Pricing Decisions During Inter-Generational Product Transition

Hongmin Li
W.P. Carey School of Business, Department of Supply Chain Management, Arizona State University, Tempe, Arizona 85287-4706, USA, hongmin.li@asu.edu

Stephen C. Graves
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA, sgraves@mit.edu

How should companies price products during an inter-generational transition? High uncertainty in a new product introduction often leads to extreme cases of demand and supply mismatches. Pricing is an effective tool to either prevent or alleviate these problems. We study the optimal pricing decisions in the context of a product transition in which a new-generation product replaces an old one. We formulate the dynamic pricing problem and derive the optimal prices for both the old and new products. Our analysis sheds light on the pattern of the optimal prices for the two products during the transition and on how product replacement, along with several other dynamics including substitution, external competition, scarcity, and inventory, affect the optimal prices. We also determine the optimal initial inventory for each product and discuss a heuristic method.

Key words: dynamic pricing; product transition; new product introduction; multinomial logit model

History: Received: November 2008; Accepted: October 2010 by Costis Maglaras, after 3 revisions.

1. Introduction

In high-tech industries, a company periodically replaces the current product with a newer generation product. In many cases, this transition does not occur instantaneously but rather involves a transition period during which the company sells both products. The introduction of a new product creates high uncertainty in both demand and supply. If many new features are added to the new-generation product, it is difficult to predict its acceptance by the customers. Furthermore, there is uncertainty in how smoothly the suppliers handle the technological or production changes for the new product, which often results in delays in the new product release.

This paper is motivated by collaborative work with a telecommunications equipment manufacturer. In this industry, the replenishment lead time is about 18 weeks: 13 weeks for procuring components plus 5 weeks for production and testing at the contract manufacturer. A product transition starts with the release of the new product and ends with the old product demand dropping to a negligible level, and usually lasts from a few weeks to a few months. With an 18-week lead time, any replenishment order placed during the transition will not arrive before the transition ends. Therefore, once the transition starts, there is little chance to correct the initial inventory decisions, even if a demand-supply mismatch becomes evident. Consequently, the company often runs out of the product that customers want while having excess of the other.

For example, a chip supplier issued an end-of-life notice for the chipset used in one of the company’s wireless products, Blofeld, which drove the company to introduce the next-generation product Blofeld II. The company had expected the transition to be quick and did not stock up inventory for the old chipset. Unfortunately, there were unanticipated design issues around the new chipset that delayed the release of Blofeld II. Consequently, the company kept selling Blofeld long after the scheduled release date of Blofeld II, creating a shortage of Blofeld. To counteract such supply risks, operations managers tend to add large inventories for the old product. However, a generous supply cushion can result in excess inventory of the old product at the end of the transition, which was the case for another transition at the same company. This time, they were phasing out a product with high sales volume and had purchased a large inventory for the old product to avoid any supply gap and lost sales. Ironically, when the new-generation product was delivered on schedule, it left the managers in another dilemma. If they were to release the new product, Sultan II, as scheduled, they might be stuck with excess inventory of Sultan, the old product. If they delayed the release of Sultan II, they would avoid this problem; but this would be a costly option because Sultan II had a better margin than Sultan. Eventually the company decided to delay the new product release.
introduction in selected sales regions and forego some of the margin benefits to alleviate the excess problem.

The countermeasures for addressing a demand–supply mismatch during a product transition are very limited due to the long lead time. We study in Li et al. (2010) the option of product substitution: when one product is depleted, a company may offer the other one as a substitute. Pricing is another option: the managers can manipulate the prices of the two products to mitigate the risk of demand and supply mismatch. If sales of the old product are sluggish during the transition, they could discount it. If the new product does not sell well, managers may increase the price of the old product to make the new appear more attractive.

In this paper, we study the single-firm pricing problem for a product transition in which the firm introduces a new product to replace an existing, old product. We term this an inter-generational product transition, and contrast this with the case of a “completely new” product that has no direct predecessor and is designed to meet a new set of customer needs. For example, the replacement of Canon’s camera model PowerShot SD700 by SD800 is an inter-generational transition, whereas the first introduction of the “iPhone” is not. While both cases are important for business success, the former is a day-to-day problem facing decision makers in technology companies and is the focus of this paper.

We consider a finite time horizon that starts when the new product is introduced and that ends when the transition finishes, namely when the demand of the old product has dropped to a negligible level. We are given or determine the initial inventories of the old and new products, and there is no option for replenishment during the transition. In the transition, the demand of the old product gradually phases out while the new phases in and will continue to be sold beyond the transition. Because of the similarities of the two products, any pricing decision for one product affects the demand of both products. Therefore, we determine the optimal prices for the two products simultaneously, as a function of time and inventory.

This pricing problem differs from previously studied dynamic pricing problems in that the two products not only compete with each other as two substitute products, but one is on a path to replace the other. As such, we need to adapt existing demand models to capture this phenomenon of product replacement. The existing literature on multi-product pricing problems, as we review in the next section, treats product value as constant over time and allows the products’ demands to vary with prices. In contrast, during a product transition, the old product becomes less attractive over time whereas the newer generation becomes more attractive; as customers learn about and gain confidence in the new product, they increasingly view the old product as obsolete. In contrast to the existing literature, we must determine the dynamic prices, accounting for the substitution between the old and the new products as well as this dynamic change in tastes.

In addition to solving for the optimal dynamic prices, we study the effect on the optimal price trajectories of the two products due to product replacement, due to product substitution, due to external competition, due to scarcity, and due to inventory.

We find that the transition from the old product to the new one forces a company to price both products lower during the transition than outside of the transition window due to the replacement effect. We also find that the customers’ preference for the no-purchase option (buying neither the old nor the new product) can affect the optimal prices significantly and may dominate the price trend. The larger a company’s market share, the more it is affected by changes in the no-purchase option.

In addition, we demonstrate how certain product or market characteristics, such as the speed of the transition, customers’ price sensitivity, and the speed of product obsolescence, affect the pricing decisions. For instance, contrary to our intuition, high price sensitivity leads to fewer price swings during the transition due to the effect of product replacement. Previous dynamic pricing literature has not considered product replacement, and hence does not find this dynamic.

Proper inventory planning for product transition is critical as shown in the motivating examples. In this paper, we also consider the initial inventory decision along with the dynamic pricing problem in a product transition.

The remainder of this paper is organized as follows: In section 2, we review the relevant literature. In section 3, we specify the problem and the demand model. We solve for the optimal prices in section 4 and identify the key dynamics influencing the optimal prices in section 5. In section 6, we determine the optimal initial inventory and present a heuristic method. We conclude with a discussion on the limitations of the model and future research possibilities. The proofs are in the supporting information appendix.

