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Stagnation point flow of wormlike micellar solutions in a microfluidic cross-slot device: Effects of
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Simon J. Haward™ and Gareth H. McKinley

Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA
(Received 14 December 2011; published 14 March 2012)

We employ the techniques of microparticle image velocimetry and full-field birefringence microscopy
combined with mechanical measurements of the pressure drop to perform a detailed characterization of the
extensional rheology and elastic flow instabilities observed for a range of wormlike micellar solutions flowing
through a microfluidic cross-slot device. As the flow rate through the device is increased, the flow first bifurcates
from a steady symmetric to a steady asymmetric configuration characterized by a birefringent strand of highly
aligned micellar chains oriented along the shear-free centerline of the flow field. At higher flow rates the flow
becomes three dimensional and time dependent and is characterized by aperiodic spatiotemporal fluctuations
of the birefringent strand. The extensional properties and critical conditions for the onset of flow instabilities
in the fluids are highly dependent on the fluid formulation (surfactant concentration and ionic strength) and
the resulting changes in the linear viscoelasticity and nonlinear shear rheology of the fluids. By combining the
measurements of critical conditions for the flow transitions with the viscometric material properties and the degree
of shear-thinning characterizing each test fluid, it is possible to construct a stability diagram for viscoelastic flow

of complex fluids in the cross-slot geometry.
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I. INTRODUCTION

Micelles are self-assembled aggregates formed from am-
phiphilic surfactant molecules in solution [1,2]. For certain
surfactants, as the concentration is increased above the critical
micellar concentration (cmc), initially spherical micelles can
grow into cylindrical rods which eventually exceed their
persistence length and become long and wormlike. Most sur-
factants are ionic and the formation of long wormlike micelles
requires the presence of counterions of opposite charge to
the surfactant in order to reduce the electrostatic interactions
that act as a barrier to self-assembly. Such wormlike micelles
are, in many ways, analogous to polymer molecules, though
with one particularly notable difference: the ability to break
and reform dynamically. In semidilute entangled solutions
this provides additional stress relaxation mechanisms beyond
reptation and allows the fluid’s non-Newtonian properties to
recover subsequent to events such as micellar fracturing that
can occur, for example, in strong extensional flows [3-5].
When the characteristic breaking and reformation time of the
micelles is fast compared with the reptation time, such fluids
are found to exhibit almost ideal Maxwellian behavior. The
physical properties of most wormlike micellar systems (e.g.,
the contour length, persistence length, branching and entangle-
ment length, and thus fluid viscoelasticity and characteristic
reptation and breaking and reformation times) are extremely
sensitive to factors including surfactant concentration, solvent
ionic strength, and temperature [1—4,6]. This picture is further
complicated when different types of counterions contributing
to the ionic environment are considered individually. “Strongly
binding counterions” effectively neutralize the charged groups
on the surfactant molecule by permanent attachment and
therefore become physically incorporated, or “intercalated,”
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into the micelles, whereas the addition of simple salts such
as NaCl to a surfactant solution merely results in “charge
screening” of the electrostatic interactions between surfactants
and thus has a weaker effect [2]. Multivalent counterions
may provide further differing and complicated effects on the
micellar growth and morphology [7,8].

The ability to control the micelle properties (and hence
the bulk rheological properties) by careful tuning of the fluid
composition results in a class of fluids whose rheological
properties can be exquisitely manipulated according to specific
formulation requirements, and which have thus become ex-
tremely important in wide-ranging industrial and consumer ap-
plications [9—-11]. While the effects of compositional changes
on the shear rheology of wormlike micellar solutions have
been investigated quite extensively [4,7,8,12—14], systematic
studies of such effects on the extensional rheology are few and
have focused on the effects of branching [15,16]. Since many
applications of wormlike micellar fluids (such as jetting and
spraying, turbulent drag reduction, and tertiary oil recovery)
involve strongly extensional components in the flow field [11],
the importance of such studies is evident. As an additional
motivation, it may be possible to use subtle changes in
the fluid formulation to control the critical conditions and
nature of the elastic instabilities that are observed in high
deformation rate flows of such fluids [17-23], which would
make them particularly useful and attractive for exploitation
in low Reynolds number mixing applications [24,25] and for
use in microfluidic control elements [26].

In a previous paper [19] we reported detailed experimental
investigations of the extensional rheology and elastic insta-
bilities of a single semidilute entangled wormlike micellar
solution in a well-defined “benchmark” extensional flow field
generated using a microfluidic cross-slot geometry. Cross-slot
flow geometries are formed from two rectangular channels that
bisect orthogonally and have opposing inlets and outlets. A
singular point of zero flow velocity (a free stagnation point) is
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generated at the center of the cross, and the combination of infi-
nite residence time and finite velocity gradient at the stagnation
point allows the accumulation of very high (effectively infinite)
fluid Hencky strains and large extensional stresses. In complex
fluids, if the velocity gradient (or strain rate &) at the stagnation
point exceeds the reciprocal of the characteristic relaxation
time (1/A) such that the Weissenberg number (Wi = éA)
exceeds unity, extensional stresses can overcome entropic
elasticity, resulting in a significant extension and alignment
of any deformable microstructural elements such as polymers
or micelles contained in the fluid [27-29]. Such stretching
and orientation effects can result in significant increases in
the fluid extensional viscosity [19,30] and, when inertia is
not significant, can give rise to purely elastic instabilities
[18,19,22,24,31-35].

In this contribution we employ the same microfluidic
cross-slot device and the same surfactant-counterion system of
cetylpyridinium chloride and sodium salicilate (CPyCl/NaSal)
as used in our previous paper, but we vary the CPyCl/NaSal
concentration within the semidilute region of the composi-
tional phase diagram. Salicilate is a strongly binding coun-
terion for the cetylpyridinium surfactant molecule [2]. We
also examine the effect of the addition of NaCl to the fluid,
which provides additional charge-screening chloride ions.
This enables us to readily vary the rheological properties
of the micellar fluids over three orders of magnitude in
zero-shear viscosity and to investigate the resulting changes in
fluid dynamical response within this prototypical extensional
flow field. We use the techniques of microparticle image
velocimetry (u«-PIV) and full-field birefringence microscopy
combined with measurements of the macroscopic pressure
drop across the micromachined cross-slot device to perform a
comprehensive characterization of the extensional properties
and sequence of flow instabilities exhibited by these complex
fluids in the well-defined extensional flow field. Pronounced
local birefringence is observed due to the orientation and
alignment of micelles in the flow field, and can be used to assess
the state of extensional stress [36,37]. We find the extensional
behavior, as well as the steady and oscillatory shear rheology,
is highly sensitive to the fluid composition and this enables us
to map out a “state diagram” for this particular class of fluid.
The remainder of this paper is organized as follows: In Sec. 11
we describe the fluid preparation and characterization using
standard rheological techniques, before briefly describing
our extensional flow apparatus and experimental methods in
Sec. III. Our results of extensional rheology and observations
of elastic instabilities are presented in Sec. IV. Ultimately,
the critical conditions for the onset of elastic instabilities in
the various fluids are collated and summarized on a single
dimensionless state diagram in Weissenberg-Reynolds number
space and in Sec. V we conclude.

