
Introduction

In many practical flow situations solutions of flexible
polymers are found to exhibit a well-known non-New-
tonian viscosity enhancement effect. This is likely to be
due to extensional components in the flow field, which
can cause flexible polymer molecules to stretch and
orientate, causing an increase in the extensional viscos-
ity. This viscosity enhancement is important in many
industrial applications, including food technology, paint
and cosmetic formulation and enhanced oil recovery
(EOR).

Potential EOR applications based upon polymer
solution flooding depend upon studies of porous media

flow of polymer solutions in order to optimise the use of
polymers as additives in the solutions used for oilfield
flooding. One essential ingredient is the achievement of
effective viscosity matching at the oil-solution interface.
Remarkably, this can be achieved with low concentra-
tions of ultra-high molecular weight polymers in water or
brine. However the large viscosity enhancement that oc-
curs when polymer solutions flow through porous media,
which can be exploited for EOR, is not well understood,
mainly due to difficulties defining the complex random
geometry of the flow field and probing the molecular re-
sponse of the polymers within the porous medium.

Porous media are usually modelled experimentally
by randomly packed beds of spheres. The flow of
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Abstract We report results of the
flow of dilute mono-disperse solu-
tions of atactic poly(styrene) in di-
octyl phthalate through regular
crystallographic packed beds of
spheres. Pressure drop measure-
ments made as a function of flow
rate across simple cubic and body
centred cubic arrays of spheres have
been used to estimate the specific
viscosities of the polymer solutions
as a function of the superficial
Deborah number. Through both
structures the onset Deborah num-
ber for the non-Newtonian increase
in specific viscosity is found to be
low when compared on the basis of
well-characterized Zimm relaxation
times. Surprisingly it is found that
polymer solutions achieve a greater
maximum specific viscosity in the

simple cubic than in the body cen-
tred cubic array, a result contrary to
prior expectations due to the ab-
sence of trailing stagnation points in
the simple cubic structure. It is hy-
pothesised that the trailing stagna-
tion points in the body centred cubic
array may be screened from the flow
field by strands of oriented polymer
and that, as such, the periodic vari-
ations in cross-sectional area of the
flow (which are more severe in the
simple cubic array) may play the
most significant role in causing
polymer extension and in enhancing
the non-Newtonian viscosity.
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polymer solutions around single isolated spheres is a
complex problem itself and one that needs to be
understood properly if the results of porous media flow
experiments are to be correctly interpreted. It is known
that spheres and particles experience significant non-
Newtonian increases in drag when falling through
polymer solutions and this is likely to be related to the
viscosity increase in porous media. It is also known
that at sufficient flow velocities the trailing stagnation
point of a sphere can create a significant extensional
flow field, strong enough to orient flexible polymers
(Haward and Odell 2003).

In another publication we have addressed some of the
issues associated with the flow of dilute mono-disperse
atactic poly(styrene) (a-PS) solutions around spheres
(Haward and Odell 2003). In the current article we
present results obtained from the flow of the same
solutions through porous media constructed from crys-
tallographic arrays of spheres. Simple cubic (SC) and
body centred cubic (BCC) porous media were made to
simplify and idealize the flow geometry of the problem
while remaining in the three-dimensional regime. The
geometries of the two porous media differed greatly.
With flow along the cube sides, the SC array contained
no trailing stagnation points in the orientation of the
flow axis, while the BCC array contained one trailing
stagnation point for each sphere in the bulk of the array.
Flow resistance measurements were made across the
regular porous arrays to help discern the relative sig-
nificance of trailing stagnation points, and other possible
contributors to the extensional flow field (i.e. variations
in the cross-sectional area of the flow), to the viscosifi-
cation process.

Background

There is a large body of literature on porous media flow
of polymer solutions. One of the most interesting and
studied aspects of the flow of polymer solutions through
porous media is the non-Newtonian increase in flow
resistance, which occurs for flexible polymers when a
critical flow rate is exceeded. Among the first to observe
this effect using randomly packed beds of spheres were
Dauben and Menzie (1967) and Marshall and Metzner
(1967).

James and McLaren (1975) with dilute aqueous
solutions of poly(ethylene oxide) (PEO) concluded that
an increase in the extensional viscosity of the polymer
solution in the pore-spaces is essential to explain the
critical increase in flow resistance, an opinion supported
by the results of Durst et al. (1981) and Kulicke and
Haas (1984).

In porous media modelled by randomly packed beds
of spheres there exists a highly complex random flow
geometry consisting of successive, ‘‘pseudo-periodic’’,

expansions and contractions between the connected
pores and many trailing stagnation points. The under-
standing of the stagnation point flow around spheres is
vital to the understanding of porous media flow at the
particle level. In flow around a single sphere the trailing
stagnation point has been found to be the dominant
region for producing non-Newtonian increases in
extensional viscosity and molecular orientation (Haward
and Odell 2003). The effect of the wake of one sphere
upon a following sphere (i.e. the ‘‘velocity effect’’) has
important implications regarding the mechanism by
which interactions may occur between the particles that
form a porous matrix (Haward and Odell 2003).