2. Literature Review

Gallego and van Ryzin (1997) is one of the first to study dynamic pricing problems for multiple products. They do not explicitly model the demand relationships among the products but instead assume a generic set of demand functions. Bitran and Caldentey (2003) also give a generic formulation of the
multiple-product pricing problem and provide an optimality condition. In general, these generic formulations can say very little about the optimal policy. Maglaras and Meissner (2006) extend the Gallego and van Ryzin (1997) model to consider a joint revenue-management and capacity-allocation problem for multiple products that share capacity. Zhang and Cooper (2009) consider the pricing problem for substitutable flights for an airline, using a similar demand model. Our paper differs from this literature in that we need to model both the substitution between the two generations of products and the product replacement, as the demand transitions from the old product to the new product. Thus, we need to formulate and consider demand models that allow the integration of both effects.

Existing literature considers several ways to model demands for substitutable products. The multinomial logit (MNL) model is first proposed by Luce (1959). Under the MNL model, the customer’s purchase probability \(\rho_i \) depends on his/her utility from each product \(u_i \) through \(\rho_i = e^{u_i} / \sum_{k} e^{u_k} \), \(k \in K \), where \(K \) is the set of possible customer options. The MNL model has been used to predict individual choices (McFadden 1986), as well as aggregate market share for new products (Berry 1994).

Many pricing models for multiple products use the MNL choice model. However, we are not aware of any papers that consider product replacement as occurs during an inter-generational product transition. This product replacement typically induces two contrasting S-shaped demand functions, as the new product replaces the old. This phenomenon creates interesting pricing dynamics that have not been previously studied by researchers.

Hanson and Martin (1996) study the product line pricing decisions using the MNL model and show that the profit function is not quasi-concave in prices. They use a “path-following” computation approach to obtain the optimal prices. It is a single-period model, and they do not consider inventory in the pricing decision. Aydin and Porteus (2008) study a single-period, multi-product newsvendor problem with both inventory and pricing decisions. They show that the first-order condition leads to a unique optimal solution if the objective function is separately quasi-concave in each product price and the second-order cross partials are zero at the points where the first-order condition is met. We expand their method to address a multi-period dynamic pricing problem.

Song and Xue (2007) study a multi-period pricing problem with a replenishment decision in each time period, using several alternative demand models including the MNL model. They show that the value function is concave in the market shares and that the optimal decision in each period consists of a not-to-order list, base stock levels, and target market shares. In our model, there is a single-replenishment opportunity at the beginning of the planning horizon and there are no opportunities for subsequent replenishments within the transition period, due to the long lead time.

Dong et al. (2009) use the MNL model to study dynamic pricing decisions for substitutable products with a single-selling season. As in Song and Xue (2007), they consider market share as a decision variable. They identify inventory scarcity and product quality difference as the two key driving forces for the optimal prices. They assume product quality to be constant and show that in the absence of inventory scarcity, dynamic pricing is unnecessary. Suh and Aydin (2009) consider a similar problem, focusing on the analytical insights on the effect of the remaining time and a product’s own stock level, as well as the substitute product’s stock level on pricing. They too assume that the inherent product quality is constant over time and thus the changing price of a product can be attributed entirely to the scarcity of this product, or the substitute product, or both. In contrast, we show that the optimal prices of the two successive product generations exhibit time-dependent behavior even in the absence of the inventory scarcity effect. We derive a recursive formula of the optimal prices for any given time and inventory and examine how the replacement of one generation of product by the other affects the optimal pricing decisions. In particular, we find that, when we exclude other factors such as inventory scarcity and competition, the inter-generational replacement causes the prices of both products to decrease initially, followed by a gradual price recovery; this behavior is driven by the time-varying valuation of the two products in the transition. Furthermore, we examine how certain product or market characteristics such as the speed of the product transition, the speed of product obsolescence, and the customers’ price sensitivity affect the optimal pricing decision.

Other papers related to our work include Kornish (2001), who studies the pricing problem for a monopolist with frequent product upgrades but sells only the latest generation of product in any period, and Ferguson and Koenigsberg (2007), who use a linear aggregate demand model to derive the optimal pricing and stocking decisions when a company sells the newly replenished units in the presence of left-over units from last period. Goettler and Gordon (2009) study the dynamic pricing and investment decisions for a product that competes in a duopoly with a MNL demand model. Xu and Hopp (2006) consider a pricing problem for a single product with one or multiple retailers and derive the equilibrium pricing policies for the retailers. In this paper, we study the centralized pricing decision, i.e., a company that sells two
generations of products and thus has to maximize the total expected profit from the two products.

3. Problem Description and Demand Model

We present a dynamic programming model that addresses the pricing decisions for a product upgrade during the transition period of length \(T \). We make the following assumptions:

(i) The transition from the old product to the new one starts at time 0 and is completed within time \(T \); thus by time \(T \) the demand of the old product has become negligible.

(ii) There is no option for inventory replenishment during the period \([0, T]\).

Given the above, we solve for the optimal prices for the old and new products during the transition period \([0, T]\) as a function of both time and inventory. The justification for (ii) is that the replenishment time is long relative to the transition period.

We adopt the MNL consumer choice model, whereby a customer chooses one option among a set of alternatives. In this case, the options are the old product, the new product, and no purchase. Assume that a customer’s utility of purchasing product \(i \) \((i = 1\) refers to the old product and \(i = 2 \) refers to the new product) at time \(t \) is \(u_i(r_i, t) = a_i(t) - g(r_i) + \varepsilon_i \), where \(r_i \) is the selling price of product \(i \), \(g(r_i) \) is the disutility of paying \(r_i \) and \(a_i(t) \) is the time-varying attribute(s) that affects the customer’s utility. We also assume that a customer’s utility of not purchasing any product at time \(t \) is \(u_0(t) + \varepsilon_0 \). If the disturbances \(\varepsilon_i \), \(i = 0, 1, 2 \) are independent and identically distributed Gumbel random variables with distribution function \(F(x) = e^{-e^{-x}} \), the MNL model gives the probability that a customer purchases product \(i \) at time \(t \):

\[
\rho_i(r, t) = \frac{e^{\lambda_i(r,t)}}{e^{\lambda_i(r,t)} + e^{\lambda_1(r,t)}} \quad i = 1, 2, \text{ where } r = (r_1, r_2) \text{ is the price vector; then the probability of no purchase at time } t \text{ is } \rho_0(r, t) = 1 - \rho_1(r, t) - \rho_2(r, t) \text{ (McFadden 1973). By using the same } g(\cdot) \text{ function for both products, we are assuming that a customer’s disutility toward price, or equivalently the utility toward money, is the same for both products. The no-purchase option allows us to explore the pricing problem in a monopolistic situation, as well as in a competitive market. In the monopoly case, we interpret the no-purchase utility as the customer’s utility of not obtaining any product; in the case with competition, the no-purchase utility equates to the customer’s reservation utility for other market options (buying a competitor’s product) or not buying any product, whichever is higher. We consider both time-invariant and time-increasing } u_0(t).

