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Optical pumping is a process that stochastically increases the energy levels of atoms in a magnetic
field to their highest Zeeman energy state. This technique is important for its applications in applied
atomic and molecular physics, particularly in the construction of lasers. In this paper, we will
construct a model of optical pumping for the case of rubidium atoms and will use experimental
results to determine the Landé g-factors for the two stable isotopes of rubidium and measure the
relaxation time for pumped rubidium. We will then show how the relaxation time constant varies
with temperature and pumping light intensity. Lastly, we will use our model and observations to
determine the mean free path of 7948 Åphotons through rubidium vapor at 41.8◦C.

1. INTRODUCTION

In the 1950s A. Kastler developed the process known
as optical pumping, for which he later received the Nobel
prize. Optical pumping is the excitation of atoms with
a resonant light source and the stochastically biasing of
the transitions in order to migrate the atoms into the
highest energy Zeeman state. Rubidium vapor was used
in this experiment due to its well understood hyperfine
levels. The use of rubidium also simplifies the physics,
since there are only two stable isotopes of rubidium, 85Rb
and 87Rb; the effects of nuclear spin can therefore be
easily accounted for.

1.1. Angular Momenta and Energy Level Splittings

In the presence of a magnetic field ~B, the spin-orbit
coupling of electrons around the nucleus becomes signif-
icant. For an electron with orbital angular momentum
~L and spin ~S, we find a change in the energy equal to
∆E = e

2me

(
~L+ 2~S

)
· ~B. By considering the total angu-

lar momentum ~J = ~L+ ~S we can reduce this equation to
∆E = gJµBmjB where mj is the component of the total
angular momentum parallel to the magnetic field, µB is
the Bohr magneton, and gJ is the Landé g-factor, given
by,

gJ = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
(1)

For a more in-depth derivation of these formulae, see [1].
To a higher order, there is also energy level splitting

due to the interactions of electronic angular momenta
with the nuclear angular momentum ~I. To determine
the effects of ~I on the energy level splitting, we follow
a very similar procedure to what we did for the spin-
orbit coupling. Defining the total angular momentum
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vector ~F = ~I+ ~J , we arrive at the conclusion that ∆E =
gfmfµBB, where gf is given by,

gf ≈ gJ
f(f + 1) + j(j + 1)− i(i+ 1)

2f(f + 1)
(2)

Note that f , j, and i are the eigenvalues of F , J , and I,
respectively.

1.1.1. g-Factors for Rubidium

We can use equation (2) to determine the g-factors
for the two isotopes of Rb used in this experiment. Con-
sidering that both isotopes have the same electronic shell
configuration, with ground state valence electron in 52S 1

2
,

where j = 1
2 , the two isotopes will differ only in their nu-

clear angular momentum. The nuclear angular momen-
tum quantum numbers for 85Rb and 87Rb are i = 5

2 and
i = 3

2 , respectively[2]. When combining j and i to de-
termine the possible values for f , we find that for 85Rb,
f = 2, 3 and that for 87Rb, f = 1, 2. The g-factors found
using equations (2) and (1) are ± 1

3 for 85Rb and ± 1
2 for

87Rb.

1.2. Optical Pumping

In the presence of a weak magnetic field on the order
of milligauss, the energy differences between hyperfine
levels splits as described above. In the case of 87Rb,
the 5S orbital splits into eight states according to their
possible values for mf , their total angular momentum
parallel to the magnetic field.

When a photon with angular momentum +1 and en-
ergy equal to the transition energy between the 5S and
5P states interacts with an electron in the 5S state, it
excites the atom into the 5P state and increases its angu-
lar momentum quantum number mf by one unit. As the
atom decays back down to a lower energy state, the elec-
tron dropping down may change its angular momentum
according to the selection rule ∆mf = 0,±1. In this way,
there is a 2

3 chance that the electron end up with a net
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increase in mf and a 1
3 chance that it will stay the same.

Over time, after continued exposure to these photons,
we would therefore expect the value of mf to continually
climb. However, the highest angular momentum state
available in the 5P state has mf = +2. For this reason,
if an electron in 5S with mf = +2 were to interact with
a photon, it would have no angular momentum state to
jump into, rendering the electron incapable of absorbing
the photon. The atoms in this state will therefore appear
transparent to the light. As a result, the electrons will
be pumped into the mf = +2 state.

