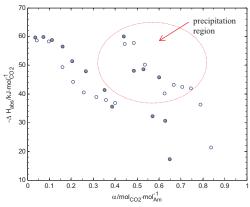
Why not:

Reduce packing height Increase diameter Maintain area

Limitations as effective area can go down. Low liquid load can give partial wetting

$$W \approx Q_G \cdot \Delta P$$

NG fired power stations are worst case Because of low CO<sub>2</sub> content


www.ntnu.no

Talloires, July, 2010

22

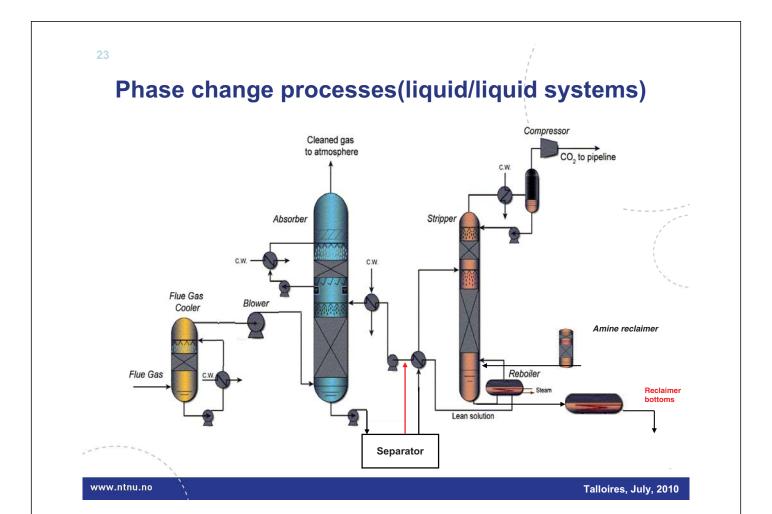
# Desorption at elevated pressure: Phase change systems

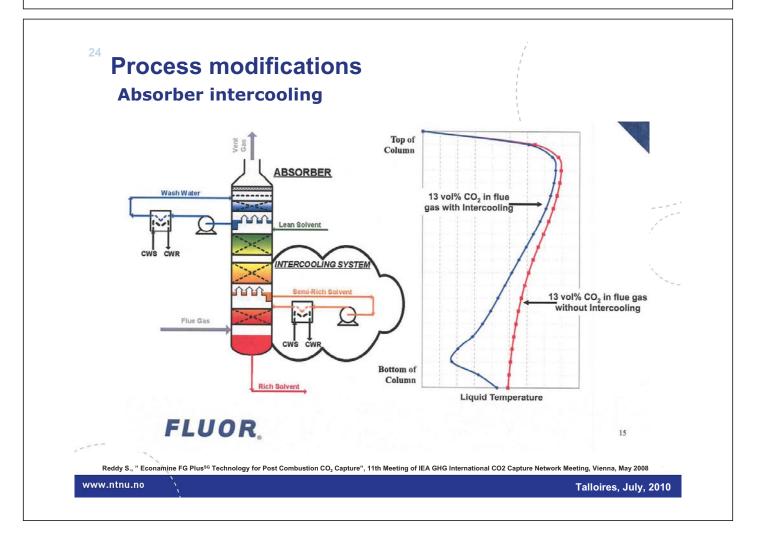
Precipitation/two liquid phases



○ 6 m K+ + 1.2 m Pz; • 5 m K+ + 3.5 m Pz

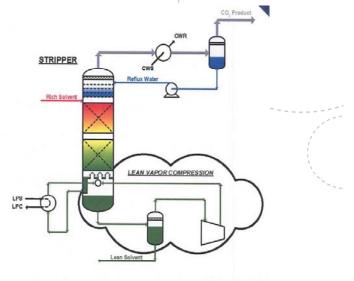
K+ + Pz system


#### **Advantages**


- High cyclic capacity
- Improved equilibrium curves
- High pressure desorption
- Retain good liquid load in absorber

#### **Disadvantages**

- Possibly higher heat of reaction
- Increased complexity


www.ntnu.no





#### Lean vapour recompression

- Lower steam consumption
- Lower cooling water requirement
- Increases electrical energy input
- Effect depends on solvent