Economists developed the MNL model to describe an individual’s choice behavior when facing a set of alternatives. Melnikov (2001) introduces time-related attributes to the choice model to model the inter-temporal demand substitution in computer and printer products. In this paper, we introduce an attribute term \(a_i(t) \) to characterize the time-varying customer preference for the old and new products. As customers shift their preference from the old product to the new one, the impact on demand is reflected through an increase in \(a_2(t) \) and a decrease in \(a_1(t) \).

Existing operations management papers that use the MNL model often assume constant \(a_i \) and \(u_0 \), and \(g(r_i) = r_i \) throughout the planning horizon. In order to capture the unique dynamics in a product transition, we allow for time-dependent \(a_i(t) \) and \(u_0(t) \), and use a more general \(g(r_i) \). Realistically, the utility function may depend strongly on factors other than time and price such as the advertising effort or complementary product offerings. We do not differentiate these factors and treat them as either a constant term (if they do not vary with time) in \(a_i(t) \), or simply another generic force that contributes to the time trend in \(a_i(t) \).

Assumption 1. We assume that customer arrival is a homogeneous Poisson process with rate \(\lambda \).

Hence the old and new products have Poisson demand with time-varying rates

\[
\lambda_i(r, t) = \lambda_0(r, t) = \lambda \frac{e^{\lambda_1(r,t)} - g(r_i)}{e^{\lambda_1(r,t)} - g(r_1) + e^{\lambda_2(r,t)} - g(r_2) + e^{\lambda_0(t)}}, \quad i = 1, 2,
\]

and the no-purchase rate is

\[
\lambda_0(r, t) = \lambda (1 - \rho_1(r, t) - \rho_2(r, t)).
\]

This demand model is relatively simple and intuitive. The fact that the time factor and the price factor are separable within each exponent term leads to significant analytical tractability. In addition, it generates a logistic demand pattern that is often observed in practice. For example, when \(a_1(t) = 5 - 0.0125t, a_2(t) = 0.0125t, u_0(t) = 0, g(r) = r, r_1 = r_2 = 3, \) and \(\lambda = 0.1 \), the above demand model generates a demand pattern shown in Figure 1.

We observe from Figure 1 that, for a time-invariant reservation utility \(u_0(t) \), the total demand rate of the two products drops to the lowest level when the two products have equal market shares. This represents a period of time when the customers’ preference for the old product is significantly reduced by the introduction of the new product, while the new product itself has not yet gained full acceptance from the customers. As a result, customers cannot decide which product to buy and thus are more likely to resort to the no-purchase option.
Therefore, for each time period and the probability of exactly one customer arrival is when a particular product runs out are 18 Production and Operations Management 21(1), pp. 14–28, © 2011 Production and Operations Management Society

In the analysis that follows, we use the “baby Bernoulli process” approximation of the Poisson process (Gallager 1999) to discretize the finite planning horizon, similar to the approach taken in Bitran and Mondschein (1997). We choose the length of each discrete time period such that the probability of more than one demand arrival in each time period is nearly zero. We then assume that there can be at most one demand in each time period. Given this time period, we let \(T \) denote the number of time periods in the planning horizon. Then we rescale the parameter \(\lambda \) so that within each time period \(t \), the probability of no customer arrival is \(1 - \lambda \), and the probability of exactly one customer arrival is \(\lambda \). Therefore, for each time period \(t \), \(\lambda \rho(t, t) = \lambda(t, t) \) is the probability that a demand occurs for the old product \((i = 1) \) or for the new product \((i = 2) \); the probability of a customer arrival and no purchase is \(\lambda \rho_0(t, t) \).

Let \(V_t(x_1, x_2) \) be the value-to-go at the beginning of period \(t \) if the company has \(x_i \) units of old product \((i = 1) \) and new product \((i = 2) \), and makes optimal price decisions at \(t \) and thereafter.

We define \(V_t(x_1, x_2) \) recursively

\[
V_t(x_1, x_2) = \max_r \ h_t(r, x_1, x_2),
\]

where

\[
h_t(r, x_1, x_2) \equiv \begin{array}{l}
\hat{\iota} \rho_1(r, t) (r_1 + V_{t+1}(x_1 - 1, x_2)) \\
+ \hat{\iota} \rho_2(r, t) (r_2 + V_{t+1}(x_1, x_2 - 1)) \\
+ (\lambda \rho_0(r, t) + 1 - \lambda) V_{t+1}(x_1, x_2), \\
\end{array} \quad \forall x_1, x_2 > 0,
\]

\[
h_t(r, 0, x_2) \equiv \begin{array}{l}
\hat{\iota} \rho_2(r, t) (r_2 + V_{t+1}(0, x_2 - 1)) \\
+ (\lambda \rho_0(r, t) + 1 - \lambda) V_{t+1}(0, x_2), \\
\end{array} \quad \forall x_2 > 0,
\]

\[
h_t(r, x_1, 0) \equiv \begin{array}{l}
\hat{\iota} \rho_1(r, t) (r_1 + V_{t+1}(x_1 - 1, 0)) \\
+ (\lambda \rho_0(r, t) + 1 - \lambda) V_{t+1}(x_1, 0), \\
\end{array} \quad \forall x_1 > 0.
\]

The terminal value is the salvage value of products left over after \(T \): \(V_{T+1}(x_1, x_2) = s_1 x_1 + s_2 x_2 \), where \(s_i \) is the unit salvage value of a product at the end of the transition. The salvage value for the new product reflects the value depreciation of the new product. It does not necessarily imply that the company will salvage any leftover units of the new product. Presumably any leftover new product is just kept in inventory and sold later. Hence the value of the inventory at \(T \) is the replacement value for the new product, i.e., the manufacturing cost for the new product at time \(T \). Let the production cost for product \(i \) at time \(0 \) be \(c_i \). Then the salvage value \(s_2 \) could be \(c_2 \), reflecting no cost reduction over \(T \), or a fraction of \(c_2 \), reflecting cost reduction from learning.

The problem is to find the optimal prices \(r_1 \) and \(r_2 \) for each \((t, x_1, x_2) \) combination. The value function \(h_t(r, x_1, x_2) \) as defined in Equations (4)–(6) is not jointly concave or quasi-concave in prices. Hanson and Martin (1996) give a counter example to the joint quasi-concavity. To circumvent this problem, Song and Xue (2007), as well as Dong et al. (2009), use an inverse demand function of the MNL model and show that the value function becomes jointly concave in the market shares. In this paper, we follow the Aydin and Porteus (2008) approach to show that, even though joint quasi-concavity does not hold, the first-order condition yields a unique price vector, and that it is optimal for the problem we consider. In the following, we first solve the first-order necessary condition, and then show that it is also sufficient.
Solving the first-order condition for Equation (4), we obtain
\[r_i(t) + \frac{\partial p_i(r, t)}{\partial r_i}(r_i - \Delta V_{t+1}(x_1, x_2)) + \frac{\partial p_i(r, t)}{\partial r_i} \times (r_i - \Delta V_{t+1}(x_1, x_2)) = 0, \quad i = 1, 2, \quad j \neq i, \] (7)
where \(\Delta V_{t+1}(x_1, x_2) \equiv V_{t+1}(x_1, x_2) - V_{t+1}(x_1 - 1, x_2) \) and \(\Delta V_{t+1}(x_1, x_2) \equiv V_{t+1}(x_1, x_2) - V_{t+1}(x_1, x_2 - 1) \) are the marginal value of inventory for the old and new product, respectively.

