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In this paper I will discuss the phenomenon of neutrino masses and how the mixing of flavor
and mass eigenstates leads to oscillations. A theoretical treatment of neutrino mass eigenstates
will first be brought up to differentiate between the possibilities of neutrinos being Majorana and
Dirac particles. This paper will explain the theory behind neutrino oscillations and will motivate
discussion with the solar neutrino problem.

1. INTRODUCTION

The standard model of particle physics divides parti-
cles up into three categories: quarks, leptons, and force
carrying bosons. The first two categories make up the
matter that we observe and are further divided into three
generations and six flavors each. Each generation con-
sists of two flavors, and there are many similar proper-
ties shared by the different generations. The three dif-
ferent generations of leptons are electronic, muonic, and
tauonic generations. Each of these generations consists
of two flavors: a particle (electron, muon, or tauon) and
a corresponding neutrino. Unlike their counterparts, the
neutrinos all carry zero electric charge and have very lit-
tle mass, only noticeably interacting with matter through
the weak nuclear force.

In addition to there being six flavors of neutrinos, each
flavor has an antiparticle. In the case of neutrinos, which
do not have charge, the only property that differenti-
ates between neutrinos and antineutrinos is their helic-
ity. 1. It is from this helicity that we observe that only
left-handed neutrinos and right-handed antineutrinos in-
teract with the weak force. This fact, as I will explain
shortly, makes the question of determining the mass of
the neutrinos interesting and will lead to a discussion of
neutrino mass oscillations.

The question of the neutrino’s mass is an important
one in much of modern astrophysics and particle physics,
as knowing its mass will reveal fundamental information
about the nature of the neutrino and will let us discover
new things about the state of the early universe.

2. MASSLESS NEUTRINOS

Since left-handed fermions couple with the left-handed
components of particles, while right-handed fermions
couple with right-handed components, we find that elec-
tron neutrinos interact with the left-handed components
of electrons, forming a doublet, while electron antineu-
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1 The helicity of a particle, given by h = Ŝ · p̂, is the projection of

the particle’s spin onto its momentum

trinos interact with the right-handed components of
positrons, also forming a doublet. We therefore expect
helicity to differentiate the behavior of neutrinos and an-
tineutrinos in weak interactions. However, we consider a
neutrino traveling at subluminal speeds and an observer
traveling alongside of it. If the observer is traveling slower
than the neutrino, it will observe a momentum of ~p, a spin
of ~S and a helicity of h. However, when the observer in-
creases its speed to faster than that of the neutrino, the
momentum will appear to switch direction, while the spin
will stay the same. With a momentum now of −~p and the
same spin, the helicity will switch to −h, rendering the
neutrino an antineutrino from the observer’s reference
frame. However, since the neutrino and the antineutrino
interact differently, the observer would expect to see dif-
ferent interactions in both reference frames. This appears
to form a contradiction, as the laws of physics should be
the same in all reference frames.

The original response to this was to require that neu-
trinos be massless. If neutrinos have no mass, then they
must travel at the speed of light. Because you now cannot
switch to a faster, valid reference frame, this adjustment
prevents this apparent contradiction from occurring.2

However, recent observations such as neutrino oscilla-
tions provide evidence that neutrinos must have masses,
while several beta decay experiments have shown that
if neutrinos do have masses, they must be very small in
comparison to other standard model particles.

3. MASSIVE NEUTRINOS

3.1. Majorana vs. Dirac Particles

To discuss the nonzero masses of neutrinos, it is first
necessary to differentiate between two different types of

2 Note that this same argument can be used to claim that electrons,
muons, and tauons should be massless if we take the helicity to
be a valid quantum number. The standard resolution to this
problem usually calls for some sort of beyond the standard model
physics; in particular, the most common solution involves the
Higgs particle giving other particles mass. The neutrino was
largely suspected to be massless also because its mass was is so
light
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particles. The first type is known as a Majorana particle
and describes a particle that is the same as its antiparticle
(this includes photons, for example). The second type is
known as a Dirac particle, and describes the more famil-
iar case in which particles and antiparticles are distinct,
such as for electrons. Since it is not currently known
whether neutrinos are Majorana or Dirac particles, it is
necessary to discuss both cases, as they lead to slightly
different results.