2. THE APPARATUS

FIG. 1: The experimental setup

Figure 1 shows the experimental apparatus we used.
In the center of the apparatus is a bulb containing a ru-
bidium sample. The Helmholtz coils around the bulb al-
low us to control the magnetic field that the sample feels,
while the RF coils pulse the atoms with depolarizing pho-
tons to move some of the atoms that it resonates with
out of the polarized state. The rubidium lamp provided
the light driving the pumping, which passes through a
filter to ensure that only light of the desired frequency
interacts with the sample. The circular polarizer ensures
that all of the photons arriving at the sample will have
angular momentum mf = +1 by blocking the mj = −1
photons, ensuring that the pumping is uniformly towards
a higher state. The photons then pass through a colli-
mating lens which, along with the lens on the opposite
side of the bulb, ensures that we are using as much of
the light as possible to pump the sample. After passing
the second lens, the light hits the photodiode, where it
passes through an amplifier and provides a signal to the
oscilloscope to be measured.

Not shown in figure 1 is the heat control system. The
heat control system allowed us to heat the rubidium to a
higher temperature so that it would be above its boiling
point, thereby increasing the concentration of rubidium
vapor.

3. AMBIENT MAGNETIC FIELD
CORRECTION

Since the Zeeman splitting that is significant in opti-
cal pumping requires a magnetic field of the same order
as the earth’s magnetic field, it is important to deter-
mine the ambient magnetic field in order to appropri-
ately buck it out. To do so, we ramp through a range
of RF frequencies and observe the trace on the oscillo-
scope at a constant magnetic field. Assuming the vapor
is fully pumped by the lamp, ramping over a wide range
of RF frequencies allows us to observe the resonant fre-
quencies of the split energy levels. The magnitude of the
magnetic field B is related to the resonant frequency by
f = 1

~gfµBB. By adjusting the magnetic field along each
axis, we can plot the frequency versus the magnetic field
applied to each coil. Figure 2 is the resonant frequency

FIG. 2: The applied magnetic field versus resonant frequency
along the X-axis

versus applied magnetic field curve for bucking out the
field along the X-axis. Since there is still an ambient
field present int he Y- and Z-directions, the curve looks
hyperbolic. The minimum of this curve represents the
magnetic field at which the X-axis is completely bucked
out. By minimizing the fields in all three directions, we
were able to measure the Earth’s local geomagnetic field
to be 52540 ± 740nT, which is about .5σ from the ac-
cepted value of 52820nT[4].

4. RELATIVE ISOTOPIC ABUNDANCES

After having bucked out the magnetic field, we were
able to vary the magnetic field in the Z-direction while
holding the RF frequency constant. During this process,
whenever the magnetic field changes the Zeeman split-
ting to resonate with the RF signal, a dip appeared in
the photodiode voltage as the atoms briefly became de-
polarized. The size of this dip is proportional to the pop-
ulation of the rubidium isotope we are resonating with.
As a result, we were able to estimate the relative abun-
dances of the two isotopes by taking the ratio of the two
dip depths. We found the sample to be a roughly equal
mixture of both isotopes. This measurement differs sig-
nificantly from the known natural relative abundances
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which predicts 72% of the atoms to be 87Rb; we con-
clude that our sample is not representative of naturally
occurring rubidium.

5. LANDÉ G-FACTORS

Additionally, we were able to measure the change in
resonant frequency as we increased magnetic field. As the
relation f = 1

~gfµBBz predicts, we found that the change
in resonant frequency varied linearly with the magnetic
field. Figure 3 is a plot of this change for both isotopes.
Taking µB to be known, we were able to measure the
slope of these lines and calculate the corresponding Landé
g-factor. We found the Landé g-factor of 85Rb to be

FIG. 3: The resonant frequencies of the two isotopes varied
with a very strong linear relationship proportional to their
Landé g-factors

0.446± .004, within .1σ of the known value, and 87Rb to
be 0.500± 0.009, equal to the known value.

6. CONSTRUCTING A MODEL

Optical pumping is most conveniently observed by ex-
posing the Rb vapor in a glass bulb to a lamp whose
photons have frequencies that resonate with the desired
transition. While this is happening, the atoms that are
not in the |5S,mj = +2〉 state may absorb the photons,
and therefore appear opaque to the photodiode, while the
electrons that are in the |5S,mj = +2〉 state will trans-
mit the light completely.

To construct a model that we can test, we will base it
around the experiment where we maintain a constant RF
frequency and apply a square wave centered around zero
to the Z-axis Helmholtz coil. By giving the square wave
a sufficiently large period, we allow the sample to reach
an equilibrium point between its pumping rate and depo-
larizating rates. When the magnetic field switches direc-
tion, the roles of the m = +1 and m = −1 states switch,
putting the sample back into an unpumped state for
pumping to begin fresh. Depolarization occurs through
two dominating processes: depolarizing collisions and in-
teracting with the RF photons.