From Equation (1), we obtain
\[\frac{\partial \rho_0(r, t)}{\partial r_i} = \rho_0 g'(r_i), \quad \frac{\partial \rho_i(r, t)}{\partial r_i} = \rho_i (\rho_i - 1) g'(r_i) \quad \text{and} \quad \frac{\partial \rho_i(r, t)}{\partial r_j} = \rho_i \rho_j g'(r_j). \] (8)

Substituting (8) into (7) and treating Equation (7) as two linear equations with two unknowns \(r_i - \Delta V_{t+1}(x_1, x_2), \ i = 1, 2, \) we can solve Equation (7) and rewrite the first-order condition as
\[r_i - \Delta V_{t+1}(x_1, x_2) = \frac{1}{\rho_0(r, t)} [g'((r_i)^{-1}) - g'(r_i)^{-1}] - g'(r_i)^{-1} \rho_i (r, t). \] (9)

Assumption 2. The disutility function \(g(\cdot) \) is continuous and twice differentiable and satisfies \(g'(r_i) + g''(r_i)/g'(r_i) > 0. \)

Assumption 2 is a technical assumption that is satisfied by many increasing utility functions.

Lemma 1. Under Assumption 2, we have
(i) For any given \(r_i, h_i(x_1, x_2) \) is strictly quasi-concave in \(r_i, \forall x_1 \geq 0, \ x_2 \geq 0, \ t \in [0, T], \) and \(i, j = 1, 2, \ i \neq j. \)
(ii) The cross price effect \(\frac{\partial h_i(x_1, x_2)}{\partial r_i} = 0 \quad \text{whenever} \quad \frac{\partial h_i(r, x_1, x_2)}{\partial r_i} = 0. \)

Proposition 1. Let \(\tilde{r} = (\tilde{r_1}, \tilde{r_2}) \) solve the first-order condition of Equations (4)–(6), where \(\tilde{r_1}, \tilde{r_2} \in [0, \infty). \) Then it is the unique maximizer of \(h_i(x_1, x_2) \) \(\forall x_1 \geq 0, \ x_2 \geq 0, \ t \in [0, T]. \)

Therefore, we can obtain the optimal solution by solving the first-order condition in Equation (9).

Economists often assume a quasi-linear utility function to simplify problems and obtain tractable solutions by eliminating the effect of initial wealth (Mas-Colell et al. 1995). In the analysis that follows, we assume that the customers’ utilities are linear with respect to money, i.e., the disutility function \(g(r_i) \) is a linear function.

Assumption 3. \(g(r_i) = \beta r_i, \) where \(\beta > 0. \)

With Assumption 3, we can reduce condition (9) to
\[r_i - \Delta V_{t+1}(x_1, x_2) = \frac{1}{\beta \rho_0(r, t)}. \] (10)

The term \(r_i - \Delta V_{t+1}(x_1, x_2) \) is the marginal gain from selling a unit of product \(i \) at time \(t. \) Intuitively, the optimal price is set such that the company is indifferent between selling an old and selling a new. Solving the above equation for \(r_i \) (see proof of Proposition 2), we obtain
\[r_i(t, x_1, x_2) = \Delta V_{t+1}(x_1, x_2) + \frac{1}{\beta} \{1 + W(e^{\rho_0(r, t)} - \rho_0(r, t) - 1 - \beta \Delta V_{t+1}(x_1, x_2))\}, \]

where \(W \) is the Lambert’s \(W \) function, i.e., \(W(x) \) solves the equation \(xe^w = x \) for \(w \) as a function of \(x. \) We can do a similar analysis for the cases when one of the products runs out. Substituting the optimal prices into Equations (4)–(6) yields a recursive formula for computing the value function \(V_t(x_1, x_2). \) We summarize these results in Proposition 2.

Proposition 2. Under Assumption 3, the optimal price of the old and new product at time \(t \) for a given inventory level \((x_1, x_2) \) is
\[r_i(t, x_1, x_2) = \Delta V_{t+1}(x_1, x_2) + \frac{1}{\beta} \{1 + W(Z)\}, \] (11)

where
\[Z = \begin{cases} e^{\rho_0(r, t)} - \rho_0(r, t) - 1 - \beta \Delta V_{t+1}(x_1, x_2), & \forall x_1, x_2 > 0, \\ e^{\rho_0(r, t)} - \rho_0(r, t) - 1 - \beta \Delta V_{t+1}(x_1, x_2), & \forall x_1 = 0, x_2 > 0, \\ e^{\rho_0(r, t)} - \rho_0(r, t) - 1 - \beta \Delta V_{t+1}(x_1, x_2), & \forall x_1 > 0, x_2 = 0, \end{cases} \]

and we obtain \(V_t(x_1, x_2) \) using the following recursive equations:
\[V_{t+1}(x_1, x_2) = s_1 x_1 + s_2 x_2, \] (12)
\[V_t(x_1, x_2) = V_{t+1}(x_1, x_2) + \frac{\lambda}{\beta} W(Z). \] (13)

We note from (13) that the marginal value of time is \(\Delta t V(x_1, x_2) = V_t(x_1, x_2) - V_{t+1}(x_1, x_2) = \frac{\lambda}{\beta} W(Z). \) We can now express the optimal prices as
\[r_i(t, x_1, x_2) = \Delta V_{t+1}(x_1, x_2) + \frac{1}{\lambda} \Delta V_t(x_1, x_2) + \frac{1}{\beta}. \] (14)

Thus the optimal price is determined by the marginal value of inventory and the marginal value of time. Note that the factor \(1/\lambda \) in the second term represents a conversion to per unit price.

In addition, comparing Equations (10) and (11), we obtain
\[W(Z) = \frac{\rho_0(r^*, t) + \rho_2(r^*, t)}{\rho_0(r^*, t)}. \] (15)

Therefore, we can interpret the term \(W(Z) \) as the ratio of the company’s market share against the com-
petition at time t, assuming we follow the optimal pricing policy.

Therefore we have not made any specific assumptions on $a_i(t)$, the time-varying attribute. In fact, the solution given in Proposition 2 applies to any two substitutable products with time-varying attributes and sold by the same company. To derive structural properties of the optimal dynamic prices in the context of a product transition, we will make some additional assumptions regarding $a_i(t)$ and $u_0(t)$. In what follows, we examine in a progressive manner the various factors and dynamics that affect the optimal prices of the two products during the transition. Throughout this paper, we use both analytical and numerical examples to develop the insights on how certain dynamics and factors affect price.