II. FLUID SAMPLES

The surfactant-counterion system used in this study
(CPyCl:NaSal:NaCl) has been studied extensively and dis-
cussed at length by Rehage and Hoffman [4,38] and Berret
et al. [12]. The system is well known to form giant worm-
like micelles of length on the order of micrometers and
persistence length on the order of tens of nanometers [2],
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FIG. 1. (Color online) (a) Storage modulus (G’, open symbols)
and loss modulus (G”, solid symbols) as a function of frequency
for the wormlike micellar test solutions under oscillatory shear in
the AR-G2 cone-and-plate geometry. Data has been fitted with a
single-mode Maxwell model. (b) Normalized Cole-Cole plot derived
from the data shown in (a).

details which can be confirmed by cryo-transmission electron
microscopy (cryo-TEM) [39]. The CPyCl and the NaSal
samples were supplied by Alfa Aesar. Reagent grade NaCl was
obtained from Sigma Aldrich. Five test fluids were prepared
with CPyCl:NaSal:NaCl concentrations of: 100:60:0, 66:40:0,
50:30:0, 33:20:0, and 33:20:100 mM. To prepare the fluids, the
CPyCl, NaSal, and NaCl powders were weighed and added to
the appropriate volume of de-ionized water. The mixture was
stirred vigorously for 3 days and then left to equilibrate at
room temperature in dry, unlit conditions for a further 10 days
before any experiments were conducted.

The storage and loss moduli, G’'(w) and G”(w), of the test
fluids were measured at 22 °C (close to the ambient laboratory
temperature at which all subsequent cross-slot experiments
were performed) using a TA Instruments AR-G2 stress-
controlled rheometer with a stainless steel, 40-mm-diam, 2°
cone-and-plate fixture. The results are presented in Fig. 1(a),
and have been fitted with a single-mode Maxwell model, given
in Eq. (1) [1]:

Go(Ayw)? Gok
G'(w) = o(Ayw)  GMw) = oAuw
1+ (Ayw)? 1+ (Ayw)?

From the fits to the data, values for the Maxwell relaxation
time (Ay) and plateau modulus (Gg) for the fluids were
obtained and are provided in Table I. In Fig. 1(b) we show
normalized Cole-Cole plots of G”/G¢ vs G’ /G for all five
test fluids. When plotted in this form, a purely Maxwellian

ey
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TABLE 1. Fitting parameters for the Carreau-Yasuda and
Maxwell models to the steady and oscillatory shear data at 22 °C.

Fluid
CPyCl:NaSal:NaCl 1y Noo y* n a Gy Ay

Carreau-Yasuda Maxwell

(mM) (Pas) (Pas) (s () () (Pa) (s)
100:60:0 95.0 0.0089 0.14 0.01 3.0 30 3.10
66:40:0 10.5 0.0040 048 004 1.4 58 220
50:30:0 0.27 00025 11.1 024 1.0 2.8 0.12
33:20:0 0.10 0.0010 33.0 034 04 1.0 003
33:20:100 230 0.0030 1.00 0.17 20 2.6 0.90

fluid lies on a semicircle of radius 0.5, indicated by the dashed
black line. We observe that the 100:60:0 mM test fluid is close
to the ideal Maxwellian case, however, the fit to a single-mode
Maxwell model becomes worse with increasing dilution down
to 33:20:0 mM. A single-mode Maxwell-Debye relaxation
process is only observed in wormlike micellar fluids in the
“fast-breaking limit,” that is, when the characteristic breakage
time is significantly faster than the reptation time [40,41].
For the 100:60:0 mM fluid, we can use the Cole-Cole plot
and the method described by Turner and Cates [42] to estimate
the characteristic micellar breakage time (Apreax ~ 1.55 s) and
reptation time (Arp ~ 6.20 s). Increasing the dilution of the
fluid results in shorter, less entangled micelles, which have a
shorter reptation time. In this limit, the two time scales are
not well separated and Cates [40] argues that this results in
a spectrum of relaxation times that can be described by a
stretched exponential relaxation kernel. This is supported by
experimental measurements [4]. The data in Fig. 1 shows that
the addition of 100-mM NaCl to the most dilute surfactant
solution (to make 33:20:100 mM CPyCl:NaSal:NaCl) results
in a fluid which is again closely Maxwellian over a significant
region. This indicates that the charge-screening effect of the
CI™ counterion encourages the formation of micelles long
enough to significantly entangle and increase their reptation
time. Additionally, surfactant-surfactant interactions mediated
via the charge screening C1~ ions may be weakened, resulting
in a decreased breakage time.

In Fig. 2(a) we present the results of steady shear rheometry
performed on the micellar test fluids in the form of a flow
curve of the stress (o) as a function of the shear rate (y).
The corresponding shear viscosity () as a function of y is
presented in Fig. 2(b). For low shear rates, y < 100 s~', this
data was obtained using the AR-G2 cone-and-plate fixture
in the same configuration as previously described and is
represented by the solid symbols. To access higher shear
rates, up to y ~ 10* s~!, a Rheosense m-VROC microfluidic
rheometer was used [43,44] and the corresponding data
is shown by the open symbols. We find a good overlap
between the two techniques. For the 100:60:0 mM test fluid at
shear rates y < 107! s~!, pseudo-Newtonian behavior with
an essentially invariant viscosity 1o &~ 95 Pas is observed.
Above y ~ 107! s~! there is a pronounced stress plateau
(Oplaceau 2 15 Pa), which is indicative of the onset of shear
banding in the entangled micellar liquid [45-47]. The stress
plateau spans three decades of shear rate, during which the
shear viscosity thins with a power-law index of n = 0, i.e.,
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FIG. 2. (Color online) (a) Stress and (b) viscosity as a function of
shear rate for the wormlike micellar test solutions under steady shear
in the AR-G2 cone-and-plate geometry (solid symbols) and the m-
VROC microfluidic theometer (open symbols). Data has been fitted
with a Carreau-Yasuda generalized Newtonian fluid (GNF) model.

n oy~ For y < 500 s~! the shear stress begins to increase
again with shear rate, according to o oc %4, These measure-
ments are in excellent agreement with those reported by previ-
ous authors on the same fluid [44,46,48]. As the fluid is diluted
toward a final concentration of 33:20:0 mM, the zero-shear
viscosity plummets by three orders of magnitude [Fig. 2(b)]
and the stress plateau region [Fig. 2(a)] becomes progressively
shorter and less pronounced (i.e., the fluids become less shear
thinning, as expected). Indeed, for the 33:20:0 mM test fluid,
no stress plateau can be discerned, although a significantly
shear-thinning plateau-like region is recovered by the addition
of 100-mM NaCl. The steady shear rheology of all the test
fluids is well described by the Carreau-Yasuda model [49]
[shown by the solid lines in Figs. 2(a) and 2(b)]:

1N = oo + (M0 — Neo)[1 + (¥ /y )1V, 2)

where 17 is the infinite-shear-rate viscosity, 19 is the
zero-shear-rate viscosity, y* is the characteristic shear rate for
the onset of shear thinning, n is the “power-law exponent,’
and a is a dimensionless fitting parameter that influences the
sharpness of the transition from constant shear viscosity to the
power-law region. The values of these parameters determined
for all the test fluids are provided in Table I. We note that
this generalized Newtonian fluid (GNF) model accurately
describes the shear-thinning behavior, but does not account
for viscoelasticity, therefore its applicability is restricted.
However, it has been shown that this simple model can be used
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to predict fully developed velocity profiles, for conditions
where viscoelastic memory effects are not dominant [19].
Consistency between the two models used to fit the steady and
oscillatory shear data is demonstrated by the fact that A, is
of order 1/y* for all of the test fluids and that (apart from that
for the 33:20:0 mM fluid, for which the oscillatory shear data
is not very well fitted by the Maxwell model) Goiy = 1.