Such effects associated with stagnation point flows of
highly dilute solutions have led to the suggestion that the
origin of the pronounced non-Newtonian dilatancy
arises from a coilMstretch transition in polymer
dynamics. Such transitions were first postulated by de
Gennes (1974) and Hinch (1977) who suggested that, in
an extensional flow, if the strain rate exceeds the re-
ciprocal of the polymer relaxation time (Deborah
number, De, ‡�0.5) then the coil will begin to unravel.
de Gennes further suggested that the unravelling process
could be critical in strain rate due to a change in the
draining characteristics of the coils from non-free
draining to free draining (or the change in the hydro-
dynamic interaction between the polymer segments and
solvent) as extension proceeds. This would lead to a
hysteresis in the coilMstretch process.

In order to extend substantially high molecular
weight flexible polymers from the random coil, a very
high accumulated strain (��100) is required, where

e ¼ Lo

r2o
� �1=2

ð1Þ

where Lo is the chain extended length and ro is the
equilibrium end-to-end distance. This introduces a sec-
ond condition for the coilMstretch process to produce
pronounced non-Newtonian effects: the extensional flow
must persist long enough to stretch the molecules. The
fluid strain must, therefore, be at least as great as the
strain required to stretch the molecules. In fact at
modest Deborah numbers the molecules will not extend
affinely with the fluid elements in which they sit and
much greater fluid strains are required. The realization
of this latter condition is most effectively achieved
around stagnation point singularities, where the strain-
rate is finite, but the residence time, and therefore the
fluid strain is infinite.

This model of the dilute solution coilMstretch process
has been well-supported by experimental work in idea-
lised flows, where stagnation points give rise to narrow
strands of highly extended molecules of high local
extensional viscosity (Miles and Keller 1980; Keller and
Odell 1985). The narrowness is due directly to the
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requirement for high fluid strains, which occur only
along streamlines that pass very close to the stagnation
point.

A strong, though transient, extensional component
will arise in a flow field without the presence of a trailing
stagnation point when there is a sudden large contrac-
tion or expansion in the cross sectional area of the flow,
see e.g. Cogswell (1978) and James and Saringer (1980),
who examine sink flows. Cressely and Hocquart (1981)
with aqueous solutions of poly(ethylene oxide) (PEO,
Mw=4·106) at concentrations as low as 0.008%, have
demonstrated that dilute polymer solutions can accu-
mulate large strains without the presence of a trailing
stagnation point by the observation of birefringent lines
in an oscillatory convergent/divergent flow cell.
Dyakonova et al. (1996) have performed the same
experiment with dilute solutions of a-PS in tricresyl-
phosphate (a-PS in TCP).

Also with dilute solutions of a-PS in TCP, Dyako-
nova et al. (1996) have shown that significant increases
in the birefringence and flow resistance can occur in a
cylinder array cell without a trailing stagnation point.
This result suggests that symmetric periodic flows can
produce accumulating strains, even though the fluid
stain in an individual ‘‘pore’’ is very modest (of order 5).

This is a feature generally not seen in FENE or
Brownian dumbbell modelling, where symmetric cyclic
flows do not accumulate strain; the dumbbells simply
contract back to the original dimensions on exiting the
pore. It has been postulated that incorporation of the de
Gennes hysteresis might explain strain accumulation but
most studies have not found this. Some recent modelling
using a Chilcott-Rallinson model (Chilcott and Rallin-
son 1988) incorporating hysteresis in the hydrodynamic
interaction has reported accumulating strains over a
limited range of Deborah number and highly dependent
upon the initial boundary conditions (Odell and Car-
rington 2001).

Dyakonova et al. also found that when a trailing
stagnation point was introduced into the cell both the
birefringence and the flow resistance increased more
rapidly and to greater maximum values (Dyakonova
et al. 1996) illustrating the importance of the trailing
stagnation point in producing large deviations from
Newtonian flow behaviour, which in turn suggests the
importance of polymer extension and orientation to the
viscosification process.

A study of the flow of ultra high molecular weight
poly(acrylamide) solutions (Mw=18.2·106 in ethylene
glycol) through regularly packed beds has been under-
taken previously by Haas and Durst (1982). Ortho-
rhombic and cubic arrangements of spheres were
constructed. However, it should be noted that neither
arrangement presented trailing stagnation points in the
flow direction. The authors noted that the strain in a
given ‘‘pore’’ was small (�5 for the cubic cell). The

specific flow resistance was measured as a function of
flow-rate for different numbers of repeat unit cells,
finding a progressive increase over the passage of fluid
through up to four unit cells, followed by a reduction for
further repeats. The authors speculated that the molec-
ular strain must increase as fluid elements pass from one
pore to the next. The reduction in resistance coefficient
for passage through more than four pores is likely due to
extensional thermo-mechanical degradation of the ultra-
high molecular weight polymers.