Considering the pragmatic effects of changing the mag-
netic field, an extra time constant is introduced due to
the time evolution of the rubidium atoms as they feel
the effects of the changing magnetic field and the more
significant effect of the inductive time constant of the
Helmholtz coils. Taking this into account, we may con-
struct a three state system given by,

s′+ = −Rs8 + Psu (3)
s′u = −Psu +Rs+ + To (4)

o′ = −To (5)

where s+ is the population of the pumped state, su is the
population of all of the unpumped states, o is the pop-
ulation of the “original” state that has not yet felt the
change in magnetic field, R is the depolarizing collision
rate constant, P is the pumping rate constant, and T is
the rate constant for atoms to feel the change in mag-
netic field. Since su is the only state that blocks light,
this is the only one relavent to this experiment. Solving
the system in (5) with the conditions that there are a
total of n atoms, m of which are still unpumped in the
equilibrium state, and n−m of which are in state o when
the fields switch and in s+ at equilibrium, we find that

su(t) = 7(m− n)R(P +R− T ) + 7(m− n)P (T −R)e−Tt

+P (m(P + 8R− 8T ) + 7n(T −R))e−(P+R)t

7P (P +R− T )

Since our observations are all in terms of transmission
intensity, we use the relation I = I0e

kρx ≈ I0(1 + ekρx),
where k is the opacity of the unpumped atoms, ρ is their
density, and x is the diameter of the bulb. Using stoi-
chiometry to relate ρ to su and collapsing the constants
into fitting parameters, we find,

I = A−Be−Qt + Ce−Tt (6)

where I is the intensity of the light upon the photodi-
ode, A,B, and C are fitting parameters, determined by
constants and terms found in su, and Q = P + R is the
repolarization time constant.

6.1. Confirmation

Plotting the data and fitting our model to the data
results in figure 4. The model has a χ2/NDF of .68,

FIG. 4: The repolarization of pumped rubidium atoms

indicating that it fits the data very well.
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7. INTENSITY DEPENDENCE

By placing neutral density filters in front of the lamp,
we were able to reduce the intensity of the beam incident
on the sample. Maintaining a constant temperature at
43.3 ± .5◦C, we calculated the repolarization constant
for several different intensities. In this case, the quantity
of interest is τ = 1

Q , the characteristic time scale for
repolarization. Figure 5 shows the variation of τ with
lamp intensity. Here, we expect the time constant to

FIG. 5: Repolarization time scale decreases with intensity,
indicating that a higher photon flux pumps the sample faster

follow a general form of T + A
I/I0+B

due to the resonant
nature of the light. Fitting this to curve to the data
yields a χ2/NDF= 10. We also find that as the intensity
approaches zero, the repolarization time scale approaches
207 ± 16 ms. This number represents the characteristic
spin relaxation time of the rubidium isotopes.

8. TEMPERATURE DEPENDENCE

We then varied the temperature of the bulb by heating
it up to a high temperature and repeatedly observing the
optical pumping as the temperature decreased. Figure 6
shows how the time constant τ varied with bulb temper-
ature above the boiling point. We observe that the time
constant decreases as the temperature increases, leveling
off around the melting point at 38.5◦C.

FIG. 6: The temperature dependence of τ

9. MEAN FREE PATH OF LIGHT

By fitting equation 6 to the data, we were able to ma-
nipulate the parameters based off of their intrinsic value
from their definition out of su and the constants associ-
ated with the attenuation of light with opacity k in order
to measure the mean free path of 7948Å photons through
rubidium vapor. Doing this at 41.8◦C yields a mean free
path of 29 ± 4.2mm. M. chevrollier et al. published a
range of mean free paths for rubidium in [3]. The range
they found went from 50 mm at 20◦C to 5 mm at 47◦C.
Our measurement falls within this range. However, given
that the temperature is close to 47◦C, the measured mean
free path is still high. This might be able to be accounted
for by an unknown systematic error in our measurement
of I0, the intensity of the incident beam. Since we could
not remove the rubidium bulb from the apparatus, we
measured I0 by placing the photodiode directly in front
of the filters. This means the attenuations of the light due
to its passing through the Plexiglas container surround-
ing the bulb as well as the bulb itself (both of which were
rather dirty) were not taken into account.

10. ERROR ANALYSIS AND DISCUSSION

The dominating source of error throughout this exper-
iment was the statistical fitting error. In determining the
ambient field, our dominating source of error was from
the width of the peak giving uncertainty in our measured
frequency of about 1.5%, accounting for all of our error
in our ambient field measurement. In determining the
mean free path of light in rubidium, there was an ad-
ditional source of statistical error of about 1.2% in our
measurement of the bulb diameter. This accounted for
about 9% of the total error; fitting errors accounted for
the other 91% of the known error. However, there was
also an unknown systematic error in the intensity of the
light, as discussed above. In the rest of our data, sta-
tistical discretization error from the oscilloscope came to
about 10% in voltage and .25% in time. These errors
translated into errors in our fitting parameters which ac-
counted for roughly the entire error in the rest of our
measurements.
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