In addition to steady and oscillatory shear measurements,
we also characterized the wormlike micellar solutions in a
uniaxial extensional flow using a capillary breakup extensional
rheometer, or CaBER device [50,51]. This was possible for all
but the most dilute (33:20:0 mM) and lowest viscosity fluid
sample, which could not be made to sustain a filament for
sufficient time for meaningful measurements to be obtained.
The CaBER device uses measurements of capillary thinning
and breakup to provide a measure of the transient extensional
rheology of complex fluids. The test samples consist of an
initially cylindrical volume of fluid (V & 0.03 mL), which
forms a liquid bridge between circular parallel plates of
diameter Dy = 6 mm and initial separation Ly = 1 mm (initial
aspectratio A9 = Lo/Dy = 0.167). To minimize gravitational
sagging and obtain an approximately cylindrical liquid bridge,
the initial separation of the plates is chosen to be less
than the capillary length I, = /o /og ~ 1.7 mm, where
o ~30mNm~! is the surface tension, p ~ 1.0 gcm™ is
the fluid density, and g =9.81 ms™2 is the acceleration
due to gravity [52]. At an initial time 7y < 0, the top
endplate was displaced upward following an exponential
profile L(t) = Loe?"~™ to achieve a final plate separation
of Ly =8 mm at time t=0 s (final aspect ratio
Ay = Ly/Doy = 1.33). The subsequent evolution of the liquid
filament diameter [D(#)] was monitored at the midplane
between the endplates (i.e., at L = L;/2) at a sample rate
of 60 Hz using a laser micrometer. Figure 3(a) shows the
evolution of the midpoint diameter D(#)/Dy as a function of
time obtained for each of the micellar solutions.

For a cylindrical fluid filament, we can define the instanta-
neous strain rate (¢) and the accumulated Hencky strain (g)
as follows [50,51]:

el @)
D(t) dt
eq(t) = ft &(t)dt =21In (ﬁ) (G))
0 D(1)
The axial force balance on the fluid column is given by
A1) = 30(0) + (e = ) = o 5)
D(1)

where 20 /D(t) is the capillary pressure driving the filament
thinning process and At(¢) is the total extensional stress
difference in the elongating filament.

Combining Egs. (3) and (5), the apparent transient exten-
sional viscosity of the stretching fluid can be calculated as
follows:

At(t) o
Ne = — == .
&) dD(t)/dt
Since the flow in the CaBER instrument is essentially shear-

free, we define the Trouton ratio as the ratio of the apparent
extensional viscosity to the zero-shear viscosity of the solution,

(6)
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FIG. 3. (Color online) (a) Evolution in the normalized midfila-
ment diameter [ D(¢)/Dy] as a function of time for wormlike micellar
solutions in a capillary thinning extensional rheometer (CaBER).
The initial gap was Ly = 1 mm and the final gap L, = 8 mm,
providing corresponding aspect ratios of Ay = 0.167 and Ay = 1.33,
respectively, with endplates of diameter Dy = 6 mm. The inset
images show snapshots of the filaments seen in the 100:60:0 and
33:20:100 mM fluids at the moments indicated on the curves.
(b) Evolution of the Trouton ratio Tr = ng /iy as a function of the
Hencky strain of the fluids determined from analysis of the data
shown in (a).

i.e., Tr = ng/no. In Fig. 3(b) we report the Trouton ratios
as a function of Hencky strain for all of the wormlike
micellar fluids we tested. We find that all the fluids display
maximum Trouton ratios of Tr & 50, or greater, well above
the Newtonian limit of Tr = 3. With dilution, there is a
general increase in the maximum measured Trouton ratio, with
the 33:20:100 mM fluid showing the highest increase with
Tr ~ 300. This is likely explained by the low zero-shear-rate
viscosity and very high extensibility of the wormlike micelles
in the 33:20:100 mM fluid, which have a reduced persistence
length due to the presence of additional charge-screening
CI™ ions. These measurements and observations are in good
general agreement with previous uniaxial extensional rheology
measurements made on similar semidilute entangled wormlike
micellar solutions [19,53,54].

III. EXPERIMENTAL SETUP AND PROCEDURES

A. Flow cell geometry

An optical micrograph of the microfluidic cross-slot geom-
etry used in the paper is provided in Fig. 4(a). The device was
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FIG. 4. (Color online) (a) Optical micrograph of the 200-um-
wide cross-slot geometry, showing the flow direction and the location
of the stagnation point. (b) Schematic representation of the two
independent pressure drop measurements required to compute an
apparent extensional viscosity in the cross-slot microchannel using
Eq. (11), where U is the superficial flow velocity in the channel.

fabricated in stainless steel by the technique of wire electrical
discharge machining (wire-EDM) with a channel width of
w = 200 wm and depth d = 1 mm, thus providing a reasonable
approximation to a two-dimensional (2D) flow and allowing
a long optical path length for the collection of birefringence
signals. In all of the data presented subsequently in this paper,
the inflow and outflow directions are as marked in Fig. 4(a).
The elongational flow is generated along the outflow axis,
and a stagnation point is formed at the center of the cross-slot
geometry (marked by the “X”). The x and y axes are as defined
in Fig. 4(a) (with the z axis normal to the plane of the page and
the origin of coordinates at the stagnation point). Flow in the
cross-slot device was driven under controlled rate conditions
using a Harvard PHD Ultra syringe pump. Further details of
the cross-slot construction and the flow loop are provided in
our previous paper [19].

B. Extension rates and associated dimensionless groups

For a given total volume flow rate (Q) through the cross-
slot device, the superficial flow velocity in the channels is
U = Q/2wd and the extensional strain rate (¢) at the stagna-
tion point can be approximated by

.U Q
E=—=—.
w w2d
This definition assumes that fluid at the stagnation point

accelerates at a constant rate from zero to U over a distance
w/2 (i.e., half a channel width), which is likely to be reasonable

(7
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only if the flow is pluglike within the channels. Although this
is not the case for Newtonian fluids, it has been demonstrated
to be a reasonable assumption for wormlike micellar solutions
at shear rates corresponding to the stress-plateau region of the
flow curve [see Fig. 2(a)], when strong shear localization at
the channel walls results in a pluglike velocity profile across
the channels [19].

Inertial effects in the experiment are quantified by
the Reynolds number, calculated using Re = pU Dy, /n(y),
where Dj =2wd/(w+d) is the hydraulic diameter,
0~ 1000 kgm~ is the fluid density, and 5(y) is the shear-
rate-dependent shear viscosity determined using the Carreau-
Yasuda fits to the steady shear rheology measurements (see
Sec. II). Within the cross-slot, assuming an ideal planar
extensional flow v = [éx, — €y,0], the appropriate value of

1 . . .
51(y) = 2¢, where II(y)

is the second invariant of the shear rate tensor y = Vv + VvT.