The appendix contains a more mathematical treatment
of the matter that branches slightly beyond the back-
ground expected by 8.06. For now, it is sufficient to say
that a Majorana neutrino is a superposition of a Dirac
neutrino and antineutrino of equal mass. This causes the
two different types of neutrinos to behave slightly dif-
ferently due to a phase that can be introduced in the
superposition of the two Dirac superpositions of the Ma-
jorana neutrino. This difference is manifested in a phase
factor discussed later in this paper.

3.2. Finding the Mass

One important difference between the two types of neu-
trinos is that they may decay differently. In particu-
lar, materials such as germanium that undergo double
beta decay may typically emit two neutrinos in the pro-
cess. However, if neutrinos are Majorana particles, there
should be a small probability that the reaction will occur
without releasing any neutrinos. What happens here is
that the neutrino released from one beta decay may be
absorbed into a nucleon and induce a second beta de-
cay. Typically this reaction would require the nucleon to
absorb an antineutrino, and therefore is not possible if
neutrinos are Dirac particles, but if neutrinos are Majo-
rana particles, there should be a small chance that this
will occur.

Since the nature of the neutrino determines its decay
physics, we can theoretically use measurements of the de-
cay of nuclei to determine the mass of the neutrino. Re-
gardless of which type of particle neutrinos are, such ex-
periments should yield similar results, since they should
both be very small. However, if neutrinos are Majorana
particles, the mass should be slightly greater, due to a
positive correction term in the matrix element describ-
ing this reaction.

While the exact masses of neutrinos have not yet been
determined, there are limits on the masses of each of
the neutrinos, as shown in table I This table shows the
upper bounds on these neutrinos’ masses. Most of the
bounds were found from studying the electron emission
spectra from beta-decaying nuclei. The values presented
in table I are the average masses of flavor eigenstates of
neutrinos. As I will discuss shortly, the flavor eigenstates
and mass eigenstates of neutrinos are not the same; flavor
eigenstates are superpositions of the three different mass
eigenstates and vice versa, meaning that if a neutrino is
in a definite flavor state, as they are in the experiments

〈m〉
νe 225 eV

νµ 0.19 MeV

ντ 18.2 MeV

TABLE I: Upper bounds on neutrino flavor mass expectation
values, from the Particle Data Group. These bounds hold for
both Majorana and Dirac theories of neutrinos

that placed the limits, the masses will vary according
to how the mass eigenstates are mixed. This process of
neutrino masses changing over time is known as neutrino
oscillations.

4. NEUTRINO OSCILLATIONS

4.1. Flavor and Mass Eigenstates

There are currently three known flavors of neutrino,
the electron, µ, and τ , corresponding to the three gener-
ations of leptons. Experiments have also observed three
different mass eigenstates that neutrinos may assume,
denoted by ν1, ν2, and ν3. The three flavor eigenstates
correspond to the different reactions that produce those
neutrinos, and differently flavored neutrinos all display
different properties, making them distinguishable. In
particular, weak interactions that produce electrons may
only produce electron neutrinos or electron antineutrinos.

We know that neutrinos exist largely through their
role in conserving energy—reactions such as beta decay
involve the nucleus of an atom reducing its energy by
an amount greater than is seen in the emitted electron,
strongly hinting that a neutrino must be emitted to carry
away the rest of the energy. Additionally, we can de-
termine the flavor of the emitted neutrino by trying to
conserve lepton flavor number, where particles of a par-
ticular generation carry a flavor number of +1 while their
antiparticles carry a flavor number of −1. In the example
of beta decay above, we know that the neutrino emitted
is an electron antineutrino, since the antineutrino’s lep-
ton flavor number must balance with the number of the
emitted electron.

As we have seen through experiments that lead to co-
nundra such as the solar neutrino problem—which we
will discuss later—the mass eigenstates are eigenstates
of the Hamiltonian describing a free neutrino, but the
flavor eigenstates—eigenstates of the weak interactions—
are not. However, when a reaction occurs that produces
a neutrino, we can know for sure what their flavor is, but
not what their mass is. Since the emitted neutrinos are
not at a definite mass eigenstate, they are free to oscil-
late between all of the possible states, as per the laws of
quantum mechanics.
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4.2. Mixing of the Two-State System

Since the tauon and ντ are both relatively massive3

(the tauon is massive compared to other leptons, while
ντ is massive compared to the other neutrinos), both par-
ticles are rarely seen in nature under ordinary circum-
stances, as they quickly decay into lower energy states.
For this reason, it is instructive to first neglect the tau
generation and begin our discussion of neutrino oscilla-
tions with a study of the simpler two-state system, ne-
glecting the effects of ντ . Similarly, since ν3 is so much
more massive than the other mass eigenstates and is most
commonly seen in ντ , we can neglect ν3 in our early eval-
uations as well.