5. Factors and Dynamics Affecting the Optimal Price

We start with a simple base case. We let both $a_i(t)$ and $u_0(t)$ be constant, and consider infinite supply of inventory. Corollary 1 follows directly from Equation (11).

Corollary 1. If $a_i(t) = a_i$, $u_0(t) = u_0$, $x_1, x_2 \to \infty$, the optimal prices are constants throughout the planning horizon:

$$
\rho_j^* = s_i + \frac{1}{2} \left(1 + W(\theta^i - u_0(1 - \beta_1) + \theta^j - u_0(1 - \beta_2) \right) .
$$

This is consistent with findings from existing dynamic pricing literature with unconstrained supply and time-invariant attributes. The base case does not necessarily correspond to any realistic situation. However, we can infer the various factors and dynamics affecting the optimal price by comparing the optimal solution under more complex cases with the base case in Corollary 1.

In sections 5.1–5.3, we assume ample inventory and thus the effect of inventory scarcity is absent. In sections 5.4 and 5.5, we discuss the cases of limited inventory.

5.1. Effect of Product Replacement

The function $a_i(t)$ represents the change of customers’ attitude toward a product after the new product introduction, independent of the products’ prices. We expect $a_i(t)$ to vary over the transition period, and it could take on various functional forms.

Assumption 4. We assume that $a_i(t)$ is given by $a_i(t) = a_0 - kt$ and $a_2(t) = kt$, where a_0 and $k > 0$ are known constants.

As justification for this assumption, we consider the ratio of the market shares for the two products. Under the MNL model, this ratio at time t is $\rho_2/\rho_1 = G(r) e^{\rho_1(t) - a_2(t)}$, where $G(r) = e^{-\theta(r_2) - \theta(r_1)}$. Given that $a_i(t)$ is linear, the market share ratio in the MNL model has the same form as for the Fisher and Pry (1971) model, for which the market share of the old and new technologies (products) is $e^{2\pi(t - t_0)}$, where t_0 is the time at which the new and the old have equal market shares, and z is a constant that signifies the rate of substitution. We can also show that Assumption 4 is consistent with the Norton and Bass (1987) model: if we assume that the old and new products have the same customer population, then the market share ratio in the Norton–Bass model differs from the MNL model by a constant. Both the Fisher–Fry model and the Norton–Bass model perform well on empirical data. Thus, we contend that the linear assumption of $a_i(t)$ is reasonable.

As shown in Figure 1, Assumption 4 generates a logistic demand pattern commonly observed during a product transition. The new product will, over time, replace the old product. The magnitude of k represents the rate of the transition, i.e., how quickly the new product replaces the old; it may depend on multiple factors including, but not limited to, product capability, timing of the new product introduction, marketing effort, and macroeconomic environment. For example, Intel generates a Product Transition Index (PTI) score for each transition based on the assessment of these constituent factors. The resulting PTI score is a direct indicator of the transition rate. According to Jay Hopman (2005),

$$
\text{PTI} = \frac{8}{T - t} + \frac{8}{(T - t)^2} .
$$

If all vectors are scored down the middle, the product transition should be expected to unfold at a rate on par with the average of past transitions. Hotter scores predict a faster transition, colder scores a slower transition.

The Intel approach includes price and external competition, along with many other factors in the PTI scores. In our model, prices are decision variables and we model external competition implicitly through $u_0(t)$. We consolidate all other factors into k.

The following proposition highlights the effect of $a_i(t)$ on the optimal prices.

Proposition 3. Under Assumptions 3 and 4, if the no-purchase utility does not vary with time, i.e., $u_0(t) = u_0$, then

(i) If $x_1 \to \infty$, $x_2 = 0$, $\rho_1(t, x_1, x_2)$ decreases in t, $\forall t \in [0, T]$.

(ii) If $x_1 = 0$, $x_2 \to \infty$, $\rho_2(t, x_1, x_2)$ increases in t, $\forall t \in [0, T]$.

(iii) If $x_1 \to \infty$, $\rho_1(t, x_1, x_2)$ decreases in t for $t \in [0, \bar{t}]$ and increases in t for $t \in [\bar{t}, T]$, where $\bar{t} = s_i + \beta(\bar{z} - 1)/2z$.

As inventory increases, the marginal value of inventory $\Delta V_{t+1}(x_1, x_2)$ approaches the salvage value s_i. Thus, from Equation (14), the optimal price is solely determined by the marginal value of time $\Delta V(x_1, x_2)$. For case (i), $\Delta V(x_1, x_2)$ is an increasing function of $a_1(t)$, which decreases linearly in time by assumption. Therefore, the optimal price of the old product
decreases over time. Similarly, in case (ii), \(\Delta_t V(x_1, x_2) \) is an increasing function of \(a_2(t) \), which increases in \(t \). Therefore, the optimal price of the new product increases over time. When both products are available, the optimal price behavior is more complex. In case (iii), \(\Delta_t V(x_1, x_2) \) is an increasing function of \(A e^{\alpha_1(t) - u_0} + Be^{\alpha_2(t) - u_0} \), where \(A = e^{-1 - \beta_1} \) and \(B = e^{-1 - \beta_2} \) are constants. Thus the price trend depends on which term dominates.

We illustrate the behavior of case (iii) graphically in Figure 2. In this example, we assume the inventory level to be (10, 10) throughout the transition. This inventory level represents, for all practical purposes, an expected demand for both products for the planning horizon is \(\lambda T = 10 \). We observe from the optimal demand curve that the new product gradually replaces the old as the dominating product. The no-purchase option reaches its highest level midway through the transition when neither product dominates.

Comparing this with the base case, we see that the price trend is due to changes in \(a_i(t) \). Initially, the new product is at its infancy and the old product offers the highest utility to customers (i.e., the term \(A e^{\alpha_1(t) - u_0} \) dominates over \(B e^{\alpha_2(t) - u_0} \); the competition is essentially between the old product and the non-purchase option). As \(t \) increases, customer preference for the old product decreases as it approaches obsolescence. The overall impact is that the no-purchase option becomes relatively more attractive over time before the new product gains a stronghold. Therefore, the optimal pricing strategy during the first half of the transition is to decrease price in order to compete with the no-purchase option. Later, the new product replaces the old product to become the main product that competes with the no-purchase option, i.e., the term \(B e^{\alpha_2(t) - u_0} \) dominates over \(A e^{\alpha_1(t) - u_0} \). As the new product’s attractiveness increases with time, the company ought to increase price to maximize revenue. Therefore, during the transition, the company faces a higher risk of losing to customers’ other options. The price dip during the transition (Figure 2) is hence a strategy to counteract that risk.

In practice, we rarely observe price increases for technology products. Therefore, the price trend in Proposition 3(iii) and Figure 2 is an isolated effect of the replacement between two generations of products. Later we show that external competition and/or the effect of inventory scarcity is likely to create a downward pricing trend.