The authors attempted to define the critical Deborah
number corresponding to the flow rates at the onset of
the increase in flow resistance from Zimm relaxation
times calculated for the poly(acrylamide) system. They
derived a numerical factor for each geometry to relate
the observed superficial Deborah number to that derived
from the calculated Zimm relaxation time. They ob-
served that the unscaled Deborah numbers were much
lower than the expected value of �0.5

Interestingly, the flow resistance in a randomly
packed bed was equivalent to a linear superposition of
the flow resistance through the two regularly packed
beds. The authors explained this by the observation that
a random arrangement of spheres can be thought of as a
random superposition of regular unit cells. However, the
result remains surprising since neither of the regularly
packed beds contained any trailing stagnation points,
which must necessarily be present in any random
packing of spheres.

Saez et al. (1994) reported observations of non-
Newtonian extensional flow effects coupled with bire-
fringence in porous media flow of mono-disperse atactic
poly(styrene) solutions, Mp=12.25·106, c=0.08%, well
below the conventional overlap concentration c*. The
authors argued that the non-Newtonian effects observed
in porous media flow are best explained by the forma-
tion of transient networks of entangled molecules, a
theory first proposed by Odell et al. (1988) to account
for the highly critical nature of the viscosity increases
observed with poly-disperse polymer solutions.

Muller et al. (1998) performed flow visualization
experiments on a randomly packed porous media with a
0.1% solution of poly(alphaolefine) in paraffin oil by
matching the refractive index of the solution to that of
the porous media. Above a critical flow rate the polymer
solution displayed a pronounced non-uniform flow
pattern and showed a preference to flow only along
certain narrow paths through the porous media. The
preferred paths were found to fluctuate over a timescale
of the order of 2 s. The authors concluded that the in-
crease in extensional viscosity when the polymers stretch
leads to irregularities in the flow field, which in turn
cause the flow resistance to increase. It should be noted
that these experiments were in random porous media, so
it might be anticipated that local high values of strain-
rate would lead to local stretching.
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For an extensive review of work on porous media
flow see Muller and Saez (1999).

In the present study we report results from the flow
of solutions of well characterized, highly dilute,
monodisperse a-PS in di-octyl phthalate through two
crystallographic porous media of well characterized
and highly contrasting geometries: simple cubic (SC)
and body centred cubic (BCC). The cyclic fluid strains
in the SC cell are symmetric and small (�5). The
strains in the BCC cell are even smaller, but there is the
potential for non-symmetric flow and there are two
contracting regions per unit cell of the lattice. The SC
cell is entirely lacking in trailing stagnation points
aligned with the flow axis while the BCC contains a
trailing stagnation point associated with each sphere
within the lattice. Our aim is to aid the understanding
of the mechanism of the viscosity increase in porous
media flow by giving insight into the importance of the
various particular geometries that occur in random
porous media.

Experimental

Apparatus The regular porous media flow cells were constructed
with 4 mm thick sheet soda glass walls to form square cross-section
rectangular boxes to accommodate simple cubic (SC) and body-
centred cubic (BCC) arrays of spheres. The cells were packed by
hand with soda glass spheres of diameter d=5±0.02 mm, which
were supplied by Sigmund-Lindner of Germany. When packing the
SC flow cell some of the spheres had to be glued into position to
prevent the array from collapsing during the construction: this was
kept to a minimum so as to avoid significant modifications to the
porosities of the cells. To pack the BCC array a large number of
5-sphere pyramids were first constructed. Four of the spheres
formed four planar corners of a BCC unit cell, with a carefully pre-
calculated centre-centre distance, and were fixed in place by being
glued to the fifth, body-centred sphere. The five-sphere pyramids
were placed into the flow cell such that the four corner spheres
formed the first layer of the BCC array. Filling the gaps in the
second layer, between the central spheres of the pyramids, ensured
that the spacing between all the spheres of the base and second
layers was correct. The third and subsequent layers of the array
then followed easily.

A schematic diagram of the simple cubic porous media, show-
ing the dimensions of the flow cell, is given in Fig. 1. The body-
centred cubic porous media had dimensions 33.9·33.9·195.5 mm
to accommodate the larger unit cells of the packing structure. As
the number of spheres used to pack the cells, and the dimensions of

the spheres and flow cells, were all accurately known, the porosity,
/, of the porous media could be calculated using

/ ¼ 1� f ð2Þ
where f is the packing fraction. The porosity of the SC porous
medium was found to be 0.476 and the porosity of the BCC porous
medium was found to be 0.32.

The porous media cells were incorporated into the vacuum
pump driven flow system shown schematically in Fig. 2. A single-
pass vacuum pumping system was used in order give a non-pul-
satile flow and to avoid pump degradation of the high molecular
weight polymers. The polymer solution (or solvent) was drawn
through the test cell from reservoir 1 to reservoir 2 by the vacuum
pump. The volume flow rate, U, was controlled by adjusting valves
1 and 2 to control the vacuum pressure inside reservoir 2 and was
calculated from a measurement of the pressure drop, DP2, across a
calibrated capillary connected to reservoir 1. When an experiment
had been completed valve 3 was closed to stop the flow and the
vacuum was switched off. The liquid in reservoir 2 could then be
either returned to reservoir 1 by opening valve 4, or could be dis-
carded to waste. DP represents the pressure drop measured across
the model porous media test cell.

