
Superconducting Metals: Finding Critical Temperatures and Observing Phenomena

Shawn Westerdale∗
MIT Department of Physics

(Dated: April 29, 2010)

Many metals display special properties below a certain critical temperature when they become
superconducting. In this paper, we present findings for the critical temperatures of vanadium (TC =
5.36±0.13 K), lead (TC = 7.30±0.05 K), and niobium (TC = 9.7±0.6 K) as well as observations of the
suppression of the critical temperature of vanadium in the presence of a magnetic field and the T = 0
K critical field (H0 = 1480±105 Oe). We also measured the Josephson effect in niobium and used our
observations to determine the superconducting energy gap in niobium (∆(0) = 4.23±0.18×10−22 J)
and to calculate the fundamental flux constant (Φ0 = 2.11± 0.07× 10−15 Wb). Lastly, we observed
a persistent current in superconducting lead that held an initial internal zero flux.

1. INTRODUCTION

Superconductors are metals or alloys that have been
cooled to a temperature below some critical value. When
a metal capable of becoming a superconductor does so,
it loses all electrical resistance and demonstrates several
other properties, many of which will be discussed later in
this paper.

2. BCS THEORY

BCS theory is the theory proposed by Bardeen,
Cooper, and Schrieffer to describe the microscopic effects
that cause a material to become superconducting.

Since electrons are fermions, they obey the Pauli ex-
clusion principle. This means that only two electrons
with opposite spin may occupy a given energy state at a
time; when a metal is at its lowest energy level, there are
only two electrons in the ground state, and the rest of
the electrons fill successively higher energy levels, creat-
ing the Fermi sea. The highest energy level of the Fermi
sea when the metal is in its ground state is known as the
metal’s Fermi energy.

In a normal metal, the lowest energy state of the metal
is related to the Fermi energy. The two dominating forces
that one must consider in a metal are the Coulombic
repulsion between the electrons and the phononic inter-
actions between the electrons and the nuclei. As the
electrons moves through the surface of the metal, the
attractive force between the electrons and nuclei cause
slight distortions in the nuclear lattice. These waves are
called phonons and tend to attract more electrons. Un-
der ordinary conditions, these phonon interactions are
insignificant—the thermal energy of the atoms is enough
to break up any structure that the phonons may form,
so they have little effect on the electrons.

As the temperature of the metal decreases, the thermal
agitations become smaller and smaller until they can no
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longer break up the phonon waves. At this point, the at-
tractive force of the phonons may become stronger than
the repulsive Coulombic force. Two electrons with op-
posite spin may move towards each other and reach an
entangled state known as a Cooper pair. Since the elec-
trons have opposite spin, the Cooper pair has a total spin
of 0 and is a boson, no longer constrained by the Pauli
exclusion principle. The superconductor consists of sev-
eral bosons, all of which may settle to the ground state
at the same time. This means that the Cooper pairs will
all occupy a total energy state lower than was achievable
by the individual electrons. Additionally, since bosons
may all occupy the same state, the metal will not have
any resistance. This lack of resistance is one of the key
qualities that define a superconductor.

At heart, BCS theory is more general than this. BCS
theory predicts that any net attractive potential will
cause electrons to form Cooper pairs. However, the mech-
anism described here is the one seen in most ordinary
superconductors.

3. CRITICAL TEMPERATURE
MEASUREMENTS

3.1. Experimental Setup

Figure 1 diagrams the probe used in this experiment.
The probe was inserted into a dewar of liquid helium
and lowered until the sample was shortly above the liq-
uid helium, so that it would be cooled by the vapor. A

FIG. 1: A diagram of the probe used for measuring the critical
temperature of vanadium and lead

pump was attached to the probe through the exhaust
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valve and was used for fine adjustments to the flow rate
of the helium cooling the sample, allowing us to control
the temperature of the sample.

An AC current was applied to the solenoid at a high
frequency so that when the sample is not superconduct-
ing, it picks up the magnetic field generated by the
solenoid. As this magnetic field changes, it induces a
current in the test coil which was hooked up to an oscillo-
scope. Measuring this induced current shows a sine wave
of a given height. When the sample is superconducting,
the Meissner effect predicts that, beyond a certain skin
thickness, the sample will not hold a magnetic field. This
has the effect that less current is induced in the test coil
since there is much less magnetic field inside of it, and so
the sine wave on the oscilloscope decreases in amplitude.

Temperatures were measured using a diode placed a
couple centimeters above the sample. Since the behavior
of the diode materials at low temperature is known, the
temperature of the diode can be determined by measur-
ing the voltage across the diode. A conversion table from
volts to Kelvin is provided in the lab guide[1]. In order
to determine the temperature of voltages in between the
ones provided by the table, we plotted a graph of the
points provided, as seen in figure 2. As is clear in the fig-

FIG. 2: The voltage-temperature calibration curve provided
by the lab guide

ure, the curve appears to have one small region, followed
by a discontinuity and then another smooth region. A
sixth order polynomial was fit to each region and used to
interpolate the temperatures corresponding to all of the
measured voltages. For the region over the discontinuity,
we extrapolated both fit functions and averaged their val-
ues together to determine the temperature of points in
that region.