5.2. Effect of External Competition
In the demand model from section 3, the no-purchase option may represent different customer behaviors. In the case of a monopoly, a customer’s no-purchase utility, \(u_0 \), represents his/her preference for not getting any product, old or new. Such preference may change over time. For example, technology development may make it easier (or harder) over time for a customer to get by without buying either product. In a competitive market, a customer’s no-purchase utility represents the customer’s preference for the best outside option (competitive product), or not buying any product (e.g., using its legacy system). If the competitor continuously improves its product attractiveness, whether through enhanced features or lower prices, the value of \(u_0 \) may increase over time. Therefore, a time-varying \(u_0 \) allows us to model the impact of these various factors on the optimal pricing strategy during a product transition.

The discrete choice model used in this paper depends critically on the ability to estimate \(u_0(t) \). Companies often study their customer base through focus groups or surveys, as well as competitors’ product offerings to help them better understand customers’ preference for other options (including buying from competition and not buying). As with \(a_i(t) \), the no-purchase option may depend on factors other than time, and we treat these

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>100</td>
</tr>
<tr>
<td>(a_0)</td>
<td>4</td>
</tr>
<tr>
<td>(k)</td>
<td>0.06</td>
</tr>
<tr>
<td>(\beta)</td>
<td>1</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>0.1</td>
</tr>
<tr>
<td>(u_0)</td>
<td>0</td>
</tr>
<tr>
<td>(s_1)</td>
<td>0.5</td>
</tr>
<tr>
<td>(s_2)</td>
<td>2.7</td>
</tr>
</tbody>
</table>
factors as either a constant term or a generic force that contributes to the time trend in $u_0(t)$.

A major difficulty with statistically estimating the parameters in the MNL demand model including λ and u_0 is that, given the sales data, it is impossible to tell if a period with no sale is due to no customer arrival or due to no purchase upon arrival. A recent paper by Vulcano et al. (2010) addresses this problem using an expectation–maximization (EM) method which maximizes the expected log-likelihood function conditioned on the current parameter estimates. Specifically, one can use the observed sales in a fixed time horizon, plus the estimated number of arrivals from the periods with no sales observation (conditioned on current parameter estimates), divided by the total number of time periods during that time horizon to form the next estimate of λ. In our model, both u_i and u_0 may vary with time, which requires us to estimate additional parameters in the EM method. For example, suppose Assumptions 3 and 4 hold, and $u_0(t) = u_c + kc_t$. Then the log-likelihood function will have time as an additional independent variable, and parameter terms including $\log \lambda$, β, k, k_c, u_c, and a_0. Nonetheless, the same technique in Vulcano et al. (2010) should extend to our problem.

From Proposition 2, it is easy to see that, all else equal, the optimal price at time t for each product decreases in $u_0(t)$.

Corollary 2. Under Assumption 4, $\frac{\partial (\rho_1(r, t) + \rho_2(r, t))}{\partial a_0(t)} = -\rho_0 (r, t) (\rho_1 (r, t) + \rho_2 (r, t))$ and $\frac{\partial r_l (x_1, x_2)}{\partial a_0(t)} = -\rho_1 (r, t) + \rho_2 (r, t)$.

Thus the company’s total market share decreases in $u_0(t)$, $\forall t \in [0, T]$, $x_1, x_2 \geq 0$. The optimal prices also decrease in $u_0(t)$ and the rate of decrease is higher if the company has a larger total market share at time t.

Therefore, when the no-purchase utility $u_0(t)$ increases (decreases) over time, the optimal prices of both the old and new products experience downward (upward) pressure, relative to the case of a constant $u_0(t)$. Figure 3a shows the optimal prices when u_0 changes linearly with time, i.e., $u_0(t) = u_c + kc_t$ with $u_c = 0$. Other parameters are the same as in Figure 2. In Figure 3b, we show the total market share of the two products under the optimal prices. We observe that the widening of the price gaps in Figure 3a correlates with the gaps in market share in Figure 3b.

The time-increasing u_0 reduces the company’s market share and limits the company’s ability to increase price. Indeed, a price increase is rare in practice for technology products. It is reasonable to attribute this phenomenon to a time-increasing u_0. As design and production technology advances, a customer’s outside option comes in the form of a cheaper or better product, prohibiting any price increase. Although rare in practice, $u_0(t)$ may decrease in time occasionally. For instance, when the competitors are struggling with survival due to either internal or external forces, the customer’s outside option might become less favorable. When this is the case, the optimal prices of the old and new products are both pushed upward due to the time-decreasing u_0.

To summarize, the changes in the no-purchase utility over time cause the prices of the old and new products to move in the opposite direction to the changes in $u_0(t)$.

5.3. Effect of Substitution

A third factor affecting price arises from substitution between the old and new products. The optimality condition in Equation (10) requires the company to be indifferent between selling the two products; thus when the price of one product decreases, the price of the other should decrease as well. Therefore, price-based substitution of the two products causes the optimal prices to move together. We also see this from Equation (14): The prices of the two products are
driven by $\Delta V_{t+1}(x_1, x_2)$, the marginal value of inventory and $\Delta V(x_1, x_2)$, the marginal value of time. When inventory is abundant, the former converges to s_i, thus the prices of the two products move in parallel.

Corollary 3. If $x_1, x_2 \to \infty$, $r_2^*(t, \infty, \infty) - r_1^*(t, \infty, \infty) = s_2 - s_1$.

We observe this result in both Figures 2 and 3a.

5.4. Effect of Scarcity

When supplies are limited, the optimal price behavior, as well as the resulting demand, has quite different characteristics. Figure 4 demonstrates the scarcity effect on optimal prices. We hold both $a_i(t)$ and $u_0(t)$ constant to remove any time trend caused by the replacement effect or external competition. Other parameter values are as in Figure 2. The inventory level of 10 units represents abundant supply whereas an inventory of 1 unit is scarce supply. We plot the price gaps when a product’s inventory is scarce vs. plenty while keeping inventory of the other product unchanged. For example, $r_2(t, 10, 1) - r_2(t, 10, 10)$ measures the impact of scarcity of the new product on its optimal price. This curve sits above zero, implying that, for any given time t, scarcity of a product increases its own price; we term this the “within-product” impact of scarcity. The time trend of this curve shows that scarcity causes a decreasing trend in the optimal price. Similarly, $r_2(t, 1, 10) - r_2(t, 10, 10)$ measures the “cross-product” impact of scarcity.

Examining the curves in Figure 4, we observe that the “within-product” scarcity effect is consistent. That is, scarcity itself increases the optimal price relative to ample inventory at any given time t. But for a “fixed” level of scarcity, the optimal price declines over time as the selling window becomes shorter. In the pricing literature, price decline over time due to the scarcity effect has been widely studied (e.g., Bitran and Mondshein 1997, Dong et al. 2009). The “cross-product” impact (the marked curves) indicates that scarcity of one product may increase or decrease the price of the other product. The time trend due to “cross-product” scarcity is not consistent, and, in some cases, is not even monotone, as shown in the curve $r_2(t, 1, 1) - r_2(t, 10, 1)$. This non-monotonic pattern is due to a combination of the substitution between the two products and external competition, which we will explain in detail in the next section. We also observe similar behavior in the old product.