The Weissenberg number (Wi) is used to characterize the
strength of elastic effects near the stagnation point. Here
Wi is defined as the ratio of the nominal local extensional
rate near the stagnation point (¢) to the rate of relaxation of
the fluid determined from linear viscoelastic measurements
(1/An),1.e., Wi = £A . Broadly, as the imposed extension rate
exceeds the rate at which the fluid microstructure can relax,
the Weissenberg number exceeds unity and nonlinear elastic
effects are expected to become dominant [18,19,29,55,56].
In Fig. 2 we show that shear thinning in the fluid properties
becomes important at high Weissenberg numbers and hence
the characteristic relaxation time of the micellar fluids will de-
crease. In principle, this can be incorporated by measurement
of the first normal stress difference [N;(y)] in the fluid and the
definition of a “local relaxation time” A(y) = Ni(y) /2T, ().
A shear-rate-dependent local Weissenberg number can then be
evaluated as Wi(y) = A(y)y.

The elasticity number El = Wi/Re is a dimensionless
group that can be used to provide a measure of the relative
importance of elastic and inertial effects in the flow field.
It is a useful number for differentiating between different
dynamical regimes that can be observed in microfluidic flows
through complex geometries [S7—61]. The elasticity number is
a quantity that represents the trajectory of a set of experiments
with a given viscoelastic fluid through the Wi-Re operating
space and is, at least nominally, independent of the flow
kinematics since, for constant viscosity fluids, both Wi and
Re depend linearly on the characteristic flow velocity U. At
flow rates where shear-thinning effects become important,
the slope of this trajectory decreases because Re varies as
U /n(y), while the relaxation time in the definition of the
Weissenberg number can also show rate-dependent decreases.
Such a definition better reflects the local ratio of elastic normal
stresses and viscous shear stresses in a complex flow, but
complicates comparison with numerical models, which each
predict their own functional form for the effective relaxation
time A(y). For this reason we choose to base all measures of the
dimensionless flow strength on the zero-shear-rate properties
of the fluids determined under equilibrium conditions. Such
a definition is unambiguous and facilitates comparison with
computational rheological models. In Sec. IVC we demon-
strate how to incorporate the role of shear thinning within the

the characteristic shear rate is y =
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form of the Carreau-Yasuda model considered in the present
paper.

C. Microparticle image velocimetry

Microparticle image velocimetry (u-PIV) was performed
on test fluid seeded with 1.1-um-diam fluorescent tracer
particles (Nile Red, Molecular Probes, Invitrogen; Ex/Em:
520/580 nm; ¢, A~ 0.02 wt%). The imaging system consisted
of a 1.4 megapixel, frame-straddling CCD camera (TSI
Instruments, PIV-Cam) and an inverted microscope (Nikon
Eclipse TE 2000-S). A 10x, 0.25 numerical aperture (NA)
objective was used to focus on the midplane of the cross-slot
flow cell. The resulting measurement depth (8z,,) over which
microparticles contribute to the determination of the velocity
field is 8z, ~ 50 um [62], or ~5% of the depth of the flow
cell d. The fluid was illuminated by a double-pulsed 532-nm
Nd:YAG laser with pulse width §# = 5 ns. The fluorescent seed
particles absorb the laser light and emit at a longer wavelength.
The laser light is filtered out with a G-2A epifluorescent filter,
so that only the fluorescing particles are imaged by the CCD
array. Images were captured in pairs with a time separation
(1.2 us < At < 60000 us) chosen to achieve an average
particle displacement of approximately four pixels, optimal
for subsequent PIV analysis. Image pairs were captured at
a rate of approximately four pairs per second. The standard
cross-correlation PIV algorithm (TSI insight software), with
interrogation areas of 16 x 16 pixels and Nyquist criterion,
was used to analyze each image pair. For steady flows, 20
image pairs were captured and ensemble averaged in order to
obtain full-field velocity maps in the vicinity of the stagnation
point. Tecplot 10 software (TSI, Inc.) was used to generate
streamlines from the velocity vector fields.

D. Birefingence microscopy

The spatial distribution of flow-induced birefringence in
the vicinity of the stagnation point was measured using an
ABRIO birefringence microscope system (CRi, Inc.), which
has been described in detail by Shribak and Oldenbourg [63]
and in a previous paper by Ober et al. [44]. Briefly, the
cross-slot flow cell is placed on the imaging stage of an inverted
microscope (Nikon Eclipse TE 2000-S) and the midplane
of the flow cell is brought into focus using a 20x, 0.5 NA
objective. The ABRIO system passes circularly polarized
monochromatic light (wavelength 546 nm) first through the
sample, then through a liquid-crystal compensator optic, and
finally onto a CCD array. To generate a single image, the
CCD records five individual frames with the liquid-crystal
compensator configured in a specific polarization state for each
frame. Data processing algorithms described by Shribak and
Oldenbourg [63] combine the five individual frames into a
single full-field map of retardation and orientation angle. The
system can measure the retardation (R) to a nominal resolution
of 0.02 nm, and has an excellent spatial resolution (projected
pixel size 0.5 um with a 20x objective lens). The relationship
between retardation and birefringence is given by

R =dAn, ®)

where d is the depth of the flow cell and An is the
birefringence.
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The birefringence intensity at the stagnation point of
the cross-slot device can be used to determine the local
extensional viscosity of the fluid (1g) using the stress-optical
rule (SOR). The SOR states that, for limited microstructural
deformations, the magnitude of the birefringence (An) is
directly proportional to the principal stress difference in the
fluid (Ao = o, — 0y,) [37], 1.e.,

An = CAo, &)

where the constant of proportionality C is called the stress-
optical coefficient. For the 100:60:0 mM CPyCl:NaSal:NaCl
system at 22°C this has been determined by Ober et al.
to be C = —1.1 x 1077 Pa~! [44]. The apparent extensional
viscosity follows from

Ao An (10)

=T T e
E. Pressure drop measurements

A second measure of the apparent extensional viscosity,
characterizing the average rheological response of all material
elements flowing through the device, can be obtained from
pressure measurements made across an inlet and an outlet
of the cross-slot device. Two independent pressure drop
measurements must be made in order to extract the extensional
contribution from the viscous (dissipative) response, as is
shown schematically in Fig. 4(b). First, the pressure drop is
measured as a function of U for full cross-slot stagnation point
flow with opposed inlets and outlets; we term this measurement
A Pya- Next, one inlet and one outlet arm are shut off by
closing valves in the connecting pipes and the pressure drop
is again measured as a function of U for flow around a single
corner of the cross-slot device. This second measurement
quantifies, to first order, shearing contributions to A Py, and
hence we term this measurement A Pgear. An estimate of the
apparent extensional viscosity is obtained using the following
equation:

APtolal - APshear APexcess

app — . = . . 11
NE,app : . (11)

Comparing Eqgs. (10) and (11), it is clear that if the local
and global measures of the extensional response are to be
consistent, then the excess pressure drop A Pexcess should be
equal to the principal stress difference Ao. Moreover, a plot
of An vs A Pexeess should yield a value for the stress-optical
coefficient C from the gradient of the resulting straight line.
These relationships have been recently demonstrated to hold
well for various low viscosity Boger fluids and mildly shear-
thinning biological polymer solutions in a microfluidic cross-
slot geometry [30] and will be tested here for the heavily
shear-thinning wormlike micellar fluids.

IV. EXPERIMENTAL RESULTS

A. Observations of flow fields and optical anisotropy

Prior to testing wormlike micellar fluids in our cross-slot
geometry the flow field was confirmed to be highly symmetric
and stable up to a Reynolds number of Re =~ 20 using a
Newtonian fluid (water). We also measured velocity profiles
across the inlet and outlet channels and along the channel

031502-6



STAGNATION POINT FLOW OF WORMLIKE MICELLAR ...

