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From http://nuclear.ucdavis.edu/~tgutierr/files/stmL1.html
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Heavily Tested

http://inapcache.boston.com/universal/site_graphics/blogs/bigpicture/lhc_11_20/l11_00000001.jpg And many others...
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And it checks out!
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http://www.spaceanswers.com/wp-content/uploads/2014/07/Screen-Shot-2014-07-22-at-14.54.26.png

 cdms.phy.queensu.ca/Public_Docs/Pictures/Rotationcurve_3.jpg
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http://www.spaceanswers.com/wp-content/uploads/2014/07/Screen-Shot-2014-07-22-at-14.54.26.png
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...and the evidence piled up...
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�

DARK MATTER

MaCHOs

• Massive Compact Halo Objects
• Microlensing measurements
• CMB Measurements

s

• Cold sterile neutrinos

axions

• Predicted by Peccei-
Quinn theory

• May solve the Strong 
CP problem

WIMPs

• Weakly Interacting 
Massive Particles

• Predicted by SUSY, 
Kaluza-Klein, ...

?
? ?

?
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WIMPs: Thermal Relics

● ⟨�v  ~ 10⟩ -26 cm3/s
● Mass ~ 100 GeV/c2

Cosmological requirements:
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WIMPs: Thermal Relics

● ⟨�v  ~ 10⟩ -26 cm3/s
● Mass ~ 100 GeV/c2

Cosmological requirements:

Weak interaction scale

Interactions with non-WIMPs will 
be very rare
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WIMP Detection
● Earth moves through 

WIMP wind
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WIMP Detection
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WIMP Detection
● Earth moves through 

WIMP wind
● WIMP scatters in 

detector
● Detector produces a 

signal
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The DarkSide-50 Detector
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DarkSide-50

E 50 kg liquid 
argon

Gaseous 
argonPhoto

Multiplier 
Tubes

Cryostat
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DarkSide-50

E

Copper field 
cage

Teflon 
reflector
(coated with 
wavelength shifter)

Quartz 
windows 
(coated with 
wavelength shifter)

E
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Liquid Argon Scintillation
 � ● WIMP scatters of Ar 

nucleus
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Liquid Argon Scintillation
● WIMP scatters of Ar 

nucleus
● Ar nucleus recoils and 

scatters off of other Ar 
nuclei

● Ar atoms become excited 
or ionized

● Ionized and excited Ar 
form dimers with ground 
state Ar

● Dimers split apart and 
release light

● Ionized e- drifted to gas 
layer

● e- scintillate in gas layer

E
S2 Signal
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time (us)

am
p

lit
u

d
e

-10     0     10     20     30     40     50     60     70     80

S1 S2

Δt

What we can 
learn:

● S1  Recoil energy→
● Δt  z-coordinate→
● S2 PMT distribution  →

x,y-coordinates
● S2/S1 and S1 pulse 

shape   recoil type→
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WIMP events are rare
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WIMP events are rare
Any backgrounds can easily hide a WIMP if we are not careful
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Backgrounds: 2 Types

 γ
 n

TPCTPC

Electron Recoils Nuclear Recoils
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Electron Recoils

 γ

● Produced by  decay of  � 39Ar 
or from incident  rays �

● Eliminate with pulse shape 
discrimination in LAr 

● Ionization/scintillation signal 
 ratio offers suppression

TPC
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Electron Recoils

 γ

● Produced by  decay of  � 39Ar 
or from incident  rays �

● Eliminate with pulse shape 
discrimination in LAr

● Ionization/scintillation signal 
 ratio offers suppression

TPC
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Nuclear Recoils

● From surface background  decays �
– Eliminated with fiducial cuts

● Neutron scatters

– Radiogenic (fission and ( ,n) �
reactions)

● From surrounding environent
● In detector components

– Cosmogenic (muon spallation)
● Cannot be rejected with pulse shape 

discrimination

 n

TPC
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So how can we remove 
neutron backgrounds?
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Passive Shielding?

● Radiogenic (fission and 
( ,n) reactions)�
– From surrounding 

environent
– In detector components

● Cosmogenic (muon 
spallation)

 n

TPC

Shield
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Passive Shielding?
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 n (~100 MeV)
μ

μ

Passive Shielding?