4.3. The Mixing Matrix

Making these simplifications, we encounter a system of
two flavor eigenstates, νe and νµ along with their energy
eigenstates ν1 and ν2. Since the flavor eigenstates are
all orthonormal and span the basis of our model system
(and the same is true for the mass eigenstates), we can
write each flavor eigenstate as a superposition of mass
eigenstates.

|νe〉 = U11 |ν1〉+ U12 |ν2〉 (1)
|νµ〉 = U21 |ν1〉+ U22 |ν2〉 (2)

where |〈ν1|νe〉|2 = |U11|2 represents the probability of the
electron neutrino being observed with a mass of ν1, and
so on. Since the |ν2〉 state is of the same energy for both
the |νe〉 state and the |νµ〉 state, both flavor eigenstates
are equally likely to be in that state. For this reason, we
have the condition that |U12|2 = |U21|2. By conservation
of probability, we are also left with the condition that
|U11|2 = |U22|2.

As the notation suggests, a convenient notation for this
system relies on the matrix representation and is com-
monly written as,(

νe
νµ

)
=

(
U11 U12

U21 U22

)(
ν1
ν2

)
(3)

=

(
cos θ12 sin θ12
− sin θ12 cos θ12

)(
ν1
ν2

)
(4)

We may call this θ-dependent matrix Rθ for shorthand.
The use of cos and sin was chosen for this representation

3 It technically is not correct to call ντ massive, since it is a weak
eigenstate of the neutrino rather than a mass eigenstate, so it
does not actually make sense to talk about its mass. By referring
to the mass of ντ , I am actually referring to its mass expectation
value, coming from a combination of the mass eigenstates and
the probability of ντ occupying each of those states

to enforce normalization, while the angle θ12 is known
as the neutrino mixing angle between those two mass
eigenstates and represents how likely a given neutrino
is to be found in a particular eigenstate. The signs of
matrix elements were chosen to make the matrix have
unit determinant, a condition that we require for rotation
matrices such as this.

Alternatively, we can solve equation 4 for the mass
eigenstates and find that,(

ν1
ν2

)
= RTθ

(
νe
νµ

)
(5)

When discussing the oscillations of neutrino flavors
that follow from this, we find that the spacial variation
of the flavor states can be described by,

i
d

dx

(
νe
νµ

)
=

1
2E

M2

(
νe
νµ

)
(6)

where E is the energy of the neutrino and the matrix M2

is given by,

M2 =
1
2
Rθ

(
−∆m2 0

0 ∆m2

)
RTθ (7)

4.3.1. The MSW Effect

When neutrinos pass through materials, the presence
electrons in the material may alter the observed mix-
ing angles. Since any given material will contain a large
number of electrons and nuclei, some of the neutrinos
will scatter as they pass through the material. Electron
neutrinos may scatter off of electrons via exchange of W
bosons, while any type of neutrino may scatter off of
electrons or nucleons via the exchange of Z bosons. This
effect is the eponymous Mikheyev-Wolfenstein-Smirnov
effect, generally known as the MSW effect, and must be
accounted for when determining the weak mixing angles
for neutrino oscillations. This effect is particular impor-
tant in observing solar neutrinos.

More quantitatively, the neutrinos passing through a
material with electron density Ne will experience an ef-
fective increase in potential of

Vνe =
√

2GFNe (8)

where GF = 1.166× 10−5GeV−2 is the Fermi constant.
We can account for this change in potential by altering

the matrix M2 from equation 7 as,

M2
MSW = M2 + E

(
V 0
0 −V

)
(9)

By considering all of the materials that the neutrinos
must pass through, we can therefore correct our mass
difference and observed mixing angles to account for the
neutrinos’ actual values.
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4.3.2. Mass Differences

Considering the relativistic energy of a neutrino trav-
eling through free space, we have the equation, E2 =
m2 + p2 where E is the energy of the particle, m is its
mass, and p is the magnitude of its momentum. Solving
this equation for energy and assuming that the momen-
tum is large compared to the rest energy, we arrive at
the relation E = p+ m2

2p . Taking the change of energy as
the neutrino oscillates from one flavor state to another,
we have that

∆E =
∆(m2)

2E
(10)

On a different note, we may consider the probability
of a neutrino oscillating as it travels through space. In
this paper, we will follow an electron neutrino traveling
through space and find the probability that it has turned
into a muon neutrino after a given flight length.