0-30 nm

| —

100 pm

Q=1pLmin"
Wi=12,Re=8x10"

— Q=5 uL min’ :
x [mm] Wi=6.2, Re =2x10"
FIG. 5. (Color online) Experimentally determined streamlines
(left) and retardation (right) showing the development of asym-
metric flow in the cross-slot geometry for a 100:60:0 mM
CPyCl:NaSal:NaCl solution as the flow rate is increased: (a) steady
symmetric flow at Q = 1.0 uLmin~', (b) partially bifurcated
flow at Q = 1.5 uLmin~!, and (c) fully bifurcated flow at
0 =5.0 uLmin~".

centerlines through the stagnation point, and confirmed that
these were in excellent agreement with numerical predictions
for fully developed Newtonian flow. The results are presented
in our previous paper [19] and are not reproduced here.

In the 100:60:0 mM CPyCl:NaSal:NaCl wormlike mi-
cellar solution, various flow regimes are observed as the
flow rate (or Wi) is increased. At very low flow rates of
0 < 1 uL min~! (Wi < 1.2) the flow field is steady, symmet-
ric, and Newtonian-like, as illustrated by the streamlines shown
in the left-hand part of Fig. 5(a). This symmetric flow field
is accompanied by a slender birefringent strand originating
from the stagnation point and extending in a symmetric
fashion along the outflowing stagnation point streamline
[right-hand side of Fig. 5(a)]. As the flow rate is increased to
Q > 1 uL min~!, the flow field remains steady but develops
an asymmetry. This flow asymmetry is illustrated by Fig. 5(b)
for the volume flow rate Q = 1.5 uL min~' (Wi = 1.9). It is
clear from the streamlines in the left-hand part of Fig. 5(b) that
the majority of the fluid entering via the upper inlet channel is
exiting via the right-hand outlet channel, while the majority of
the fluid entering via the lower inlet channel is exiting via the
left-hand outlet channel. As a result, the dividing streamline
along the outflow direction is skewed about the stagnation
point, and this results in a birefringent strand that appears
to have rotated about the stagnation point, as shown in the
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right-hand part of Fig. 5(b). As the flow rate is increased
further, the degree of flow asymmetry and the rotation of
the birefringent strand increases until, for Q > 2 uL min™!,
the flow realizes a state of almost complete antisymmetry.
The antisymmetric flow state is illustrated in Fig. 5(c) for
Q =5 uL min~!. Here effectively 100% of fluid entering the
upper channel exits via the right-hand channel, and 100% of
fluid entering the lower channel exits via the left-hand channel.
The effect of this almost complete asymmetry is to eliminate
the stagnation point from the center of the cross-slot device,
which results in a significant reduction in the extensional stress
on the fluid and a drop in the magnitude of the birefringence
observed along the dividing streamline. It should be noted
that in successive experiments the flow field can become
asymmetric in either direction about the stagnation point and
is therefore described as a steady, symmetry-breaking, flow
bifurcation. The Reynolds number at which this bifurcation
occurs is extremely low (Re &~ 107°) so the flow transition is
purely elastic in origin.

In the 100:60:0 mM fluid the regime of bifurcated flow is
maintained over more than two decades in flow rate before a
second, time-dependent instability develops. This is illustrated
in Fig. 6 using birefringence observations made at a flow rate
of O =500 uL min~! (Wi = 615), where the time interval
between each image in the figure is approximately 10 s.
It should be noted that there is substantial time averaging
involved in acquiring these images due to the sequential
five-frame analysis algorithm employed by the ABRIO imag-
ing system. Nevertheless, spatiotemporal fluctuations in the
recorded intensity are clear. Fourier analysis of the total
pressure drop measured across the cross-slot device in this
time-dependent flow regime indicates that the fluctuations are
aperiodic [19].

In Fig. 7 we use a montage of images of the flow
birefringence in the cross-slot flow cell to illustrate the nature
of the elastic instabilities observed in the four other wormlike
micellar test fluids as the flow rate is increased. For the 66:40:0
and 50:30:0 mM test fluids [Figs. 7(a) and 7(b), respectively]
the results are qualitatively similar to the previously discussed

FIG. 6. (Color online) Examples of unsteady birefringence pat-
terns observed in a 100:60:0 mM CPyCl:NaSal:NaCl solution in
the time-dependent flow regime at Q = 500 puL min~!, Wi = 615,
Re = 0.14. (a)—(d) were captured sequentially at time intervals of
approximately 10 s.
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(d)33:20:100 mM
CPyCl:NaSal:NaCl
‘ 1

Wi=7.1,Re=0.7 i=14, Re~ 10
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FIG. 7. (Color online) Evolution in the birefringence observed with increasing flow rate for the various wormlike surfactant solutions

indicated.

100:60:0 mM fluid. Initially there is a low Wi regime of
steady symmetric flow, followed by a moderate Wi regime of
bifurcated flow and a high Wi regime of time-dependent flow.
The primary differences are as follows: (a) A state of complete
antisymmetry is never achieved in either the 66:40:0 mM
or the 50:30:0 mM fluids as is observed in the more elastic
100:60:0 mM fluid; the flow field transitions directly from
being partially bifurcated to time-dependent; and (b) there
is some variation in the critical values of the Weissenberg
numbers Wil obtained for the onset of the bifurcation and
Wiﬁ.z) for the onset of the time-dependent flow regimes in each
fluid.

As the test fluid concentration is reduced to 33:20:0 mM
CPyCl:NaSal:NaCl the fluid behavior in the extensional flow
field alters dramatically [Fig. 7(c)]. The elastic instabilities are
completely suppressed and the flow field remains stable and
symmetric even at the highest accessible flow rates. Because
of the large reduction in the solution viscosity, the Reynolds
number also climbs in these experiments. However, an even
more intriguing result is obtained when just 100 mM of
NaCl is added to this most dilute surfactant solution. The
rheology data provided in Figs. 1-3 illustrates that the fluid

viscoelasticity and extensibility increases substantially on the
addition of NaCl and, as Fig. 7(d) shows, the 33:20:100 mM
micellar solution displays all the qualitative features of
the most concentrated 100:60:0 mM fluid (even including the
completely asymmetric flow state) at comparable values of Wi.