Since there is a gap of about two centimeters between
the sample and the thermometer, a temperature gradi-
ent will naturally be present and can add an additional
systematic error to the data. To minimize the effects of
this, we cooled the sample slowly to reduce the gradient.

3.2. TC Measurements

To measure the critical temperatures of vanadium and
lead, we cooled the probe for roughly two and a half hours

to ensure that we would only have a small systematic
error due to the temperature gradient.

As mentioned above, the sine wave reading on the os-
cilloscope should be smaller when the sample is in the
superconducting phase than when it is a normal metal.
In order to determine the critical temperatures, we found
the temperature at which the sine wave’s amplitude first
began to decrease and continued to decrease the tem-
perature until we found the point at which the sample
just reached its minimum amplitude. By recording the
temperatures at which the samples began and completed
their transition to being totally superconducting several
times and averaging these values together, we measured
the critical temperatures of the samples. We found the
critical temperature of vanadium to be 5.36±0.13 K and
the critical temperature of lead to be 7.30± 0.05 K.

The vanadium sample has a much larger random error
because the measured temperature fell on the discontinu-
ity in figure 2, where we had to extrapolate and average
the values of the two fit functions.

Due to the aforementioned temperature gradient, there
is a small unknown systematic error in the measure-
ments of these temperatures; the actual values should
be slightly lower than what we measured. For vanadium,
this systematic error was small compared to the random
error, but it is likely more significant for the lead sample
which has less random error.

4. CRITICAL FIELDS

Exposing a metal to a magnetic field increases the en-
ergy gap between the superconducting and normal metal
states by driving the Cooper pairs apart and weakening
the attractive force. This suppresses the critical tem-
peratures of the samples. For any given temperature less
than the critical temperature, the magnetic field that will
cause the sample to transition from being a superconduc-
tor to a normal metal is called the critical field.

Since the energy gap is proportional to the applied
magnetic field, we have the relation ship ∆E(T )

∆E(0) = HT

H0

where ∆E(T ) is the energy gap at temperature T and
HT is the critical field at that temperature. Additionally,
we know that ∆E(T )

∆E(0) = cos
(
πT 2

2T 2
C

)
[3]. Combining these

two relations and Taylor expanding gives us the relation

HT = H0

(
1 +

(
T

TC

)2
)

(1)

4.1. Measuring H0

Using the same setup as we did to measure the critical
temperatures, we can apply a DC current to the solenoid
in addition the AC current. This offsets the zero of the
AC oscillations, exposing the sample to a controllable
magnetic field.
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By recording the height of the sine wave on the oscil-
loscope as a function of temperature, as seen in figure
3 and fitting a logistic function1, we were able to deter-
mine the critical temperature of the vanadium sample at
HT = 0 Oe and HT = 62.4 Oe and solve for H0 using
equation 1. Doing so, we found H0 = 1480± 105 Oe.

FIG. 3: Temperature versus test coil amplitude at HT = 62.4
Oe. The logistic fit function fits with χ2/NDF = 0.3 and
probability 99.9%

5. THE JOSEPHSON EFFECT

When two metals sandwich a thin insulator (known
as a Josephson junction) and a voltage is applied to the
metals, we expect an Ohmic (linear) response as the volt-
age between the metals varies linearly with the current
through the insulator. However, when the two metals are
lowered to below their critical temperatures, the proba-
bility of Cooper pairs quantum tunneling through the in-
sulator becomes significant. This is known as the Joseph-
son effect.

5.1. Measuring the Superconducting Energy Gap
in Nb

We observed the Josephson effect using a niobium
Josephson junction. The setup for this experiment was
very similar to the previous one; the key differences are
that the probe contains a Josephson junction in place of
the sample and that we directly measure the tempera-
ture using a temperature sensor. We set the oscilloscope
to plot the applied voltage across the junction versus the
current between the plates.

When the niobium is non-superconducting, we expect
to observe a linear relationship between the current and
voltage as we observe Ohmic single electron tunneling
across the junction. However, when the niobium is low-
ered to below its critical temperature, we observe what
is shown in figure 4. Here, we see that at high voltages,

1 Physically, a logistic function makes sense here because we expect
the electrons we base our observations on to follow a Fermi-Dirac
distribution, which is of the same form

FIG. 4: V-I relation across a superconducting niobium
Josephson junction

the energy of the electric field pulls apart Cooper pairs
and we are left observing an Ohmic voltage-current rela-
tionship. However, when the voltage is too weak to do
this, we find that the voltage drives tunneling of Cooper
pairs back and forth so fast that there appears to be no
current across the junction when the voltage is nonzero.
When the voltage is zero, however, this is no longer the
case and so the Cooper pairs may tunnel across the junc-
tion freely, resulting in the spike in the middle of figure
4.