Earlier in our discussion of neutrino oscillations, we
found that a muon neutrino is in a superposition of mass
eigenstates as described by equation 4. The muon state
of a particle traveling at time t is therefore given by,

|νµ〉 = cos θ12 |ν2〉 − sin θ12 |ν1〉 (11)

We also know the mass eigenstates in terms of the fla-
vor eigenstates, as given by equation 5. Putting these
equations into Schrödinger’s equation we find that for a
particle that is initially an electron neutrino in the |ν1〉
state,

|ν1(t)〉 = − sin(θ12)e−iE1t (12)
|ν2(2)〉 = cos(θ12)e−iE2t (13)

Combining equations 11, 13, and 13, we can find that
the probability of the electron neutrino oscillating into a
muon neutrino after a time t has elapsed is,

Pνe→νµ(t) = | 〈νµ(t)|νµ(t)〉 |2 =
[
sin(2θ12) sin(

E2 − E1
2

t)
]2

(14)
Now we can substitute in equation 10 into equation 14

while noting that, for neutrinos traveling near the speed
of light, the distance traveled x = t. This yields the
equation

Pνe→νµ(x) =
[
sin(2θ12) sin(

∆(m2)
4E

x)
]2

(15)

This equation reveals the length scale for neutrino oscil-
lations,

L =
4E

∆(m2)
(16)

the distance after which a given neutrino is most likely
to be found in the muon state.

By measuring neutrinos from a source that is produc-
ing them at a known and constant flavor at a certain
distance away, we can determine how many of the neu-
trinos had changed state at a given energy and therefore
solve for the quantity ∆(m2).

Equation 16 demonstrates that neutrino mixing (and
therefore oscillations) cannot occur if neutrinos do not
have mass, and so observations of neutrino oscillations
provide strong evidence that neutrinos are, in fact, mas-
sive.

4.4. Mixing of the Three-State System

Now that we have studied how neutrinos oscillate in
a two-state system, we can perform a similar analysis to
explore the three-state case.

4.4.1. The MNS Matrix

Again, we begin with a system of equations relating
the flavor and mass eigenstates.

|νe〉 = U11 |ν1〉+ U12 |ν2〉+ U13 |ν3〉 (17)
|νµ〉 = U21 |ν1〉+ U22 |ν2〉+ U23 |ν3〉 (18)
|ντ 〉 = U31 |ν1〉+ U32 |ν2〉+ U33 |ν3〉 (19)

We can write this equation in terms of a matrix similar
to what we did in developing the oscillation matrix in
equation 4. In this case, there are three relevant mixing
angles, θ12, θ23, and θ13, relating to the the probabilities
of a neutrino of a given flavor being observed in a given
mass eigenstate. With the addition of a phase factor
δ, we can describe the three-state neutrino mixing phe-
nomenon using the mixing matrix U given by considering
two-state rotations from ν1 to ν2, ν2 to ν3, and ν1 to ν3.
These three rotation matrices are given respectively by, cos(θ12) sin(θ12) 0

− sin(θ12) cos(θ12) 0
0 0 1

 (20)

 1 0 0
0 cos(θ23) sin(θ23)
0 − sin(θ23) cos(θ23)

 (21)

 cos(θ13) 0 sin( θ13)e−iδ

0 1 0
− sin(θ13)eiδ 0 cos(θ13)

 (22)

Multiplying these three matrices together gives us the
total mixing matrix,

U =

 c12c13 s12c13 s13e
−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13


(23)
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Here we use the standard notation where sij = sin(θij)
and cij = cos(θij). This matrix was first written by Maki,
Nakagawa, and Sakata, and so it is commonly known
as the MNS matrix for short4 . Using this matrix, we
commonly write the weak eigenstates as, νe

νµ
ντ

 = U

 ν1
ν2
ν3

 (24)

Additionally, since U is unitary, we can find the mass
eigenstates in terms of the weak eigenstates simply by
taking the conjugate transpose of U .

