
Using perl for Bioinformatics

Overview

• Starting perl and creating perl programs

• Variables

• Subroutines

1

Basic emacs usage

Starting emacs

Start emacs with the commands

athena% add seven

athena% bemacs &

Normally, it’s called emacs, but I’ve made a
wrapper script for it so that you don’t have
to worry about setting environment variables,
and so on.

Opening and editing files in emacs

Type C-x C-f ~/.environment<RET>. That is:
Hold down the control key, and press and re-
lease x, then f. Release the control key, then
type ~/.environment, and press return. To get
the “˜” character, press shift and the back-
tick key (in the top-right corner of the main
keyboard island.)

2

Files in emacs, continued

Add this line to the text in the resulting window

add seven

setenv PERL5LIB /mit/seven/lib/site_perl/5.6.0

Hit Enter after the “0”.

Saving files

To save the file, type C-x C-s. That is: Hold
down the control key, and press and release x,
then s.

Check that you modified the file correctly by
opening up another xterm, and typing

athena% source ~/.environment && which pw

(Note space between “source” and “˜”.) If
this doesn’t result in any obvious error mes-
sages, it shouldn’t be necessary to type “add
seven” next time you log in.

3

Customization for non-Athena ma-
chines

If you have trouble working with perl on Athena

machines, let me know, and I’ll straighten things

out. If you want to set up your personal ma-

chine for 7.91, I’m afraid you’re on your own. I

understand how desirable such an arrangment

can be, though, so here are a couple of point-

ers. It’s going to be a fair amount of work,

though.

It’s probably not worth it to try to set things

up on Windows machines. You could try in-

stalling ActivePerl from

http://www.activestate.com/Products/ActivePerl/

and installing Bioperl by hand from there, but

I have no idea whether that’ll work or not.

4

For Unix machines, you need at a perl ver-

sion later than 5.6. Install the packages in

/mit/seven/src/bioperl/

E.g.

tar zxf bioperl-1.2.tar.gz

cd bioperl-1.2

perl Makefile.PL

make install

There are some more Bioperl installation notes

in

/mit/seven/src/bioperl/README

To get the emacs enhancements, put the code

in /mit/seven/7.91/dotfiles/emacs in your

~/.emacs file.

5

More information about emacs

You’re going to be using emacs a lot. It’s best

you get comfortable with it as quickly as pos-

sible.

Documentation commands

C-h t emacs tutorial (highly
recommended.)

C-h i m Info<RET> Manual for emacs

documentation system.
C-h i m Emacs<RET> Manual for emacs.
C-h ? All help commands.

Editor commands

C-g Abort.
C-x u Undo.

6

First steps in perl programming

In your terminal, make a directory for your perl

programs like so:

athena% mkdir ~/7.91

athena% cd ~/7.91

In emacs, open up the file ~/7.91/hello.pl, and

put this in it:

use strict;

print "hello, world!\n";

Now, at the terminal, type this:

athena% pw -w hello.pl

The resulting output will be “hello, world!”.

7

Things to note.

• Always begin your programs with “use strict;”.

It will save you a lot of grief, later.

• The pw command is shorthand for

/mit/perl5/bin/perl -w

Always use the perl in the perl5 locker.

It has much more functionality than the

local one. If you develop on some other

platform, always pass the -w switch to perl

• All commands end with semicolons.

8

Documentation

Put the cursor on the word “print”, and type

C-c C-h f. You will get the documentation for

the print command. Try it on the word “use,”

too.

Put the cursor on the word “strict”, and type

C-c C-h m. You will get the documentation for

the strict module.

The latter keybinding is the most reliable, but

the former produces documentation in info for-

mat, which can be helpful.

Don’t forget google: searching for

“site:bioperl.org BLAST” returns pointers to

documentation of bioperl’s BLAST functionality.

Searching for “perl list scalar context” re-

turns pointers to explanations of how functions

in perl can return different values depending on

the context in which they’re called.

9

Variables

You can use the debugger to play with perl

expressions like so:

athena% perl -d -e 0

main::(-e:1): 0

DB<1> $a = 1

DB<2> print $a

1

DB<3> $a = "foo"

DB<4> print $a

foo

DB<5> print "interpolation of $a"

interpolation of foo

Variables starting with “$” are called scalars.