## **Desorber interheating**

Reddy S., " Econamine FG Pluss<sup>sc</sup> Technology for Post Combustion CO, Capture", 11th Meeting of IEA GHG International CO2 Capture Network Meeting, Vienna, May 2008

www.ntnu.no

Talloires, July, 2010

26

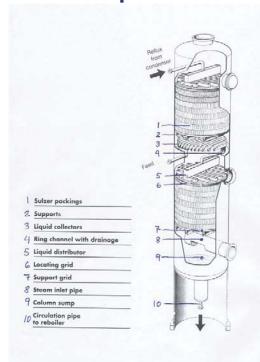
#### Summing up on energy requirement:

#### Heat

- High rich loading:
  - Close to equilibrium in absorber
  - Fast absorbent, high heat of absorption
- High absorbent concentration
- Low heat of reaction
- High equilibrium temperature sensitivity
  - High heat of reaction
- Plant design modifications
  - Intercooling
  - Interheating
  - Vapour recompression

#### **Electricity**

- More effective packing materials
- Solvents that desorb at high pressure


www.ntnu.no \talloires, July, 2010

- High requirements of thermal and electrical energy
- Costly process and large space requirements
- Possible emissions of volatile amines and degradation products
- Production of waste products

www.ntnu.no

Talloires, July, 2010

# Equipment size Absorption tower

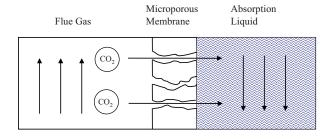


**Example:** 

400 MW NG fired power station

Exhaust gas rate: 2000000 m³/h flue gas

Typical gas velocity: 2 m/s


**Tower cross sectional area:** 

280 m<sup>2</sup>

Diameter: 19 m Height: 35 m

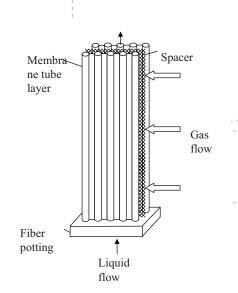
www.ntnu.no

## An alternative: Membrane contactors



- Membrane not selective, only separates the phases
- CO<sub>2</sub> affinity and selectivity provided by the alkanolamine solution, e.g. 30 wt% Monoethanolamine (MEA)
- Diffusion through pores followed by reaction in liquid
- Membrane material must not be wetted by liquid (for liquid side controlled absorption)

www.ntnu.no Talloires, July, 2010


### **Membrane properties**

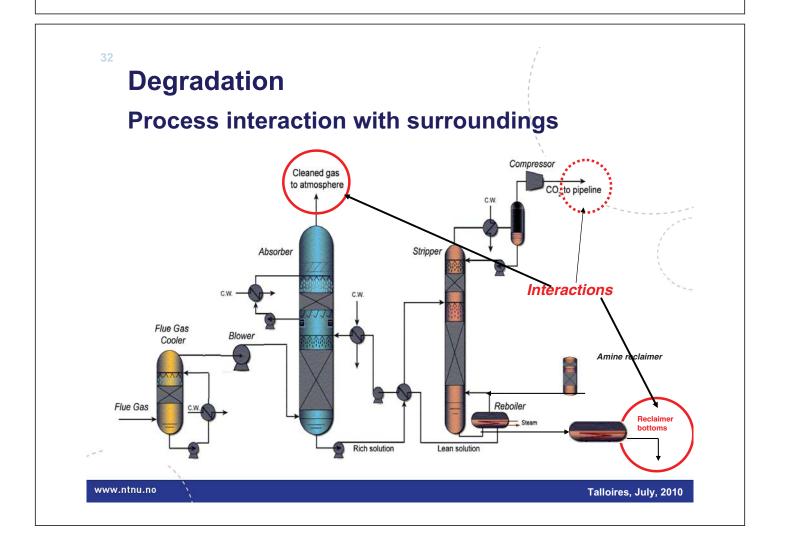
High contact angle facilitated by low surface energy:

| POLYMER                       | SURFACE ENERGY |  |  |
|-------------------------------|----------------|--|--|
| polytetrafluorethylene (PTFE) | 19.1           |  |  |
| polypropylene (PP)            | 30.0           |  |  |
| polyethylene (PE)             | 33.2           |  |  |
| polyvinylchloride (PVC)       | 36.7           |  |  |