B. Birefringence, pressure drop, and apparent
extensional viscosity

When the flow field is in the symmetric state (i.e., for low
Wi), the extensional rate at the stagnation point is well defined
and measurements of the birefringence at the stagnation point
can be used to determine the local extensional stress difference
using Eq. (9). A second, global measure of the stress can
be derived from measurements of the pressure drop across
the cross-slot device using Eq. (11). In Fig. 8(a) we show the
maximum birefringence (An) measured at the stagnation point
as a function of the strain rate for the five micellar test fluids. In
Fig. 8(b) we show the corresponding evolution in both the total
pressure drop measured across the cross-slot device (A Pioa)
and that measured during steady shearing flow around a single
corner of the device (A Pghear). As explained in Sec. IIIE, if
the stress difference and the excess pressure drop increase
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FIG. 8. (Color online) (a) Flow-induced birefringence (—An) measured at the stagnation point as a function of nominal imposed strain rate
(&) for the various wormlike micellar test fluids in the steady symmetric flow regime. (b) Pressure drop measured in cross-slot flow (A Py,
solid symbols) and for shear flow around a corner of the cross (A Pyear, Open symbols) as a function of the superficial flow velocity U = Q 2wd.
The arrows mark the onset of flow asymmetry in each fluid. (c) Birefringence measured at the stagnation point as a function of the excess
pressure drop, allowing the stress-optical coefficients of the fluids to be estimated from the gradient of straight-line fits through the origin.
(d) Apparent extensional viscosity 7z qpp as a function of the Weissenberg number, where the horizontal dashed lines mark the corresponding
zero-shear viscosities. The inset shows the Trouton ratio Tr = 1z app /1M(Y).

proportionally, a plot of An vs A Pexcess = A Piotal — A Pyhear
will yield a straight line that should provide a value for
the stress-optical coefficient C [30]. When we follow this
procedure for the wormlike micellar solutions, we find that
for most of the test fluids, we do indeed obtain a very good
straight-line fit through the origin, the gradient of which we
can use as a value for C [see Fig. 8(c)]. The exception is for the
most concentrated and strongly shear-banding 100:60:0 mM
fluid, where the linear regression is poor. Shear localization
in this strongly shear-banding fluid near the sharp reentrant
corners of the cross slot results in marked changes in the local
kinematics and invalidates the simple linear decomposition
embodied in Eq. (11). Nonetheless, as the imposed flow
strength increases, both the pressure drop required to drive
the flow and the local birefringence intensity in the region of
extensional deformation increase monotonically, as observed
in Fig. 8(c) (open squares). For this 100:60:0 mM fluid we have
already made independent measurements of the stress-optic
coefficient in a steady simple shear flow (see Ober et al. [44]).
Using this value (C = —1.1 x 107° Pa~!) we indicate by the
dashed line the expected variation in birefringence with excess
pressure drop if Egs. (10) and (11) did hold. It is clear that
the results are broadly self-consistent. In our earlier cross-slot
study with the 100:60:0 mM fluid [19] we also observed that
there was some difference between the forms of the extensional
viscosity versus strain rate curves obtained using the two
methods described by Eqgs. (10) and (11). As we discussed

above, this difference is due to the extremely shear-thinning
nature of the fluid and the fact that the excess pressure
drop is a globally averaged quantity obtained from two
measurements made with rather different flow configurations.
Here, we see that as the micellar solution is progressively
diluted and becomes less severely shear thinning, we indeed
find increasing improvement in the colinearity of the An vs
A Peycess data [Fig. 8(c)].

Using the gradients of these straight-line fits passing
through the origin as values of the stress-optical coefficient C,
we convert the data presented in Fig. 8(a) from birefringence
(or retardation, if preferred) into a principal stress difference
according to Eq. (9). Subsequently, we can divide the tensile
stress difference by the strain rate to obtain an estimate of
the apparent extensional viscosity ng app Of each fluid under-
going a planar elongational flow. This is plotted as a function
of Wi in Fig. 8(d), with the inset showing the Trouton ratio
Tr = nE app/n(¥), as a function of the Weissenberg number
Wi. The Trouton ratio data almost lie on a master curve which
reaches a maximum value of Tr &~ 50 at high Wi, indicating
that the fluids are significantly strain hardening. This Trouton
ratio is comparable with measurements made on similar fluids
using capillary breakup [19,54] and filament stretching [53]
extensional rheometry techniques and is reasonably consistent
with our own CaBER measurements presented in Fig. 3(b).
Whereas in the CaBER measurements, we found that the
addition of salt increased the extensibility of the wormlike
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chains and resulted in a higher maximum Trouton ratio of Tr ~
300 for the 33:20:100 mM test fluid, in the cross-slot device
this does not appear to be so. We note that the apparent Trouton
ratio for the 33:20:100 mM fluid measured in the cross-slot de-
vice shows no sign of reaching a plateau, and may therefore be
expected to increase further, however, we cannot measure this
continued extensional thickening due to the onset of the flow
instability. This loss of flow stability illustrates one limitation
of the cross-slot device as an extensional rheometer for fluids
that exhibit such elastically induced instabilities. Conversely,
the cross-slot device enables access to much higher extension
rates than are possible in capillary thinning devices.

C. Analysis of elastic instabilities in the wormlike
micellar solutions

In Fig. 9 we show the streamlines determined experimen-
tally in the cross-slot device for the flow of two different
wormlike micellar fluids. In Fig. 9(a), for flow of the
33:20:0 mM fluid at Q = 4000 L min~', a symmetric flow
is observed; the flow through the inlet channels divides equally
between the two outlet channels. The inertioelastic flow
remains stable and symmetric despite the high values of the
Weissenberg and Reynolds numbers. By contrast, in Fig. 9(b)
for flow of the 50:30:0 mM fluid at Q = 420 uL min~!, a
sharply asymmetric flow is observed and the inlet flow divides
unequally between the two outlet channels. It is possible to
quantify an asymmetry parameter (AQ) by measuring the
perpendicular distances from the inlet and outlet channel walls
to the points within the channels where the streamlines divide.
As marked on the images in Fig. 9, we label one of these
lengths w; and the other w,, where w; + wy, = w = 0.2 mm
is the channel width. Assuming the flow profile across the
channel is reasonably pluglike, w; and w, should be closely
proportional to the volume of fluid that flows out through
each of the respective exit channels. Hence, we define the
asymmetry parameter as follows:
wp — w2

IS

01— 0O
AQ = , 12
0 ' 0 (12)

w

where Q| and Q, represent the actual volumetric flow rates
contained within the sections of channel to either side of the
dividing streamline.

If w; and w, are equal [i.e., the flow is symmetric, as in
Fig. 9(a)], then A Q = 0. On the other hand, if either w; or w; is
equal to zero [as is the case for completely antisymmetric flow
such as that shown in Fig. 5(c)], then A Q— 1. Note that besides
using streamline images, the values of w; and w, can also
be estimated independently by measuring the position of the
birefringent strand, since the strand itself is localized along the
streamline dividing the exit channels (see Fig. 5, for example).

The values of A Q have been calculated as a function of Wi
for all of the micellar fluids in which a flow bifurcation was
observed, and the results are presented in Fig. 10. In each case,
at a given Weissenberg number, repeated measurements were
made and the results represent the mean values and standard
deviations of the data. As we reported in our earlier paper [19],
at the CPyCl:NaSal:NaCl concentration of 100:60:0 mM the
flow bifurcation commences at a critical Weissenberg number
of Wigl) ~ 1 and the asymmetry parameter rapidly increases to
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FIG. 9. (Color online) Experimentally determined streamlines
for (a) a 33:20:0 mM CPyCl:NaSal:NaCl solution flowing at
0 =4000 uLmin~', Wi=47.6, Re=10.6, and (b) a 50:30:0 mM
CPyCl:NaSal:NaCl solution flowing at Q =420 uLmin™!,
Wi=20,Re =0.25. Measuring the location of the dividing streamline
allows an asymmetry parameter AQ to be calculated according to
Eq. (12). When the flow is symmetric, as in (a), AQ = 0; in the
asymmetric example shown in (b), AQ =~ 0.25.