The phase factor δ is zero if neutrino oscillations are
to obey CP symmetry5. The inclusion of δ and how
it breaks CP symmetry is discussed in detail by H.
Nunokawa et. al [6] and goes beyond the scope of this
paper. However, a common explanation for the matter
dominance of the universe today is that CP symmetry is
broken through neutrino oscillations. For this reason we
include the factor of δ to account for this possibility. 6

Additionally, as we discussed at the beginning of this
paper, there is a slight variation between the case in
which neutrinos are Majorana particles and the case in
which they are Dirac particles. Since antineutrinos and
neutrinos are equivalent in the Majorana case, we can
say that a Majorana neutrino is in a superposition of of
states between a neutrino and an antineutrino, and so we
introduce the two phase factors α1 and α2 and multiply
U by an additional factor of eiα1/2 0 0

0 eiα2/2 0
0 0 1

 (25)

4 As a slight tangent, we have found that quarks—the fundamen-
tal particles that compose protons and neutrons as well as other
particles—also demonstrate a similar mixing phenomenon that
can be described by a matrix of nearly the same form. This ma-
trix was discovered by Cabibbo, Kobayashi, and Maskawa and
is known as the CKM matrix. In fact, Kobayashi and Maskawa
recently received a Nobel for their theory; there have been some
murmurings among the physics community as to why Cabibbo
was excluded from this honor. An important difference between
the CKM matrix and the MNS matrix is that the mixing an-
gles for quarks are significantly smaller, as the weak and flavor
eigenstates coincide significantly more for quarks than they do
for neutrinos.

5 CP symmetry is a combination of charge conjugation symmetry
(C) and parity symmetry (P). C symmetry means that the par-
ticle and the antiparticle behave the same. P symmetry means
that the particle behaves the same if you reverse all spacial coor-
dinates. CP symmetry means that the particle behaves the same
under both transformations simultaneously. Note that this does
not necessarily mean that the particle behaves the same under
each one individually. There is also a third type of symmetry
that commonly follows these two called T symmetry, which is a
symmetry of reversing the flow of time

6 We can see that δ gives us CP violation by noting that when we
set δ = 0 we find that equation 23 remains invariant under CP
transformations. This is not the case when δ is not equal to zero

Since equation 25 affects U as an overall phase (it acts
on all of U equally with a unit determinant), it does not
end up affecting the oscillations themselves. However, α1

and α2 becomes significant when considering other Ma-
jorana neutrino phenomena such as neutrinoless double
beta decay. α1 = α2 = 0 if neutrinos are Dirac particles.

From studying solar neutrinos, atmospheric neutrinos,
and nuclear reactor-born neutrinos, we can compare the
observed number of neutrinos of each flavor to the num-
ber produced to obtain values for the weak mixing angles
θ12 and θ23. Additionally, we can compare these mea-
surements to limits placed on observations of the cosmic
microwave background to place a limit on θ13. These ex-
periments have provided us with the values given in table
II.

θ12 33.9◦ ± 2.4◦

θ23 45◦ ± 7◦

θ13 < 10.3◦

TABLE II: Data from solar, atmospheric, and reactor neu-
trino oscillation experiments have provided us with rough val-
ues for the weak neutrino mixing angles, shown above

From these angles, we can determine the mixing ampli-
tude of each mass eigenstate with each weak eigenstate by
substituting these values of θij into the matrix in equa-
tion 23. These probabilities can be visualized as in figure
1.

FIG. 1: The approximate flavor contents of the mass eigen-
states. ν3 is made up nearly entire of νµ and ντ eigenstates;
the mixing with νe is too small to be shown in this figure

4.4.2. Mass Differences

By a similar analysis to what we did in our discus-
sion of the two-state system, we can similarly come upon
an equation relating the number of neutrinos that have
oscillated from one state to another to the difference in
the squares of the mass of the particles and the distance
traveled by the neutrinos. By fitting our observations
from the aforementioned oscillation experiments to our
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equations, we can find the mass square differences for
the three mass eigenstates.