These four dynamic factors (replacement, external competition, substitution, and scarcity) are critical for understanding the optimal pricing strategies over time.

5.5. Effect of Inventory

As products are sold, the inventory level for each product changes, which affects the optimal prices. When either $x_1 = 0$ or $x_2 = 0$, the relationship between r_i^* and x_i is as expected. Namely, under Assumption 4, if $x_j = 0$, $r_j^*(t, x_i)$ is non-increasing in x_i for $i, j = 1, 2, i \neq j$.

However, in the presence of the other product, it is not clear how the inventory level affects the optimal price. Numerically, we find that each product’s price still decreases with its own inventory level (Figure 5a). The impact of inventory on the optimal price of the other product is more intriguing (Figure 5b).

The vertical axis is the optimal prices of the new (Figure 5a) and old (Figure 5b) product at time $t = 50$. Other parameters are the same as in Figure 2 except for the inventory levels. In Figure 5b, when the old product inventory is low (high), its optimal price decreases (increases) as the new product inventory increases. This pattern arises from multiple dynamics that are at play. The two products compete with the outside option; thus there is pressure to decrease price when the total inventory of the two products goes up.

Table 1: Impact of the Key Dynamics on Optimal Prices

<table>
<thead>
<tr>
<th>Dynamic factors</th>
<th>Impact on optimal prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement</td>
<td>The prices for both old and new product decrease initially, and then increase, exclusive of the impact from inventory</td>
</tr>
<tr>
<td>Scarcity</td>
<td>At any time, less inventory implies a higher price. But less inventory also results in a steeper price decline over time</td>
</tr>
<tr>
<td>Substitution</td>
<td>The prices of the old and new product move in the same direction, all else being equal</td>
</tr>
<tr>
<td>External competition</td>
<td>Greater external competition leads to a lower price for both old and new product</td>
</tr>
</tbody>
</table>

As we expect external competition to increase over time, this results in increasing downward pressure on both prices.
In the meantime, there is competition (substitution) between these two products. Increased inventory of the new product increases the risk of excess for the new product and calls for a price increase of the old to make the new appear more attractive. With more old product (e.g., \(x_1 = 10 \)), the competitive nature of the two products are more pronounced as it becomes more likely that the company has to make a choice of which product to sell in the transition period; therefore, the dominating impact is a price increase for the old product when the inventory of the new product increases.

We have already seen in Figure 4 that the effect of scarcity on the other product’s price is not monotonic. This can be explained again by the interplay of two competing forces: First, the two products together are competing against the outside option (external competition); thus the scarcity of the company’s product (old or new) should cause the price to decrease over time if no sales are made. Second, the customers are making price-based substitution between the two products (substitution effect). As a result, scarcity of one product reduces the inventory pressure for the other product, causing the price of the other product to increase over time.

5.6. Impact of the Parameters on Optimal Prices

We let \(T = 100 \), \(\lambda = 0.1 \), and \(a_0 = 4 \). We vary the value of the price sensitivity parameter \(\beta \), the transition rate \(k \), and the salvage value \(s \) for each product. Specifically, we let \(\beta = 0.5, 1, 2 \), respectively, to represent the case of low, medium, and high price sensitivity. We let \(k = 0.06, 0.12, \) and \(0.24 \) to indicate slow, regular, and fast transitions. For the initial production cost at time zero, we consider two cases: (i) \(c_1 = 2, c_2 = 3 \), and (ii) \(c_1 = 3, c_2 = 2 \) to indicate, respectively, an increased and decreased cost from the old to the new product. For the salvage value, we let the old product to be 10%, 25%, and 50% of its original production cost, the new product to be 50%, 70%, and 90% of its original cost (the new product retains a better percentage value given the earlier explanation of salvage values). The different salvage values represent fast, regular, and slow speed of product obsolescence. Table 2 summarizes the parameters used. For each set of parameters, we compute the optimal dynamic prices for any given inventory and time. In this section, we illustrate results from the numerical study for the case of abundant inventory.

We found that the optimal product price increases in its salvage value (equivalently, decreases with its own speed of obsolescence) due to lower overage cost, but may decrease in the other product’s salvage value due to the substitution effect. In addition, we make some general observations regarding the effect of the transition rate \(k \) and the price sensitivity parameter \(\beta \) and illustrate them in the following examples.

In Figure 6, we show the price and demand behavior as it depends on the speed of the product transition, when \(\beta = 1, c_1 = 2, c_2 = 3, s_1 = 0.25c_1, \) and \(s_2 = 0.9c_2 \). We illustrate the price path for the new product only as that for the old is similar. A faster transition leads to higher prices for both products. The price increase of the new product reflects its desirability in a fast transition. Although the price of the old product follows a similar pattern to the new, its revenue impact is not significant because the demand of the old product, at the time of the price increase, was already quite low.

As the price sensitivity parameter \(\beta \) increases, the optimal prices exhibit much smaller changes over time, as shown in Figure 7 (with parameters \(k = 0.06, c_1 = 2, c_2 = 3, s_1 = 0.25c_1, \) and \(s_2 = 0.9c_2 \)).

\[
\begin{array}{|c|c|c|c|}
\hline
\beta & k & (c_1, c_2) & s_1 & s_2 \\
\hline
0.5, 1, 2 & 0.06, (2, 3) \text{ and } (3, 2) & 0.1c_1, 0.25c_1, & 0.5c_1, 0.7c_1, 0.9c_2 \\
0.12, 0.24 & & 0.5c_1 & \\
\hline
\end{array}
\]
Recall from the discussion in section 5.1 that the price dip during a transition is due to customers’ preference shift from the old product to the new product, i.e., changes in \(a_i(t) \). In the transition, the company faces higher risk of losing business because the customers perceive the old product as becoming obsolete and the new product has yet to prove itself being a superior option. The price dip (more specifically, a gradual decrease followed by a gradual increase) helps the company to counteract this risk. Therefore, the less price sensitive the customers are (smaller \(\beta \)), the more price change is necessary to overcome that. This can also be seen mathematically from Equation (11). When the supply is ample \(r_1(t, \infty, \infty) = s_i + \frac{1}{2} [1 + W(Z)] \), where \(Z = \exp[z_1(t) - u_0(t)] - \frac{1}{\beta_1} + \exp[z_2(t) - u_0(t)] - \frac{1}{\beta_2} \). \(W(Z) \) has higher values at time 0 and time \(T \), and lower values in between. As \(\beta \) increases, the price dip becomes smaller.

6. Optimal Initial Inventories

Proposition 2 gives a simple recursive algorithm for finding the value function using Equations (12) and (13). We can then use the value function to easily determine the optimal initial inventories, provided we are given a procurement cost for each product. If the planning horizon is \(T \) time periods, then the largest reasonable initial inventory is \(T \) units for each product, as we can sell at most one unit per time period by assumption. Thus, we need to compute \(V_i(x_1, x_2) \) for \(x_1, x_2, t \in [0, T] \), which is of order \(O(T^2) \). If \(T \) is large, the computation burden may become excessive.