From the measurement of DP as a function of U the resistance
coefficient, L, was calculated using

K ¼ d2/3 DP=Lð Þ
gm 1� /ð Þ2

ð3Þ

where L is the length of the porous media, g is the fluid viscosity
and v is the superficial flow velocity (defined by U/cross-sectional-
area of porous media).

The Reynolds number for porous media flow is defined as

Re ¼ qmd
g 1� /ð Þ ð4Þ

where q is the fluid density. The Ergun equation then states that for
Newtonian fluids

K ¼ Aþ B:Re ð5Þ
For low values of Re (Re<1) the resistance coefficient is domi-

nated by the constant term, A. This is the Darcian flow regime in
which the pressure drop increases linearly with the flow rate. At
higher Reynolds numbers inertial effects become important and the
B.Re term in Eq. (5) becomes appreciable. The values of A and B for

Fig. 1 Schematic diagram of a crystallographic porous media flow
cell, showing the dimensions of the simple cubic porous media

Fig. 2 Schematic diagram of the vacuum-pump driven flow system
used to measure the pressure drop across the porous media as a
function of the flow rate
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Newtonian liquids are found to vary in the literature. McDonald et
al. (1979) suggested values of 180 and 1.8 respectively, after exten-
sive analysis of published data, although both A and B are found to
vary within around ±15% due to the precise nature of the packing
and the roughness of the particles. According to the numerical
computations of Zick and Homsy (1982) the values of A should be
approximately 157 and 141 for the simple cubic and body centred
cubic porous media, respectively.

Due to differences in the Newtonian values of A and B for the
SC and BCC flow cells, estimates of the specific viscosities of
polymer solutions were found to allow a more ready comparison
between the behaviour in the cells. The specific viscosity, gsp, was
estimated according to

gsp ¼
Ksolution � Ksolvent

Ksolvent
ð6Þ

where Lsolution and Lsolvent represent the polymer solution and the
Newtonian values of the resistance coefficient, respectively. Thus,
only deviations from Newtonian behaviour appear in the specific
viscosity and the pressure drop data from the two porous arrays
can be compared for a given polymer solution.

The specific viscosity was plotted as a function of the superficial
Deborah number, Desup, defined for porous media flow by Mar-
shall and Metzner (1967) as

Desup ¼ s � m
d/

ð7Þ

where s is the Zimm relaxation time of the polymer molecule,
discussed below. This definition of the superficial Deborah number
implies that the superficial strain rate through the porous media
would be given by

_eesup ¼
m

d/
ð8Þ

The regular arrays of spheres in the flow cells, the positions of
spheres within the SC and BCC unit cells, and the orientation of the
flow axis along the symmetry axis of the arrays mean that the two
flow cells have distinct characteristics. In the simple cubic flow cell
there are no trailing stagnation points in the flow field because every
sphere occupies the position of the trailing stagnation point of the
previous sphere. In the body-centred cubic porous medium, on the
other hand, every sphere possesses leading and trailing stagnation
points that are accessible to the flow field. This is because the
presence of the body-centred sphere causes a gap between the
spheres at the corners of the BCC unit cell. The considerations
outlined above indicate that very different extensional flow behav-
iour may be expected in the two cells.

The two flow geometries both possess repeated expansions and
contractions in cross-sectional area, which can produce cyclic
transient extensional flow. Using the known geometry of the flow
cells, the cross-sectional area of the pore-space, A, was calculated as
a function of position through each cell. This value was divided by
the average cross-sectional area of the pore-space, �AA (=/·total
cross-sectional area of porous media), to obtain a dimensionless
value. Since the flow velocity at any point in the cell must be in-
versely proportional to A the dimensionless flow velocity is given
by m�=A�/A. From the dimensionless flow velocity dimensionless
values for the rate of shear and extensional strain due to variations
in the pore-space can be estimated.

Assuming a Poiseuille type flow between the surfaces of adja-
cent spheres the dimensionless shear rate is given, to a first order
approximation, by m�/r, where r is half the distance between the
adjacent surfaces. The average value of r at any point in the porous
media can be estimated from the value of the cross-sectional area of
the voids at that point. The formula used to estimate a dimen-
sionless value for r is given by

r � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A= �AAð Þ

n

r

ð9Þ

where n is the number of spheres that occupy the cross-section of
the porous medium at the point of interest.

The dimensionless rate of extensional strain in the porous
media due to the variation in the cross-sectional area of the pore
space is given by the derivative of m� with respect to position.