For the three neutrino mass eigenstates, there are two
linearly independent differences to be calculated. These
can be found from solar and atmospheric neutrino obser-
vations and gives us values shown in table III.

∆(m2)12 8× 10−5 ± 0.6 eV2

∆(m2)23 2.4× 10−3 ± 0.6 eV2

TABLE III: The differences in the squares of the neutrino
masses. ∆(m2)12 comes from solar neutrino observations
while ∆(m2)23 comes from atmospheric neutrino observations

These values indicate that two of the masses are rela-
tively close together, while the third is far away. Because
these values are differences, they do not indicate which
mass is greater. By convention, we call ν1 the lower of
the two masses that are close to each other and ν2 the
higher of the two close masses, leaving ν3 to be the mass
that is either far above or far below the mass of the other
two neutrinos. As a result, we end up with two relative
mass distributions, known as the normal and the inverted
neutrino spectra, shown in figure 2

FIG. 2: The normal and inverted relative neutrino mass spec-
tra

Since the electron and the muon have relatively simi-
lar masses while the tauon is significantly more massive,
we intuitively expect the neutrinos to follow the same
general pattern—that is to say, we naturally want to say
that the mass that is far away from the other two is also
the heaviest mass. For this reason, we call the spectrum
on the left of figure 2 the “normal” spectrum and the one
on the right the “inverted” spectrum. Of course, this is
mostly just our intuition; with what is currently known,
both distributions are equally likely to reflect reality.

5. THE SOLAR NEUTRINO PROBLEM

Now that we have discussed the theory of neutrino os-
cillations, we can understand what was going on in the
experiment that initially motivated the study of neutrino
oscillations. Before the solar neutrino problem was en-
countered, neutrinos were widely considered to be mass-
less, as predicted by the standard model. However, this

problem has revolutionized the way we think about neu-
trinos as will soon be apparent.

5.1. The pp Chain

To begin discussion, it is important to examine the sun
as a source of neutrinos. The neutrinos created in the sun
are all initially electron neutrinos. While stars in general
may undergo a large number of neutrino-producing reac-
tion, the reaction that dominates solar mass stars such
as the sun is known as the pp chain.

The pp chain begins with two protons combining to
form a deuteron, releasing an electron neutrino (and ei-
ther releasing a positron or absorbing an electron in the
process). The deuteron then combines with another pro-
ton to form a 3He and a γ. From here, any of three
things may happen. The 3He may react with another
proton, yielding an α particle, a positron, and another
electron neutrino. Alternatively, the 3He may interact
with another 3He, forming an α and two protons, or the
3He may interact with an α, resulting in a 7Be and a γ.
The 7Be may then interact with an electron, resulting in
a 7Li and an electron neutrino, emit a positron and an
electron neutrino, or undergo a series of other reactions
that do not produce neutrinos.

Since the energies for each of these reactions can be
determined and the mass and temperature of the sun
can easily be approximated, we can easily estimate the
neutrino flux we expect to see coming from the sun.

5.2. The Davis Experiment and the Missing
Neutrinos

In 1968, Ray Davis performed an experiment to test
the theoretical predictions of the neutrino flux. For his
experiment, he set up a large vat of liquid chlorine, deep
in the Homestake mine in South Dakota to avoid back-
ground from cosmic rays. When a neutrino approaches a
chlorine atom, there is a chance that it will induce a beta
decay, turning the chlorine into an argon atom. Since the
probability of this happening was well-known at the time,
Davis set the tank up for several months and counted the
number of argon atoms in the tank at the end of the ex-
periment. From this number, he was able to work out
how many neutrinos must have been emitted from the
sun as a whole during that time period.

The number of neutrinos that Davis’s experiment mea-
sured was only about a third of the theoretical neu-
trino flux. Many other similar experiments including the
Kamiokande series in Japan as well as the Solar Neu-
trino Observatory (SNO) in Sudbury, Ontario, followed
Davis’s experiment, trying to measure the solar neutrino
flux. All of these experiments failed to measure the
expected amount; most of them also appeared to have
missed about two thirds of the neutrinos.
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Eventually SNO managed to solve this problem. Us-
ing D2O instead of H2O (using heavy water instead of
water), SNO was able to observe three different possible
reactions:

νe + d→ e− + p+ p (26)
νx + d→ νx + p+ n (27)
νx + e− → νx + e− (28)

where νx can be any flavor of neutrino. By monitoring
all three different reactions, SNO measured the expected
number of neutrinos. However, when it only looked at
the results from reaction 26, it only measured one third
of the expected number of neutrinos. This was the first
clue that neutrinos from the sun must be oscillating into
different flavors of neutrinos along their path to earth.