AQ =1 at Wi~ 2. As the fluid is progressively diluted, and
the fluid elasticity decreases, the value of Wi(cl) increases and
the maximum value of the asymmetry parameter at high Wi
is reduced. The curve of AQ vs Wi for the weakly shear-
thinning 50:30:0 mM surfactant solution is well described
by an equation of the form AQ ~ (Wi — Wi(cl))oj, where
Wi(cl) ~ 11.4. However, such a relationship does not describe
the evolution of the bifurcation in the other more strongly
shear-thinning fluids we tested. This classical square-root
dependency of the bifurcation parameter on Wi — Wigl) has
been reported previously for constant viscosity dilute polymer
solutions [24,31,32] and also for non-shear-banding micellar
solutions [18]. That we observe such a dependence with the
50:30:0 mM fluid, which does not display a marked stress
plateau in the flow curve (see Fig. 2), but not with the
more strongly shear-thinning fluids, supports our previously
expressed conjecture that strong shear localization near the
channel walls has a strong influence on the form of the
bifurcation, causing it to develop very rapidly with increasing
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FIG. 10. (Color online) Asymmetry parameter A Q as a function
of Weissenberg number for the various micellar test fluids in which
the symmetry-breaking elastic instability was observed. For the
50:30:0 mM CPyCl:NaSal:NaCl test fluid the bifurcation is well
described by an equation of the form AQ ~ (Wi — Wi(")3, where
Wil & 11.4, as shown by the dashed line.

Wi due to shear localization and self-lubrication effects [19].
For the least viscoelastic 33:20:0 mM fluid, no bifurcation
is observed, however, the addition of 100 mM NacCl to this
surfactant solution results in a large increase in the fluid
viscoelasticity and micellar extensibility, which leads to the
reestablishment of a flow bifurcation very similar in form to
that observed with the 100:60:0 mM fluid. We note that the
two fluids that bifurcate for a critical Weissenberg number
very close to unity and achieve almost complete asymmetry
are the same two fluids that show the most ideally Maxwellian
linear viscoelasticity (see Fig. 1) and a clear stress plateau
in the flow curve, which is normally taken as a hallmark of
shear-banding behavior. That is, their relaxation is dominated
by a single time A, which results from the fast breaking limit
of the reptation and micellar breaking time scales [40,41].
Furthermore, we note that these two fluids also show the
most pronounced extensional response in the filament thinning
experiments presented in Fig. 3(a).

Previously we have observed that both the onset of the initial
flow bifurcation and the onset of the time-dependent instability
appeared to be associated with changes in the gradient of the
flow curve [19]. In Fig. 11(a) we have marked the critical
shear rates for the instabilities on the flow curve for each of
the current micellar test fluids, and this trend is again broadly
supported by the data. The flow bifurcation occurs over the
portion of the flow curve with the lowest gradient, i.e., the
region of the flow curve that is broadly termed the stress
plateau. Steady symmetric flow is observed only on the low
shear rate, pseudo-Newtonian branch, and a three-dimensional
time-dependent flow state develops on the high shear rate
branch. We associate the onset of the time-dependent flow
instability with the development of a highly aligned micellar
state in the fluid flowing toward the intersection, resulting
in tension along the curved streamlines around the corners
of the cross-slot device. It is well established that such
circumstances can lead to complex spatiotemporal dynamics
in viscoelastic fluid flows [64—-69]. Recent experimental results
in the Taylor-Couette geometry with shear-banding wormlike
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micellar solutions, also formulated from CPyCl/NaSal/NaCl,
clearly indicate that fluctuations in the velocity field are most
strongly associated with elastic instability in the high shear
rate band, eventually leading to elastic turbulence at high
Weissenberg numbers [70]. The results correlate well with
a recently developed criterion for purely elastic instabilities
in Taylor-Couette flows of shear-banding fluids [71]. This
instability criterion, which is a generalization of an existing
criterion for onset of elastic instabilities [72], is formulated
around considerations of the local Weissenberg number (Wiy,)
within the high shear rate band and predicts three broad
categories of instability: stable flow for sufficiently low Wiy,
followed by an intermediate regime which can alternate
between stable and unstable states due to flow-induced changes
in the boundary conditions. Finally, for sufficiently large
values of Wiy, the flow becomes time dependent and three
dimensional in nature. These observations made in a purely
shearing flow within the Taylor-Couette geometry are, perhaps
surprisingly, broadly analogous to the present observations in
the cross-slot device.

The slopes of the flow curves at the points where they are
intersected by the stability boundaries marked on Fig. 11(a)
can be quantified by defining a tangent viscosity or consistency
ne = do /dy, as first discussed by Cox and Merz [73] in their
paper discussing interconnections between linear and nonlin-
ear viscoelastic properties of entangled polymeric systems.
Recently it has been noted that this consistency measure can,
in fact, be used in conjunction with Laun’s rule [74] to provide
a direct estimate of the normal stress difference exerted by
a fluid in steady shear flow [75]. Specifically, the important
quantity is the difference between the conventional shear-rate-
dependent viscosity n(y) = o /y and the tangent viscosity
ne, which Cox and Merz argue is related to the recoverable
shear in an entangled system. When scaled with the shear
viscosity, the relevant dimensionless quantity appearing in the
expression proposed by Sharma and McKinley [75], which
measures the importance of shear thinning in an entangled
viscoelastic fluid, is S = 1 — n./n(y). When combined with
the definitions of the viscosity and the consistency given
above, this expression becomes S = (1 —dIno/dIny) and
can be readily evaluated from the flow curve data, or from
the corresponding Carreau-Yasuda model fit for each fluid.
We plot this dimensionless measure of shear thinning on
the ordinate of Fig. 11(b) versus the appropriately scaled
dimensionless shear rate y/y*. For a weakly viscoelas-
tic fluid with almost constant viscosity (e.g., the diluted
33:20:0 mM solution) this quantity is close to zero. However,
for a highly entangled and strongly shear-thinning fluid (such
as the 100:60:0 mM fluid) this quantity can grow toward a
maximum value of unity, corresponding to a shear-thinning
fluid with viscosity n ~ 1/y and a consistency approaching
zero. When represented in this form, it can be seen from
Fig. 11(b) that the critical conditions measured experimentally
in each fluid for bifurcation to a steady asymmetric 2D flow
as well as for a subsequent transition to three-dimensional
time-dependent flow clearly demarcate the boundaries of a
stability “phase diagram” for cross-slot flow.

Two important points must be noted about this tentative
stability map. First, although the rules proposed by Cox and
Merz [73], Laun [74], and Sharma and McKinley [75] were
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FIG. 11. (Color online) (a) Shear stress as a function of shear rate
for each of the wormlike micellar fluids, showing the critical shear
rates on each flow curve that mark the onset of flow instabilities.
For shear rates below the lower critical value ))j” (solid symbols)
the flow is steady and symmetric. Between the lower and upper
critical shear rates the flow is steady but bifurcated. Above the
upper critical shear rate y» (open symbols) the flow becomes time
dependent. The transitions between each flow regime correspond
closely to changes in the local gradient of the flow curve. For clarity
only the Carreau-Yasuda model fits to the experimental steady shear
data presented in Fig. 2 are shown. (b) A state diagram showing the
systematic variation with the degree of shear thinning of the stability
boundaries for onset of steady asymmetric flow in the cross slot and
for onset of time-dependent three-dimensional flows. The ordinate
is a dimensionless measure of shear thinning S = 1 — n./n(y) (see
the text for an explanation), and the abscissa shows the dimensionless
shear rate y /y * for each fluid scaled with the data provided in Table 1.