Figures 3 and 4 show the average shear strain rate and the
average extensional strain rate, respectively, as a function of posi-
tion in both the SC and the BCC flow cells. In both cells the local
extension rate can be much greater than the superficial rate (based
upon the superficial velocity), which has a dimensionless value of 1
(Eq. 8). The figures indicate that both the shear and extensional
strain rate may be greater in the pores of the SC cell than the BCC
cell due to the more dramatic changes in the cross-sectional area of
the pore-space. However the rotation introduced by simple shear
components in the flow will hinder the accumulation of molecular
strain due to the extensional components so the combined inter-
pretation of Figs. 3 and 4 is extremely complicated. Normally the
shear thinning effects associated with the complex simple shear
flows illustrated in Fig. 3 would lead to obfuscation of dilatant
extensional effects. In the present study we use highly dilute well-
characterised solutions in viscous solvents (Boger fluids), substan-
tially removing the variation in the simple shear contribution to the
flow resistance.

Polymer solutions Dilute solutions of mono-disperse atactic
poly(styrene) in di-octyl phthalate (a-PS in DOP) were employed in
the experiments. DOP is a viscous, low molecular weight, solvent of
viscosity gDOP=0.04 Pa.s (Durrans 1971). The h-temperature for
the a-PS/DOP system is 22 �C (Berry 1967).

Three a-PS samples of molecular weights Mw=6.9·106,
Mw=8.5·106 and Mw=10.2·106 were used in the experiments. The
samples, all supplied by Polymer Laboratories, were closely

Fig. 3a,b Average dimensionless shear rate in the pores, as a
function of position through: a simple cubic porous media; b body
centred cubic porous media
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monodisperse, having polydispersity indices, Mw/Mn, of 1.15, 1.2
and 1.17, respectively. Solutions were prepared in concentrations
between 0.005 wt% and 0.03 wt%. These solutions were identical
to those used previously to study the flow around single and double
spheres (Haward and Odell 2003). The solution temperatures were
measured prior to experiment to be 22±1 �C.

An estimate of s for the polymer solutions was determined from
experiments on 0.01% solutions of a-PS in DOP using a new
technique called ‘‘oscillatory extensional rheometry’’, in which a
small volume of fluid is repeatedly oscillated through the stagna-
tion point of a cross-slot device (Odell and Carrington 2001). The
molecular weights tested were Mw=6.9·106 and Mw=10.2·106
and the solutions were, in fact, identical to those studied here. The
intensity of birefringence was measured as a function of strain rate
in the oscillatory cross-slots and the critical strain rate, �_c=1/s, of
each solution was determined from the points of inflection on the
birefringence vs strain rate curves. Such experiments are thought to
give reliable estimates of the Zimm relaxation time

s, including hydrodynamic interactions. The estimates of s for
the a-PS solutions, including a linear extrapolation for the
Mw=8.5·106 sample, are shown in Table 1, together with calcu-
lated values for the Zimm relaxation time, intrinsic viscosities cal-
culated from the Mark-Houwink equation and values of c*.

Our estimate of c* concentration was made on the assumption
of each molecule occupying the volume of a cube of dimension 2Rg,
i.e.

c� ¼ Mw

NA 2Rg
� �3 ð10Þ

where Rg represents the equilibrium radius of gyration and NA is
Avogadro’s number. This assumption yields a considerably lower
estimate of c* than the common assumption of each molecule
occupying a sphere of radius Rg, (e.g. Graessley 1980).

From our conservative estimates of c* given in Table 1 it can be
seen that our experimental concentrations lie in the range c*/
42<c<c*/7. For all but our highest experimental concentrations,
c<c*/10. For this reason we consider our test solutions to be highly
dilute.

From the values of [g] given in Table 1, calculated from the
Mark-Houwink coefficients for a-PS in DOP, it can be shown that
the relative viscosities of our test solutions lie in the range
1.01<grel<1.08. This indicates that our solutions should not be
greatly affected by shear flow and could be expected to behave as
non-shear thinning Boger fluids.

Wall effects Wall effects are an unavoidable complication associ-
ated with any flow experiment of this kind, as it is impossible to
construct infinite test cells. Packing of the test cells with crystallo-
graphic arrays was extremely difficult even with the limited size of
the apparatus. However, it should be noted that the ratio of flow
cell to sphere dimension in the present experiment is larger than in
various related articles, notably Saez et al. (1994) and Haas and
Durst (1982), the cross-section of whose porous media comprised a
single regular unit cell. If we are to perform and learn from such
experiments, wall effects have to be accepted though, of course,
minimised wherever possible. Assuming a Poisseuille type flow
distribution across the flow cell it is clear that the flow velocity (and
therefore De) at the flow cell walls will be low in comparison to the
core region of the flow cell. Hence extensional flow effects should
not dominate the behaviour at the walls. More likely to dominate
the flow behaviour at the walls, and other surfaces, is simple shear,
the effects of which should be minimised in our experiments by the
use of what are effectively Boger fluids. These considerations
indicate that flow effects observed in our test cells should not be
dominated by the walls of the test cells.