From these experiments, the modern theories of neu-
trino masses and neutrino oscillations were born.

6. CLOSING REMARKS

While the standard model predicts that neutrinos
should not have mass, experiments such as SNO’s mea-
surements of solar neutrinos have shown neutrinos ac-
tually behave as if they have mass eigenstates between
which they can oscillate. This discovery lead to the whole
theory of neutrino oscillations, as both their mass and
weak eigenstates oscillate alongside each other. Since
we know that neutrinos must be massive in order for
their mass eigenstates to oscillate, we also know that our
standard model view of neutrinos is incorrect. This dis-
crepancy signifies a need for beyond the standard model
physics in order to fully understand neutrinos. Many the-
ories arise, explaining how neutrinos may get their mass.
These lead into several complex and beautiful theories,
many of which—such as the Higgs mechanism—run deep
into heart of modern particle physics.

Appendix A: Majorana versus Dirac Neutrinos

Here we will mathematically discuss the different be-
haviors of Dirac and Majorana neutrinos to justify our
discussion earlier on.

Considering a two-component spinor ρ (that is, a vec-
tor whose components represent two different particles),
we can find the Lagrangian density 7 for a free spin- 1

2
spinor by considering the Klein-Gordon equation acting

7 The Lagrangian is a mathematical structure that describes the
dynamics of a particle. You can think of it as the difference
between the particle’s kinetic and potential energy, and it can
be used to fully describe the particle’s motion. The Lagrangian
density is simply the Lagrangian per unit volume and is useful
in describing fields.

on spinors of two spin- 1
2 Lorentz invariant particles to be:

L = −iρ†σµ∂µρ−
m

2
ρTσ2ρ+Hermitian Conjugate (A1)

Where ρ is the spinor whose components are a neutrino
and its antineutrino, m is the mass of the particle, µ is
one of 1, 2, 3, 4, and the σµ are the Pauli matrices plus
−i1—that is:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)

σ3 =

(
1 0
0 −1

)
σ4 =

(
−i 0
0 −i

)

Applying the Euler-Lagrange equation to equation A1
gives us the equation of motion,

− iσµ∂µρ = mσ2ρ
∗ (A2)

We can then write general solutions to A1 as,

ψ =

(
χ

σ2φ
∗

)
(A3)

We can explore the differences between Majorana par-
ticles and Dirac particles in this context by transform-
ing these solutions under charge conjugation formalism.
Charge conjugating a charged particle returns an antipar-
ticle with the opposite charge of the original particle.
Since neutrinos are neutrally charged, the result of ap-
plying charge conjugation is the neutrinos’ antiparticle.
In this form, the charge conjugation matrix C is com-
monly given as,

C =

(
−σ2 0

0 σ2

)
(A4)

Here we arrive at the result that Cψ† = ψ′,

ψ′ =

(
φ

σ2χ
∗

)
(A5)

If the neutrino is a Majorana particle, we therefore have
that χ = φ. This is not necessarily true in the Dirac
case. Note that χ represents the left-handed component
of ψ and therefore the neutrino, while φ represents the
right-handed component and therefore the antineutrino.

To consider the Dirac case in more depth, we can look
at how equation A1 acts on our solutions in equation A3.
Considering the sum over the Lagrangian density for the
two components of ρ (ρ1 and ρ2), we find that we can
relate χ and φ to ρ1 and ρ2 by,

χ =
1√
2

(ρ2 + iρ1) (A6)

φ =
1√
2

(ρ2 − iρ1) (A7)
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Equations A6,A7 relate the states of Majorana fermions,
ρi to Dirac fermions χ, φ. This relation shows that a
Dirac particle is equivalent to two Majorana particles of
equal mass.

From here it becomes clear that since Majorana and

Dirac fermions have different wave functions, we can ex-
pect them to behave differently in physical situations.
There are currently several experiments underway that
are designed to test whether neutrinos are Majorana or
Dirac particles.
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