● Radiogenic (fission and 
( ,n) reactions)�
– From surrounding 

environent
– In detector components

● Cosmogenic (muon 
spallation)

TPC

Shield
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Active Shielding

TPC

WCD

LSV

Water Cherenkov Detector

● Provides shielding to the 
LSV 

● Can detect passing muons 
that may produce a 
cosmogenic neutron

Liquid Scintillator Vessel

● Boron-loaded to improve 
neutron capture cross 
section

● Detects neutrons and  rays  �
in coincidence with TPC

● Provides shielding and 
vetoing of backgrounds

● Allows for in situ 
background measurements
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Active Shielding
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Vetoing Neutrons with the LSV
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Neutron Detection: Prompt Signal

n

H

C12

H

H
H

H

HC12

● Neutron thermalization
● Very fast (< 100 ns)
● Prompt time cut  low background→

      can cut with low threshold→
● Signal size depends on neutron energy
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Neutron Detection: Quiet Time

n

H

C12

H

H
H

H

HC12

● Neutron random walk
● No signal produced
● Neutron random walks at thermal energies
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Neutron Detection: Capture Signal

n

H

C12

H

H
H

H

HC12

γ

 α

● Neutron capture
● Neutron captures on

● 10B: σ = 3837 b
● 1H: σ = 0.33 b

● Produces 2.2 MeV γ
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Neutron Capture on 10B
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Neutron Capture on 10B

Relatively high energy, easy to see
But ~8% chance it will go back into 
cryostat unseen
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Neutron Capture on 10B

Highly quenched to a total signal equivalent to an electron energy of ~50-60 keVee
Will always deposit all energy into the scintillator
If we can reliably see these, we can see neutrons
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Target vetoing efficiency: > 99.5%
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Target vetoing efficiency: > 99.5%

The key to high efficiency is to efficiently detect 
the  + Li �
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Target vetoing efficiency: > 99.5%

The key to high efficiency is to efficiently detect 
the  + Li �

The key to detecting the +Li is a  � high light yield
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Designing the LSV



53

Designing the LSV



54

Designing the LSV

Scintillator Cocktail:
● Pseudocuemene [PC] (50%)
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Designing the LSV
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Reflector: Lumirror E6SR
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Designing the LSV

Scintillator Cocktail:
● Pseudocuemene [PC] (50%)
● Trimethyl borate [TMB] (50%)
● PPO (3 g/L)

Reflector: Lumirror E6SR

Boron-loading agent
Mixes well with PC
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Designing the LSV

Scintillator Cocktail:
● Pseudocuemene [PC] (50%)
● Trimethyl borate [PC] (50%)
● PPO (3 g/L)

Reflector: Lumirror E6SR

Wavelength shifter
Shifts scintillation light to visible 
Improves scintillator response
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Designing the LSV

98%

Peak PMT
Quantum
Efficiency

PPO 
Emission 
peak
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Designing the LSV
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Prototype Tests

Measurements
● Light yield: 0.47 PE/keV
● Decreased by 

0.52%/week

Optical Monte Carlo
● Light yield: 0.46 PE/keV
● Scaled to DS-50 

geometry
● Light yield: 0.48 PE/keV
● High enough to detect  

+Li  �
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Prototype Tests

 �+Li 
 �+Li+�

See arXiv:1509.02782
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Neutron capture producsts are detectable

Prompt signal is detectable

✔
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Testing Prompt Response

F = E · LY · QF(E)
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Testing Prompt Response

F = E · LY · QF(E)
Light output by scintillation event
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Testing Prompt Response

F = E · LY · QF(E)
Incident particle energy
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Testing Prompt Response

F = E · LY · QF(E)
High energy electron recoil light yield
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Testing Prompt Response

F = E · LY · QF(E)
Quenching factor 
(depends on particle type and kinetic energy)
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Testing Prompt Response

F = E · LY ·   

Quenching factor 
Introduces substantial non-linearity for 
nuclear recoils

1

1+kb· dE
dx
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Testing Prompt Response

LiF Neutron Source

Polyethylene collimator

Liquid Scintillator Detector

Coincidence detectors

�
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Testing Prompt Response

Coincidence 
Detectors

Liquid Scintillator
Detector

LiF Neutron Source
and
Polyethylene Collimator

At University of Notre Dame
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Testing Prompt Response
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Neutron capture producsts are detectable

Prompt signal is detectable

✔
✔
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Begin: The DarkSide
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The LSV: A Tale of Two Cocktails