Results

Figure 5a shows the resistance coefficient as a function
of Reynolds number for pure DOP and a 0.02% solu-
tion of Mw=6.9·106 a-PS in DOP in the regularly
packed porous media. The data points for DOP in both
the SC and the BCC porous media obey the Ergun
equation (Eq. 5). The BCC porous medium has Ergun
coefficients of A �203 and B �6, reasonably close to the
values suggested by McDonald et al. (1979) and Zick
and Homsy (1982). The Ergun coefficients for the SC
porous medium, on the other hand, are significantly

Fig. 4a,b Average dimensionless strain rate in the pores, as a
function of position through: a simple cubic porous media; b body
centred cubic porous media

Table 1 Estimated Zimm relax-
ation times, theoretical
values for the intrinsic viscosi-
ties and c* for a-PS/DOP
solutions

a-PS molecular weight 6.9·106 8.5·106 10.2·106

Experimental relaxation time, s (ms) 2.00 2.75 3.60
Calculated Zimm relaxation time (ms) 1.08 1.49 1.95
[g] (Mark-Houwink), cm3g)1 210.1 233.2 255.5
c*(wt%) 0.26 0.23 0.21
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higher than expected (A �764, B �17). We believe that
this is due to a non-uniform flow distribution through
the SC array caused by the high porosity and uninter-
rupted channels in the direction of flow, i.e. the flow may
be concentrated along the flow cell axis, which would
drive the resistance coefficient up. Hass and Durst (1982)
report similar variations in the flow resistance between
SC and orthorhombic cells.

The resistance coefficients displayed by the 0.02%
solution of Mw=6.9·106 a-PS in DOP in Fig. 5a are
typical of those observed in porous media flow of flexible
polymers see e.g. Kulicke and Haas (1984) and Saez
et al. (1994). The polymer solution shows ‘‘pseudo-
Newtonian’’ behaviour at low Re but above a critical
Reynolds number there is a non-Newtonian increase in
the resistance coefficient.

In order to compare the polymer curves in Fig. 5a
with each other, Fig. 5b shows the specific viscosity, gsp,
of the fluid in each flow cell as a function of the super-
ficial Deborah number, Desup, based upon the Zimm
relaxation time; see Experimental section above. It is
clear from Fig. 5b that Eq. (7) yields extremely low
values for the Deborah number in the context of the

coilMstretch transition theory. The Deborah number for
the viscosity increase in Fig. 5b is a factor of �100 lower
than the critical Deborah number for polymer extension
(�0.5) predicted by Hinch (1977). However, there is
clearly an uncertainty associated with the definition of
the Deborah number inside a porous medium because
the strain rate will depend upon the position inside the
porous matrix. For a given superficial flow velocity there
may be positions in the porous matrix where the Deb-
orah number is considerably higher than the value re-
turned by Eq. (7).

A surprising result shown in Fig. 5b is that the spe-
cific viscosity in the SC cell rises to a significantly higher
plateau value than in the BCC cell. Since the SC cell
contains no trailing stagnation points but the BCC cell
contains numerous trailing stagnation points this result
is contrary to prior expectations based upon the work of
Dyakonova et al. (1996) and Haward and Odell (2003).

Figure 6a,b shows the specific viscosity as a function
of Desup for solutions of various concentration of
Mw=6.9·106 a-PS in DOP in the SC and the BCC flow
cells, respectively. As the polymer concentration in-
creases, the plateau in specific viscosity increases
approximately proportionally in both porous media

Fig. 5 a Resistance coefficient as a function of Re in the simple
cubic and body centred cubic porous media flow cells for pure DOP
and for a 0.02% solution of Mw=6.9·106 a-PS in DOP. b Specific
viscosity as a function of Desup, derived from the data of a

Fig. 6a,b Specific viscosity as a function of Desup for solutions of
Mw=6.9·106 a-PS in DOP in: a simple cubic porous media; b body
centred cubic porous media
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cells. For any given polymer concentration the plateau
in specific viscosity is significantly higher in the simple
cubic than in the body centred cubic, as also observed in
Fig. 5b.

Figure 7a,b shows the specific viscosity as a function
of Desup for solutions of Mw=10.2·106 a-PS in DOP in
the SC and the BCC flow cells, respectively. Non-
Newtonian effects which, within experimental uncer-
tainty, scale with concentration are observed at
concentrations as low as 0.005%, or �c*/40. As before,
the critical values of Desup are similar in both flow cells
and the specific viscosity consistently reaches higher
plateau values in the SC porous media.

Figure 8a,b shows a comparison between different
molecular weight polymer samples at 0.01% concen-
tration in the SC and BCC arrays, respectively. As the
polymer molecular weight increases the solutions behave
more-or-less as expected. For a given polymer concen-
tration the value of gsp generally increases with Mw in
both the low and high Desup regimes.

The similarities and differences between the behav-
iour observed in the two regular arrays remain consis-
tent over the entire range of a-PS concentration and
molecular weight studied. Although the viscosity

increase occurs at a similar superficial Deborah number
in both flow cells, and the general behaviour is similar, a
higher value of specific viscosity is consistently recorded
in the SC cell. This suggests that a-PS molecules gener-
ally accumulate a greater strain in the SC array than in
the BCC array, or that a greater proportion of molecules
become stretched.