In Table 3 we report the optimal initial inventories for various parameter combinations. The other parameter values are the same as in section 5.6.

Observations from Table 3 are consistent with our intuition: The optimal initial inventory for a product is non-decreasing in its own salvage value (e.g., compare cases 1, 2, and 3). This is not surprising as the faster the speed of obsolescence, the less initial inventory the company should keep for that product. However, it may decrease in the salvage value of the other product due to the substitution effect (compare cases 1, 4, and 7 when \(c_1 = 2, c_2 = 3 \)). For a faster transition, we need a larger initial inventory of the new product and less initial inventory for the old product. When the inter-generational cost decreases, we stock less of the old product and more of the new product relative to the case when the inter-generational cost increases. We have run additional cases to confirm that these findings remain the same, and we include them in the supporting information appendix.

Dong et al. (2009) propose a single-variable approximation to the problem for obtaining the initial inventory. We extend their method to incorporate the replacement effect. Specifically, we construct a pseudo product that incorporates the time-varying attributes, the costs, and the salvage values of both products: \(a(t) = \ln(\exp(z_1(t)) + \exp(z_2(t))) \), \(c = \sum_{i=1,2} c_i \theta_i \), and \(s = \sum_{i=1,2} s_i \theta_i \), where \(\theta_i = \frac{\exp(d_i - \beta k)}{\exp(d_i - \beta k) \exp(d_j - \beta k)} \) and \(\bar{a}_i = \int_0^T a_i(t) dt / T \). We then use Equations (12) and (13) for the case of a single product to find the optimal inventory \(\bar{x} \) for the pseudo product and use \(\theta_i \bar{x} \) as the inventory for product \(i \). Table 4 shows the results and performance of this heuristic method for the cases when \(c_1 = 2, c_2 = 3 \) shown in Table 3.
We define performance as the ratio of the value function evaluated at the heuristic initial inventory divided by the value function evaluated at the optimal initial inventories; in both cases, we assume we can follow the optimal pricing policy. We found that the heuristic is very effective in the ease of computation load and performance. In addition, we examine the value of dynamic pricing by evaluating the performance of a fixed-price policy where the initial inventories are set to the optimal level as in Table 3 but the prices of the two products are held constant through the transition period. We obtain the optimal fixed prices through a two-variable search. The fixed prices underperform the optimal dynamic pricing by 6–23%, depending on the parameters.

7. Discussions and Future Research
The main contribution of this research is to address the pricing problem in a special albeit ubiquitous industry context—inter-generational product transition. We solve for the optimal prices of the two generations of products for any given inventory level at any given time during the transition. We extend the existing

<table>
<thead>
<tr>
<th>Case</th>
<th>k</th>
<th>s_1</th>
<th>s_2</th>
<th>x_1</th>
<th>x_2</th>
<th>x_1</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.06</td>
<td>0.1c_1</td>
<td>0.5c_2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.1c_1</td>
<td>0.7c_2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0.06</td>
<td>0.1c_1</td>
<td>0.9c_2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0.06</td>
<td>0.25c_1</td>
<td>0.5c_2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0.06</td>
<td>0.25c_1</td>
<td>0.7c_2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0.06</td>
<td>0.25c_1</td>
<td>0.9c_2</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0.06</td>
<td>0.5c_1</td>
<td>0.7c_2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>0.06</td>
<td>0.5c_1</td>
<td>0.7c_2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>0.06</td>
<td>0.5c_1</td>
<td>0.9c_2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 3: Optimal Initial Inventories

<table>
<thead>
<tr>
<th>$c_1 = 2, c_2 = 3$</th>
<th>$c_1 = 3, c_2 = 2$</th>
<th>$c_1 = 2, c_2 = 3$</th>
<th>$c_1 = 3, c_2 = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_1</td>
<td>x_2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>11</td>
<td>0.12</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>12</td>
<td>0.12</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>13</td>
<td>0.12</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>14</td>
<td>0.12</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>15</td>
<td>0.12</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>16</td>
<td>0.12</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>17</td>
<td>0.12</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>18</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Table 4: Performance of the Heuristic Method and the Fixed-Price Policy
literature on dynamic pricing for substitutable products to include time-varying demand patterns, namely the replacement of the old product by the new product. We characterize the behavior of the optimal prices, as it is affected by several factors, including replacement, substitution, external competition, and scarcity. Lastly, we present a heuristic method for determining the initial inventories, extending from the approximation method by Dong et al. (2009). Compared with the optimal initial inventory obtained through the enumeration method, the heuristic performs well and is very effective in reducing the computation load.

We make several simplifying assumptions so that we can develop meaningful results and insights for the complicated real problem under study. We assume a stationary customer arrival process, but our model can be adapted to permit a time-varying \(a \) to address seasonality or other demand cycles. In fact, the solution in Proposition 2 still holds with a time-varying \(a \). We address a dynamic pricing problem with only two generations of products. In some instances there are multiple generations of products selling during the same time period. In that case, the MNL model allows an easy extension, and we simply add more choices to the MNL model.

In the examples we supplied, the new product is considered a better product and is on a steady path to replace the old product. For the problem context we focus on, this is mostly the case as the newer product is an upgrade version and typically has better features and performances. In practice, there are cases where the new product is not necessarily better due to design flaws or other issues. Nevertheless, the model and the solution given in Proposition 2 hold true for a more general case where the products have time-varying attributes and do not require \(a_i(t) \) to change in any particular direction over time. However, the results derived in sections 5 regarding the product replacement effect may change if the \(a_i(t) \) has abnormal behavior. For instance, if \(a_i(t) \) drops sharply after some initial take off and never exceeds \(a_i(t) \), the optimal prices will be dominated by the old product and the price trend would be similar to those we observe for a single product. In a worse case, the new product never takes off, but the mere presence of it causes the customers to believe the old product is becoming obsolete (i.e., \(a_2(t) \) does not increase much but \(a_1(t) \) decreases regardless), the company may be forced to monotonically price down both products over time even in the absence of a time-increasing \(u_0(t) \).

Acknowledgments
The authors are grateful to Professor Charles Fine and Dr. Donald Rosenfield for providing support and feedback on this research, and to Justin O’Connor and Alan Miano for sharing their industry knowledge. The second author acknowledges the support from the Singapore-MIT Alliance. Lastly, we thank the reviewers for their helpful and constructive feedback on two earlier versions of this paper.

Note
There has been previous research on revenue management with diminishing product values, but not with MNL demand (e.g., Aviv and Pazgal 2008, Su 2007, Zhao and Zheng 2000).

References

Supporting Information
Additional supporting information may be found in the online version of this article:

Appendix S1. Proofs and Additional Numerical Results.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.