#### Advantages compared to packed towers:

- No foaming, channeling, entrainment or flooding
- Higher contact area, 500 1500 (m<sup>2</sup>/m<sup>3</sup>)
- · Insensitive to motion
- Reduced solvent degradation problems
- Reduced corrosion problems
- Footprint requirement reduced by 40%
- 60 75% reduction of size and weight for an offshore application




#### **Disadvantages:**

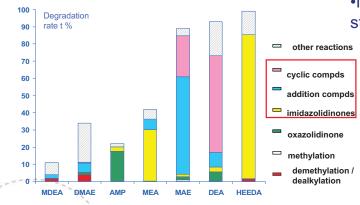
- Possible mass transfer resistance in the membrane
- Liquid is bound to laminar flow (can be improved)

www.ntnu.no

- High requirements of thermal and electrical energy
- Costly process and large space requirements
- Production of waste products
- Possible emissions of volatile amines and degradation products

www.ntnu.no



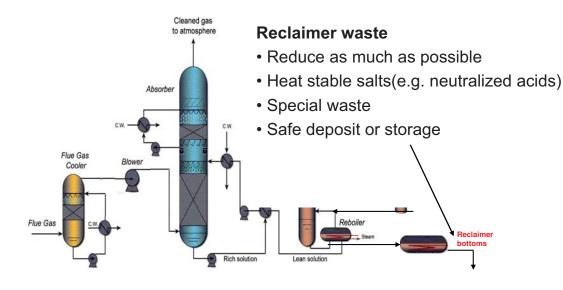

#### Absorbent degradation process conditions.

All absorbent degrade. The degradation products vary with: Type of absorbent, Process conditions, temperature,  $O_2$  and  $CO_2$  levels

Degradation products areVolatile (Ammonia, aldehydes etc.

 Low volatility (Volatility lowerthan Ethanolamine(MEA))

•Non-volatile(Typically heat stable salts, organic acids, etc.)




Talloires, July, 2010

34

www.ntnu.no

## Non-volatile degradation products



www.ntnu.no

- High requirements of thermal and electrical energy
- Costly process and large space requirements
- Production of waste products
- Possible emissions of volatile amines and degradation products

www.ntnu.no Talloires, July, 2010

Volatility

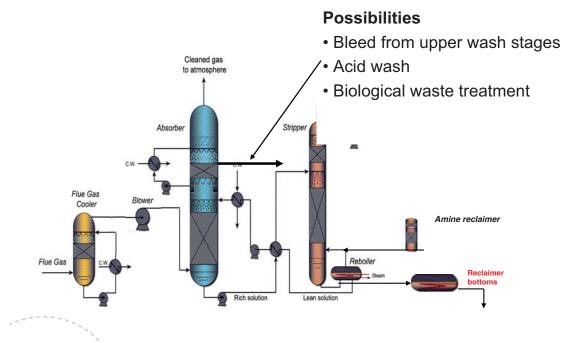
Experimental activity coefficients of MEA and H<sub>2</sub>O at 40, 60, 80, and 100 °C