Discussion

The high dilutions of the solutions (c� c* in all cases)
and the approximate proportionality of viscosity effects
with concentration suggest that the formation of
entanglement networks is unlikely. We believe that the
viscosification mechanism in the porous media is due to
the coilMstretch transition as envisaged by de Gennes
(1974) and Hinch (1977) and observed experimentally in
idealised stagnation point extensional flows (Miles and
Keller 1980; Keller and Odell 1985).

It was surprising to find that the dilute a-PS/DOP
solutions could achieve considerably higher values of
specific viscosity in the simple cubic porous medium
than in the body centred cubic porous medium. The

Fig. 7a,b Specific viscosity as a function of Desup for solutions
of Mw=10.2·106 a-PS in DOP in: a simple cubic porous media;
b body centred cubic porous media

Fig. 8a,b Specific viscosity as a function of Desup for 0.01%
solutions of a-PS of various molecular weights in DOP in: a simple
cubic porous media; b body centred cubic porous media
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expectation prior to the experiment was that the trailing
stagnation points in the BCC flow cell would contribute
greatly to the accumulation of polymer strain in the cell,
while the lack of trailing stagnation points in the SC cell
would mean that polymer stretching would be limited.
The fact that the apparent extensional viscosity reached
higher values in the SC array than in the BCC array may
be an indication that a strong transient extensional flow
field can arise in the varying cross-section pore-space of
the SC array, despite the absence of trailing stagnation
points in the flow cell.

For the flow of a-PS/DOP solutions around two
axially aligned spheres it has been shown that highly
viscous oriented strands of polymer emanating from the
trailing stagnation point of the leading sphere may
screen the flow around the trailing sphere (Haward and
Odell 2003). This leads to a reduction in viscous force
experienced by the trailing sphere, relative to the leading
sphere, and a corresponding reduction in the level of
birefringence, i.e. molecular strain, in the wake of the
trailing sphere. If this result can be extrapolated to a
third or fourth sphere in line it can be imagined that the
viscous force and molecular strain could be further re-
duced with successive spheres.

In the BCC porous medium every sphere in the array
is situated directly downstream of the trailing stagnation
point of the preceding sphere. It can therefore be seen
that many of the trailing stagnation points in the BCC
array may be screened from the flow field by viscous
oriented strands emanating from the trailing stagnation
points of previous spheres and, therefore, may not play a
significant role in increasing the extensional viscosity. It
can now be pictured that the extended macromolecules
that are screening the trailing stagnation points must be
travelling through the pores of the array. As such the
fluid situated between successive aligned spheres may
effectively be stagnant so the variation in cross sectional
area of the pores could become the most important
component in the extensional flow field.

It seems that the manner in which spheres pack
tightly together may, in one way or another, effectively
remove the trailing stagnation points from the flow field.
In the simple cubic structure the spheres themselves
obstruct the trailing stagnation points. In the body
centred cubic the stagnation points are screened in a
similar way to that observed in flow around two aligned
spheres (Haward and Odell 2003). Porous media mod-
elled by randomly packed beds of spheres will mainly
consist of very close packed structures (face-centred and
hexagonally close packed unit cells). Dislocations may,
at most, result in sporadic occurrences of simple cubic
and body centred cubic unit cells. This may be an
explanation for the result of Haas and Durst (1982) who
found the specific resistance coefficient of a randomly
packed bed of spheres could be calculated by a linear
superposition of the specific resistance coefficients of two

regularly packed beds of spheres, neither of which con-
tained trailing stagnation points.

Real porous media in sedimentary layers may well
present effective stagnation points at bifurcations and
pore entrances and, in this respect, may not be well
modelled by closely packed beds of spheres or ballotini.

Another surprising result from this study was the low
value of apparent Deborah number at which the non-
Newtonian viscosity increases occurred in the a-PS/DOP
solutions. Although it may appear that the results ob-
tained from the a-PS solutions in the regular arrays do
not fully obey the coilMstretch transition theory it
should be mentioned again that the definition of Desup in
porous media (Eq. 7) is uncertain due to the complex
geometry of the flow field.

Since stagnation points do not seem to play the major
role in the flow fields of our crystallographic porous
media we propose that modifications should be made to
Eq. (7) for Desup. Following the method of Haas and
Durst (1982), Fig. 4 shows the local extensional strain
rate in the pores of the porous media may increase the
local Deborah number by around an order of magnitude
over the value returned by Eq. (7). However, this still
leaves the apparent Deborah number based on the
Zimm relaxation time �0.05, about one-tenth of the
expected value.

