FAST ONLINE CLASSIFICATION with SUPPORT VECTOR MACHINES

Şeyda Ertekin
Computer Science & Eng.
Penn State University
University Park, PA

Léon Bottou
NEC Labs America
Princeton, NJ

C. Lee Giles
College of Information Sci. & Tech.
Penn State University
University Park, PA

Model
or
Classifier

General characteristics of
the categories are learned

unlabeled
data

Learner

labeled
training data

Generalization
(predicting the labels)

Task: Classification

Motivation
How are we going to process them?

In 10 years: CPU speed x 100, disc size x 1000
We need machine learning algorithms which
•give high classification accuracies
•are fast
•can scale to large datasets

Online SVM: LASVM
•Reorganization of SMO
•Can deal with streaming data
•Has also an SV removal step
•Less memory demand
•Speed improvement

Base Algorithm: Support Vector Machines (SVMs)

Inseparable Case:

\[
\min_{\alpha} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i \quad \text{with the constraint} \quad s \forall i \quad y_i f(x_i) \geq 1 - \xi_i,
\]

\[
\forall i \quad \xi_i \geq 0
\]

We need to solve SVM Quadratic Programming (QP) Problem.

Dual of the Convex Optimization Problem:

\[
\max_{\alpha} W(\alpha) = \sum_{i} \alpha_i y_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(x_i, x_j)
\]

\[
\sum_{i} \alpha_i = 0
\]

with the constraints

\[
A_i \leq \alpha_i \leq B_i
\]

\[
A_i = \min(0, C y_i)
\]

\[
B_i = \max(0, C y_i)
\]

Each \(\alpha_i\) determines how much each training example influences the SVM solution.

After solving QP, we get

\[
f(x) = \sum_{i=1}^{n} \alpha_i \Phi(x_i) y_i + b
\]

SVMs give very good classification accuracies but they may be quite costly with large datasets.
LASVM with Active Learning

Not all training examples are equally informative!
- How can we select the most informative one?
- Do we really have to search the entire training set?

Not really!

The randomized search first samples \(n \) random training examples and selects the best one among those \(n \) examples.

Hinge Loss:

Inseparable case

\[
\min_{w, b} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{L} H(y_i f_\theta(x_i))
\]

\[H(y_i f_\theta(x_i)) = \max(0, 1 - y_i f_\theta(x_i))\]

No loss if \(y_i f_\theta(x_i) > 1 \)

With the Hinge loss outliers are getting more attention than they should!

Ramp Loss:

\[J'(\theta) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{L} H_i(y_i f_\theta(x_i))\]

minimum \(w \) must satisfy \(w = \sum_{i=1}^{L} \alpha_i s \Phi(x_i) \)

- \(s = -1 \) outliers are not SVs anymore.
- \(s = 0 \) misclassified examples are not SVs anymore

Online SVM with Non-Convex Loss Function

Fast learning especially with noisy data
Less support vectors, so testing is fast as well
Scalable to large datasets