● Phase I
– Nov 2013 – Jun 2014
– 50% PC, 50% TMB
– 2.5 g/L PPO
– Overwhelming 14C 

contamination from TMB ~200 
kBq from atmospheric 14C

– Neutron capture time ~2.2 us
– High light yield >0.5 PE/keV

● Phase II
– Apr 2015 – Present 
– 95% PC, 5% TMB
– 1.4 g/L PPO
– New TMB made from petroleum – 

much lower 14C rate ~250 Bq 
(measured 14C contamination of new 
TMB at the LLNL accelerator mass 
spectrometer to be below background)

– Neutron capture time ~22 us
– High light yield > 0.5 PE/keV
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Phase I rate: ~200 kBq

Phase II rate: 245 Bq
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Prompt LSV-TPC Coincidence

Note: these are 
mostly  rays �
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Prompt LSV-TPC Coincidence

60Co:  (1.17 MeV, 1.33 MeV)  0.59 PE/keV� →
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Prompt LSV-TPC Coincidence

208Tl:  (2.6 MeV)  0.55 PE/keV� →
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Muons

muons

Electronics noise

Normal events
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Neutron Capture Signal

241Am9Be Calibration Run
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Neutron Capture Signal

241Am9Be Calibration Run

 �+Li+�
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Neutron Capture Signal

241Am9Be Calibration Run

 �+Li



86

Neutron Vetoing Efficiency

● Calibrations and simulations: vetoing efficiency from capture 
signal alone is > 99.1%
– ~7.7% of neutrons capture on 1H; 2.2 MeV � lost ~8% of the time

● 0.62% loss from this channel

– ~0.23% capture after the LSV acquisition window has closed
– ~0.05% leave no signal in LSV at all

● Total efficiency is even larger due to thermalization signal
– Low background  cut with 1 PE threshold (~0.9% acceptance loss) →
– Will evaluate using 241Am13C source
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Results

● 118 live days of running 
– "First Results from the DarkSide-50 Dark Matter Experiment at Laboratori Nazionali del 

Gran Sasso"

– "Low radioactivity argon dark matter search results from the DarkSide-50 experiment"

● 2 neutrons vetoed that otherwise passed all cuts
– 1 radiogenic

– 1 cosmogenic

● 0 remaining backgrounds!
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Summary

● Detecting WIMPs requires extraordinarily low backgrounds
● Electron recoil backgrounds can be effectively removed using 

pulse shape discrimination
● Nuclear recoil backgrounds from surface radioactivity can be 

removed with position cuts
● Nuclear recoil backgrounds from neutrons can be removed 

with our highly efficient neutron veto
● DarkSide has collected 118 days of data background free



90

Further R&D

Surface backgrounds: The other nuclear recoil
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Po
210

Ar

Ar

Ar

ArTeflon

Wavelength shifter

Liquid 
argon
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Pb
206� �

Ar

Ar

Ar

Ar

● T1/22
Po-210

 = 138 d
● E ) = 5.304 MeV(�
● E(206Po) = 103 keV
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Pb
206� �

Ar

Ar

Ar

Ar

● T1/22
Po-210

 = 138 d
● E ) = 5.304 MeV(�
● E(206Po) = 103 keV

Nuclear 
recoil!

Usual strategy:
Position cuts

The problem:
● (x,y) reconstruction 

is hard
● Reduces exposure
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Pb
206� �

Ar

Ar

Ar

Ar

?

Our solution:
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PMT

Contains  spectralon cup
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Tested wavelength shifters:
● Tetraphenyl butadiene (TPB)
● P-Terphenyl (pTP)



100Using a 210Po needle source

20oC -190oC

TPB

pTP

Nuclear recoils

Electron recoils
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THE END
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Neutron Rates

● Expect ~10 radiogenic neutron single scatters in the TPC per 
year

● Expect ~581 cosmogenic neutrons to enter the TPC per year 
(far fewer will produce single scatters in the WIMP search 
region)
– FLUKA simulations show no events in 34 years where a cosmogenic 

neutron reaches the TPC and the LSV or WCD fails to trigger
– A. Empl et al. A Fluka study of undergroundcosmogenic neutron 

production. JCAP, Aug. 2014.
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Testing Prompt Response: Li(p,n)Be reaction

H
�

7Li1

n

Be7
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14C Measurement

Assumed:
     kB = 0.012 cm/MeV

Measured:
     LY = 0.56(1) PE/keV
     Rate = 245±27 Bq

Phase II
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Detection Mechanisms
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