Since DOP at room temperature is a theta solvent for
a-PS, the a-PS molecule is expected to have a non-free
draining conformation at equilibrium. Upon stretching
the molecule is therefore expected to increase its relax-
ation time from sZimm to sRouse (or more properly the
Zimm relaxation time in the absence of hydrodynamic
interactions within the coil). The increase in the molec-
ular relaxation time is expected to cause hysteresis in the
coilMstretch transition, as predicted by de Gennes
(1974).

As explained in the Background section, dumbbell
simulations do not generally show accumulation of
strain in time-symmetrical extensional flows, even with
de Gennes type hysteresis incorporated. Dyakonova
et al. (1996) speculate on mechanisms that can break the
symmetry, even at low Reynolds number. However, re-
cent simulations by Odell and Carrington (2001) using
the Chilcott-Rallison FENE dumbbell model (Chilcott
and Rallinson 1988) have shown that molecules exhib-
iting coilMstretch hysteresis may be able to accumulate
strain under such conditions without the need for an
asymmetric flow field, but only for a modest range of
De>0.5 and strongly dependent upon the initial start-up
conditions.

In the BCC porous medium, periodic variations in
the total cross-sectional area of the pore-space are
clearly equal and opposite. However, expansions and
contractions from pore to pore are not necessarily
symmetrical since, following each contraction, a
streamline or fluid element has a choice of pores into

524



which the flow can expand, and vice-versa. In the SC
porous medium, on the other hand, flow from pore to
pore probably does result in periodic equal and opposite
contractions and extensions of fluid elements. In any
case it seems evident that polymers can stretch in the
pore-space of the regular porous media since large in-
creases in the specific viscosity have been observed in the
SC porous media, which is time-symmetric and in which
there are no trailing stagnation points present.

One possible explanation for the apparent molecular
extension at low values of Desup is that Poiseuille-like
flow between adjacent spheres significantly increases the
local strain rate, although we believe this may only ac-
count for a factor of �2.

A second possibility is that in porous media flows
non-equilibrium molecular conformations (or the
appearance of pre-stretched polymer molecules) are
important; see, e.g. Perkins et al. (1997). If a pre-stret-
ched polymer molecule presents itself at a pore entrance
the appropriate Deborah number should be based upon
the relaxation time without hydrodynamic interactions
(sRouse), which is considerably greater than the Zimm
relaxation time with which our experimental Deborah
numbers are calculated. An important difference be-
tween flow around spheres and idealized extensional
flows with stagnation points compared with porous
media flows is that, in cyclic contracting flows such as
porous media, molecules have many opportunities to
explore non-equilibrium conformations at pore en-
trances. The sporadic occurrence of pre-stretched mol-
ecules would also serve to reduce the strain required to
achieve a high degree of stretching. Once extension of
molecules begins it becomes a runaway process resulting
in highly strained molecules. This could explain the
effective molecular extension at low Deborah number in
porous media and has significant relevance to enhanced
oil recovery applications.

Assuming that the a-PS molecules can accumulate
strain due to the varying cross sectional area of the pore-
space in the porous media, and that the trailing stag-
nation points in the BCC cell are effectively screened
from the flow field, then Fig. 4 shows that the exten-
sional strain rate in the pores of the SC cell may in fact
reach a significantly greater periodic maximum than in
the BCC cell. Therefore, for a given superficial flow
velocity, it may be expected that a greater percentage of
the molecular weight distribution could become stret-
ched in the SC cell than in the BCC cell, possibly

accounting for the differences in the plateau values of
specific viscosity observed in the two cells.

The observed magnitude of extension thickening
would depend upon both the degree of molecular
stretching and the proportion of molecules undergoing
high strains. Stagnation points certainly yield high
strains, but typically as narrow strands of stretched
material involving only a small proportion of the whole
solution. Contraction stretching in the pores, on the
other hand, may yield lower molecular strains, but in-
volves the whole solution.

Conclusions

We have examined dilute solutions of monodisperse
atactic poly(styrene) in DOP in two regularly packed
porous beds: body centred cubic which contains trailing
stagnation points and simple cubic which is devoid of
trailing stagnation points. By measuring the pressure
difference across the porous beds as a function of the
flow velocity we have been able to estimate the non-
Newtonian increases in specific viscosity as a function of
the superficial Deborah number.

Contrary to expectations, a greater increase in spe-
cific viscosity was observed in the simple cubic array
than in the body centred cubic array. We explain this
result as being due to a greater periodic extensional
strain rate through the pores of the simple cubic array
and also to the possibility that the trailing stagnation
points in the body centred cubic array may be screened
from the flow field by strands of extended polymer. The
a-PS molecules may be able to accumulate strain in the
transient periodic extensional flow field in the pores of
the arrays as DOP is a theta solvent for a-PS and
therefore hysteresis is to be expected in the coilMstretch,
extension/relaxation process. This may occur at low De
due to the presence of pre-stretched, non-equilibrium,
molecular conformations being present at pore en-
trances and having the Rouse relaxation time.

Considering the high dilution of the solutions used in
the study, we see no reason to attribute the increase
in flow resistance to anything other than an increase in
extensional viscosity of the solutions due to the
coilMstretch transition.
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