10

Some bioinformatics

Create a file bptranslate.pl containing the fol-

lowing:

use strict;

use Bio::Perl qw(read_sequence);

my $seq = read_sequence(shift @ARGV);

print $seq->translate()->seq(), "\n";

This takes a nucleotide sequence file, tries to

guess the file format from its extension, and

prints out the standard translation of the first

sequence in the file. Use it like so:

athena% cd /mit/seven/7.91/perl_module

athena$ pw bptranslate.pl control.fa

ALRLPIKSLISCVFVCRLRYI*DSCSPWWPKTPTPPG...

11

Things to note

• You need to declare the variables you use
with “my”. This is due to the “use strict;”
command. Without the strict module,
variables that have not been seen before
are initially assigned a default trivial value,
which can get very confusing if you typo a
variable name.

• The script gets the filename passed on the
command line with the command “shift
@ARGV”. The variable @ARGV is an array, and
shift returns the first element and removes
it from the array.

• After printing the translation, we ask it
to print “\n”, which is the symbol for a
newline. Otherwise, the subsequent athena

prompt shows up on the same line.

12

bioperl objects

• You access variables within modules using

“::”.

• The read sequence function returns a Bio::Seq

object, which we assign to the variable $seq.

This object has a method, translate, a

function which returns another Bio::Seq ob-

ject containing the translation to protein.

This object is converted into an actual string

(sequence of characters) using the seq method.

• You can read about the Bio::Seq module

by putting your cursor on it, and typing

C-c C-h m, or by typing perldoc Bio::Seq in

your terminal window.

13

Our own translator

In /mit/seven/7.91/perl module/translate.pl, there

is a translation program that does not depend

on Bioperl. I’ll go through it because it intro-

duces some important perl concepts.

sub translate{

my $sequence = shift;

$sequence = uc($sequence);

my $seqidx; my $codon; my @codon_list;

for ($seqidx = 0;

$seqidx < length $sequence ;

$seqidx += 3) {

$codon = substr($sequence, $seqidx, 3);

if (length $codon == 3) {

push(@codon_list, $codons{$codon}||’X’);

}

}

return (join (’’ , @codon_list));

}

14

Running the debugger

Open up translate.pl and press C-c C-c to

start the debugger. Enter “s” twice, then keep

entering “n” to get a feel for how the translate

subroutine works.

The “s” command “steps into” the context of

the function that is about to be called. That’s

how we get the debugger into translate. The

“n” command “steps over” the command that

is about to be executed.

You can evaluate expressions in the current

context using the “x” command:

DB<1> x @codon_list

empty array

DB<2> x $seqidx

0 0

15

Exercise

If you have time, it’ll be very instructive to

use the debugger to step through the calls to

read sequence and seq->translate in

bptranslate.pl. (If you see anything interest-

ing, try looking it up using C-c C-h m.)

use strict;

use Bio::Seq;

my $seq;

$seq = Bio::Seq->new(-seq => "acgactagcaattcaca");

print $seq->translate()->seq(), "\n";

16

Things to note about translate.pl

• The %codons variable is a hash: a mapping

between arbitrary key-value pairs. In this

case, it maps the codons to their respective

residue symbols.

• The block under translate is a subroutine:

a piece of code that you can call repeat-

edly, with different arguments. If you call

it like “translate("acgactagcaattcaca");, it

gets passed one argument: the string

"acgactagcaattcaca". Within translate, the

argument is assigned to $sequence using the

shift command.

17

More on translate.pl

• The uc command converts $sequence to up-
percase.

• The for block causes $seqidx to iterate
over the values 0, 3, 6, 9, The func-
tion substr($sequence, $seqidx, 3) returns
the substring of length three starting at
each of these positions.

• Triplets of nucleotides are translated by
looking them up in the %codons hash.

• The @codon list list stores the translated
residues. They get added to the end of
the list with the push command.

• The list of residues in %codon list are joined
together into a string using the join com-
mand.

18