\*\*Total Company of the Company of

Outlet absorbent concentrations below 0.01-0.03 ppm possible

Reboiler Reclaimer bottoms

Result


www.ntnu.no

Flue Gas

Talloires, July, 2010

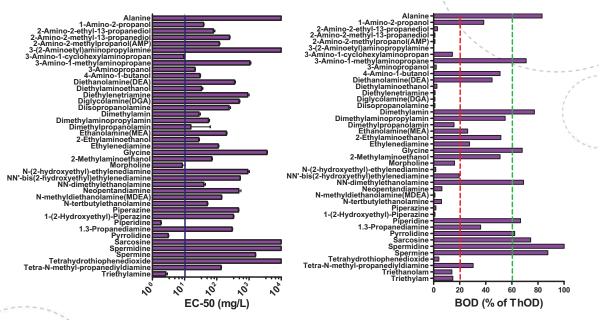
38

## **Outlet for volatile degradation products**



www.ntnu.no

## **Ecotoxicity and bio-degradability(1)**


#### Norwegian offshore oil industry Categorization of chemicals

| Category | Criteria – Ecotoxicity tests                                                                                                                                                                                                                                                                                                                                                                         | Actions                | I    |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|
| Black    | <ul> <li>Priority list (Stortingsmelding Nr. 25)</li> <li>OSPAR List of Chemicals for Priority Action</li> <li>Both low biodegradability and high bioaccumulation (BOD28 &lt; 20 %, and Log P<sub>OW</sub> ≥ 5)</li> <li>Low biodegradability and toxic (BOD28 &lt; 20 %, and EC50 or LC50 ≤ 10 mg/L)</li> <li>Compounds expected to be carcinogenic/mutagenic or harmful to reproduction</li> </ul> | Not discharged         | - // |
| Red      | •Inorganic chemicals with high toxicity (EC50 or LC50 $\leq$ 1 mg/L)<br>•Organic chemicals with low biodegradability (BOD28 $<$ 20 %)<br>•Organic chemicals or mixtures which meet 2 of the 3 following criteria: Biodegradability $<$ 60 %, bioaccumulation potential (Log $P_{OW} \geq$ 5), or toxicity of EC50 or LC50 $\leq$ 10 mg/L                                                             | Phased out or replaced |      |
| Yellow   | •Include compounds which based on their characteristics are not defined as RED or BLACK, and •NOT included in the PLONOR list                                                                                                                                                                                                                                                                        | Accepted               |      |
| Green    | •Chemicals expected to have NO environmental effects •PLONOR list                                                                                                                                                                                                                                                                                                                                    | Testing not required   | ļ    |



#### **Ecotoxicity**

## Biodegradability



www.ntnu.no

#### **Environmental status**

- Environmentally benign solvents are available
- Emissions of absorbent(amines) can be brought down to less than 0.01-0.03 ppm
- Volatile degradation products can be handeled by acid wash and biological treatment
- Methods for reducing degradation and corrosion rates are continuously being developed
- The final special waste must be safely deposited
- Alternative uses for this waste are being studied

www.ntnu.no

Talloires, July, 2010

42

## **Summing up**

#### **Energy considerations**

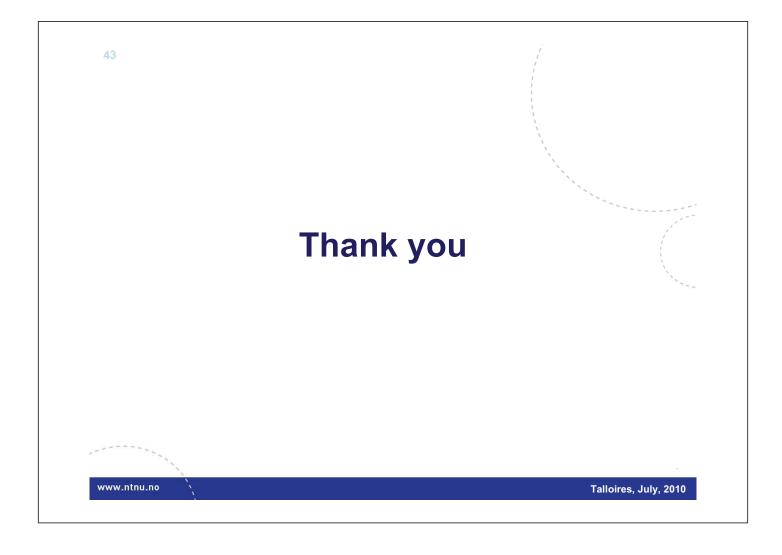
- Significant variations in equilibrium
- Close approach to equilibrium
- High temperature sensitivity is positive
- Phase change solvents promising
- Run desorber at elevated pressure

#### Mass transfer

Fast reactions
Watch solubility and viscosity

#### **Volatility**

Can be controlled at a cost


#### Degradation, biodegradation and ecotoxicity

Complex mechanisms

Some trends visible

Some similarities between process and bio-degradation

Toxicity normally not a problem