By slowly adjusting the temperature of the junction,
we can observe the temperature at which the Ohmic, non-
superconducting line first begins to break and continue to
decrease the temperature until it becomes steady in the
form of figure 4. Doing so several times and averaging
these temperatures together gives us a critical tempera-
ture for niobium of TC = 9.7± 0.6 K.

Since the current returns to being Ohmic when the
voltage is strong enough to break the Cooper pairs, we
can measure the superconducting energy gap by measur-
ing this change in voltage, labeled D in figure 4. Since
the Cooper pairs tunnel with a frequency ν = 2e

h V [4],
we find that the energy gap ∆(T ) corresponding to this
transition is

∆(T ) =
De

2
(2)

Additionally, we expect the energy gap at a given temper-
ature to be ∆(T ) = 3.5kBTc

√
1− T

TC
. Using these two

equations and adjusting for the temperature at which the
measurements were taken, we found ∆(0) = 4.23±0.18×
10−22 J.

5.2. Measuring the Flux Quantum

The flux quantum is the smallest possible “bit” of flux.
This can be measured very precisely using our setup by
applying a magnetic field to the Josephson junction. This
can be done by running a current through the solenoid
on the probe and observing the change in the amount
Cooper pairs that tunnel through the junction (measured
by h in figure 4). We expect h to follow the relationship
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h = A0
sin(πωB)
πωB +A1[4], where A0, A1 and ω are all fitting

parameters. Plotting h versus magnetic field and fitting
this function to the curve yields figure 5 where we find

FIG. 5: Magnetic field versus h. The magnetic field axis was
scaled from the current we applied to the solenoid using a
factor of 540 Gauss/A[1]

ω = 213T−1

Noting that πωB = Φ
Φ0

, we find that Φ0 = 2λ+l)L
ω

where λ = 46.6 nm is the London penetration depth and
l = 1.75 nm, L = 5µm describe the dimensions of the
sample. We can therefore conclude that Φ0 = 2.11 ±
0.07× 10−15 Wb.

6. PERSISTENT CURRENT OBSERVATIONS

When a hollow cylinder of a metal is exposed to a mag-
netic field, the magnetic field is present in the cavity of
the cylinder. If the metal then becomes superconducting,
surface currents on the inside of the cylinder continue to
generate the magnetic field in the cavity regardless of
how the external field changes.

This effect can be observed experimentally using a
probe similar to the one used to measure critical tem-
peratures. The key difference between the probes is that
this probe contains a hall sensor with a hollow lead cylin-
der inside instead of a sample.

We observed this effect by lowering a lead cylinder to
below its critical temperature and then supplying a cur-
rent to the solenoid around the cylinder, generating a
magnetic field. As can be seen in figure 6, there con-
tinues to be no magnetic field inside the cylinder after
the magnetic field has been turned on at A. As we in-
creased the temperature of the sample, we began to see
the external magnetic field appear when we got near the
critical temperature of lead. This change signified the
transition of the lead from a superconducting to normal

metal state.

7. ERROR ANALYSIS AND CONCLUSIONS

Table I summarizes the results found by this experi-
ment

Random errors dominated the errors in this exper-
iment, with fitting errors comprising roughly 80% of

FIG. 6: Shows the persistent current effect in lead. The lo-
gistic fit function was used to scale the x-axis to the known
TC of Pb

Value ± Known[2] ∆

TC(V ) 5.36 K 0.13 5.40 K 0.3σ

TC(Pb) 7.30 K 0.05 7.20 K 2σ

TC(Nb) 9.7 K 0.6 9.2 K 0.8σ

H0(V ) 1480 Oe 105 1408 Oe 0.7σ

∆(0)Nb 4.23×10−22 J 0.18×10−22 4.44×10−22 J 1.2σ

Φ0 2.11×10−15 Wb 0.07×10−15 2.07×10−15 Wb .6σ

TABLE I: Quantities found in this experiment compared to
their accepted values

the errors for most quantities. Temperature variations
and digitization error from the oscilloscope contributed
roughly equal amounts to the error, accounting for nearly
10% each.

There was also a small systematic error due to the
temperature gradients between the samples and the ther-
mometers. For most measurements this was small, al-
though we believe it accounts for most of the deviation
in the critical temperature of lead from its accepted value.
For measuring quantities other than critical tempera-
tures, we were able to adjust for this systematic error
by normalizing our temperatures to our accurately mea-
sured temperatures.
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