not developed with shear-banding micellar fluids in mind,
it appears that this dimensionless measure still provides a
consistent way of ranking the critical conditions at onset
of elastic instability in these very strongly shear-thinning
fluids. The tendency of such shear-banding fluids to localize
strong deformations after the onset of instability is reflected
in the more rapid growth of the flow asymmetry measure
A Q with Weissenberg number, as plotted in Fig. 10. Second,
this plot must be a projection through a more complex,
three-dimensional stability diagram, because fluid elasticity, as
independently measured by the ratio of elastic normal stresses
acting along curved streamlines compared to viscous stresses,
are a necessary feature of viscoelastically driven instabilities
in complex flows such as the cross-slot geometry. For example,
sufficiently elastic dilute polymer solutions, corresponding
to S — 0, also show a symmetry bifurcation in cross-slot
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flow [24,31,32], therefore a critical level of shear thinning
is neither a necessary nor sufficient condition for the onset
of instability, and simulations with purely inelastic models
such as the Carreau model would not capture the observed
flow transitions. The complete stability diagram for such fluids
must therefore incorporate the coupled effects of fluid inertia,
fluid elasticity, as well as shear thinning in the viscometric
properties. We proceed to construct such a map below.

In order to capture the competing effects of inertia and
elasticity on a 2D stability map, we summarize our results on
the Wi-Re “state diagram” shown in Fig. 12. The magnitude
of the Weissenberg number indicates the strength of elastic
effects, while the magnitude of the Reynolds number indicates
the significance of inertial effects. Plotted on a log-log scale,
the trajectory of each set of experiments over a range of flow
rates follows an almost straight line in Wi-Re space. This
is because Re for each fluid is inversely proportional to the
viscosity n(y ), which over a wide range of shear rates broadly
follows a power law in y (and hence in U'). On the other hand,
the Weissenberg number for each fluid, Wi = Ay, always
increases linearly with U when based on a single Maxwell time
obtained from linear viscoelasticity experiments. In Fig. 12,
a lower critical Weissenberg number (Wigl)) demarcates the
boundary separating steady symmetric flow from bifurcated
steady asymmetric flow. The value of Wii_l) increases with
Re, indicating that this transition is suppressed by increasing
inertia. Similar trends are also observed in numerical simu-
lations of cross-slot flow bifurcations [31]. A second, higher
critical Weissenberg number (Wi®) marks the transition from
steady 2D bifurcated flow to time-dependent 3D flow. As we
reported previously for the 100:60:0 mM fluid [19], Fourier
analyses of time-varying pressure drop measurements made
for unsteady flow above Wi indicate that the fluctuations in
the time-dependent flow regime are aperiodic. In general, the
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FIG. 12. (Color online) Stability diagram in Weissenberg-
Reynolds number space showing the boundaries between elastic
instabilities in the CPyCl:NaSal:NaCl test fluids. The solid symbols
mark the lower critical Weissenberg number Wi'" for the onset of
steady asymmetric flow, and the open symbols mark the upper critical
Weissenberg number Wif?) for the onset of time-dependent flow.
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value of Wig,z) decreases slightly with Re, indicating that inertia
also plays a role in influencing the onset of this instability.
The systematic variation of the lower and upper stability
boundaries marked out in Fig. 12 are such that it appears
as though they should intersect for some micellar concen-
tration between 50:30:0 and 33:20:0 mM. Presumably, this
intersection between the two stability manifolds would be the
location of a triple-point (or, more formally a bifurcation of
codimension two), where for further increases in fluid inertia
(or Re) there would be a transition directly from a steady sym-
metric to a time-dependent three-dimensional state, without
first passing through a steady bifurcated state. This is also
evident from the stability boundaries marked on Fig. 11(b).
Future experiments with additional CPyCl:NaSal:NaCl fluids
tuned to have properties intermediate to the 50:30:0 and
33:20:0 mM solutions could test this conjecture that we
would find a direct transition from steady symmetric to
time-dependent flow somewhere in this concentration regime.

V. CONCLUSIONS

We have explored the spatiotemporal dynamics of the
response of a few well-characterized wormlike micellar
solutions formulated from the CPyCl:NaSal:NaCl system
to a well-defined extensional flow field generated within a
microfluidic cross-slot device. Although the range of surfactant
concentration only spans a factor of 3, the fluids vary widely
(by around three orders of magnitude) in terms of their
linear and nonlinear rheology. In the cross-slot device, at
low strain rates (Wi < 1), the flow field for all the fluids is
steady and symmetric, and we observe a slender birefringent
strand localized along the streamline flowing outward from
the stagnation point. In this regime we have shown how a
combination of bulk pressure drop measurements and local
birefringence measurements near the stagnation point can be
used to provide a self-consistent measure of the apparent
extensional viscosity of the fluid. At higher Weissenberg
numbers most of the fluids (except for the most dilute and
least elastic 33:20:0 mM fluid formulated without NaCl)
exhibit a range of elastically induced flow instabilities. The
first of these transitions occurs at a low critical Weissenberg
number (denoted Wil") and involves the development of a
steady 2D flow asymmetry which is clearly manifested by the
rotation and distortion of the birefringent strand originating
from the stagnation point. At a second, much higher, critical
Weissenberg number (denoted Wigz)), a 3D time-dependent
flow instability develops.

Analysis of the critical shear rates and Weissenberg
numbers of the instabilities and the detailed development of
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the bifurcation with Weissenberg number indicates that the
critical conditions for the onset of these elastic instabilities
are influenced both by inertial effects and by the form of the
steady flow curve, in particular, the extent of shear thinning
and the possibility of shear banding. Our results indicate that,
at least for this class of micellar fluid, it may be possible to
closely predict the onset and nature of elastic instabilities in
extensional flows from a detailed understanding of the steady
shear rheology, provided it is measured over a sufficiently large
range of shear rates. Moreover, we have also outlined a simple
dimensionless measure of the relative importance of shear
thinning in a viscoelastic fluid, S = (1 — d Ino /d In y), which
can be readily evaluated from rheological measurements of
any experimental test fluid or for any viscoelastic constitutive
model being used in flow stability computations. This results
in a more complete description of the competing roles of fluid
viscoelasticity and the extent of shear thinning in controlling
the stability boundaries of complex viscoelastic flows. When
combined with a suitable measure of fluid elasticity, such
as the Weissenberg number (which captures the relevant
magnitude of the elastic normal stresses in the fluid) and
the Reynolds number (measuring the role of fluid inertia),
complete flow stability diagrams can be constructed which
demarcate different operating windows for steady symmetric,
steady asymmetric, and three-dimensional time-dependent
flow. We have presented two different projections through this
operating space in Figs. 11(b) and 12. A full three-dimensional
representation of the stability boundaries is provided by
Fig. S1 in the Supplemental Material [76]. It will be interesting
to see if this unique shear-thinning measure is useful in un-
derstanding trends observed in the critical conditions obtained
from corresponding numerical simulations. Such simulations
are just now becoming possible [32,34,35]. The ability to
alter the critical conditions and nature of these viscoelastic
flow instabilities by manipulating the fluid formulation (for
example, by simply adjusting the ionic environment to control
the viscoelasticity, the degree of shear thinning, and the
extensibility of the micellar chains) may also prove useful
in industrial applications as well as for design of advanced
control or mixing elements in lab-on-a-chip devices.
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