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And it checks out!
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...and the evidence piled up...

leptons
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WIMPs: Thermal Relics
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WIMPs: Thermal Relics

Cosmological requirements:
* {oV) ~ 1026cm3/s

Weak interaction scale
* Mass ~ 100 GeV/c2
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WIMPs: Thermal Relics

Cosmological requirements:

e {(oV) ~ 10-26cm3/s : :
Weak interaction
 Mass~i0 eak inte lact on scale

Interactions with non-WIMPs will
be very rare
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WIMP Detection

i

e Earth moves through

WIMP wind
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WIMP Detection

i

-

e Earth moves through

WIMP wind
e WIMP scatters in
detector
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WIMP Detection

¢

e Earth moves through

WIMP wind

 WIMP scatters in
detector

* Detector produces a
signal
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Photo
Multiplier
Tubes

Cryostat

DarkSide-50

Gaseous

argon
—__ 50 kg liquid

argon
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Copper field
cage

DarkSide-50

Teflon
—~ reflector

(coated with
wavelength shifter)
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Liquid Argon Scintillation

e WIMP scatters of Ar
nucleus
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Liquid Argon Scintillation

e WIMP scatters of Ar
nucleus

* Ar nucleus recoils and
scatters off of other Ar
nuclei
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Liquid Argon Scintillation

e WIMP scatters of Ar
nucleus

* Ar nucleus recoils and
scatters off of other Ar
nuclei

e Ar atoms become excited
or ionized
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Liquid Argon Scintillation

e WIMP scatters of Ar
nucleus

* Ar nucleus recoils and
scatters off of other Ar
nuclei

* Ar atoms become excited
or ionized

* lonized and excited Ar
Fform dimers with ground
state Ar
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Liquid Argon Scintillation

e WIMP scatters of Ar
nucleus

* Ar nucleus recoils and
scatters off of other Ar
nuclei

* Ar atoms become excited
or ionized

 lonized and excited Ar
form dimers with ground
state Ar

* Dimers split apart and
release light

S1 Signal
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Liquid Argon Scintillation

e WIMP scatters of Ar
nucleus

* Ar nucleus recoils and
scatters off of other Ar
nuclei

* Ar atoms become excited
or ionized

 lonized and excited Ar
form dimers with ground
state Ar

* Dimers split apart and
release light

* lonized e drifted to gas
layer
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Liquid Argon Scintillation

 WIMP scatters of Ar
nucleus

* Ar nucleus recoils and
scatters off of other Ar
nuclei

* Ar atoms become excited
or ionized

* lonized and excited Ar
form dimers with ground
state Ar

* Dimers split apart and
release light

* lonized e drifted to gas
layer

» e scintillate in gas laygr

S2 Signal
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At

amplitude

S1

s

S2

What we can

learn:

* S1 - Recoil energy

* At = z-coordinate

e S2 PMT distribution —
X,y-coordinates

« S2/S1 and S1 pulse

-10_0 10 20 30 40 50 60 70 80 shape — recoil type

time (us)

27



WIMP events are



WIMP events are

Any backgrounds can easily hide a WIMP if we are not careful
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Backgrounds: 2 Types

Electron Recoils Nuclear Recoils
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Electron Recoils

* Produced by 8 decay of 3°Ar
or from incident y rays

e Eliminate with pulse shape
discrimination in LATr

 |onization/scintillation signal
ratio offers suppression
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Electron Recoils

* Produced by 8 decay of 3°Ar
or from incident y rays

e Eliminate with pulse shape
discrimination in LAr

 |onization/scintillation signal
ratio offers suppression
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Nuclear Recoils

* From surface background a decays

- Eliminated with fiducial cuts

* Neutron scatters
- Radiogenic (fission and (o,n)
reactions)
* From surrounding environent
* In detector components
- Cosmogenic (muon spallation)

« Cannot be rejected with pulse shape
discrimination
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So how can we remove
neutron backgrounds?



* Radiogenic (fission and
(a,n) reactions)

- From surrounding
environent

- In detector components

» Cosmogenic (muon
spallation)

Passive Shielding?
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* Radiogenic (fission and
(a,n) reactions)

- From surrounding
environent

- In detector components

» Cosmogenic (muon
spallation)

Passive Shielding?
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» Radiogenic (fission and
(a,n) reactions)

- From surrounding
environent

- In detector components

* Cosmogenic (muon
spallation)

Passive Shielding?
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Active Shielding

Water Cherenkov Detector Liquid Scintillator Vessel

* Provides shielding to the
LSV

» Can detect passing muons
that may produce a
cosmogenic neutron

* Boron-loaded to improve
neutron capture cross
section

» Detects neutrons and y rays
in coincidence with TPC

* Provides shielding and
vetoing of backgrounds

» Allows for in situ
background measurements
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* Radiogenic (fission and
(a,n) reactions)

- From surrounding
environent

- In detector components

» Cosmogenic (muon
spallation)

Active Shielding
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* Radiogenic (fission and
(a,n) reactions)

- From surrounding
environent

- In detector components

» Cosmogenic (muon
spallation)

Active Shielding
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* Radiogenic (fission and
(a,n) reactions)

- From surrounding
environent

- In detector components

» Cosmogenic (muon
spallation)

Active Shielding
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Vetoing Neutrons with the LSV

-10 0 10 20 30 40 50 60 70 80
T T e
time (us)

>

amplitude




Neutron Detection: Prompt Signal

amplitude
Ea—— %

-10 0 10 20 30 40 50 60 70 80
time (us)

* Neutron thermalization
e Very fast (< 100 ns)
* Prompt time cut — low background
— can cut with low threshold
» Signal size depends on neutron energy
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Neutron Detection: Quiet Time

05 ,

€2 2
\"(.’ % a’g‘
° O

amplitude

H)

H)

e Neutron random walk -10 0 10 20 30 40 50 60 70 80

* No signal produced time (us)
* Neutron random walks at thermal energies
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Neutron Detection: Capture Signal

amplitude

-10 0 10 20 30 40 50 60 70 80

* Neutron capture _
» Neutron captures on time (us)
e °B: 0=3837Db
e 'H:6=0.33b
* Produces 2.2 MeVy
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10B 1+ n

Neutron Capture on '°B

— "Li (1015 keV) + a (1775 keV)

A
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Neutron Capture on "B

OB +n— "Li%839 keV) + a (1471 keV) (93.7%)
TLi* 5T Fipetdys ke V)
— "Li (1015 keV) + &

keV) (6.4%)

Relatively high energy, easy to see
But ~8% chance it will go back into
cryostat unseen
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Neutron Capture on "B

B +n Li*(839 keV) + a (1471 keV (93.7%)
it ik 478 keV
TLi (1015 keV) + (6.4%)

Highly quenched to a total signal equivalent to an electron energy of ~50-60 keVee
Will always deposit all energy into the scintillator
If we can reliably see these, we can see neutrons
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AR
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Target vetoing efficiency: > 99.5%

The key to high efficiency is to efficiently detect
the o + Li
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Target vetoing efficiency: > 99.5%

The key to high efficiency is to efficiently detect
the o + Li

The key to detecting the a+Liis a high light yield
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Designing the LSV
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Designing the LSV
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Designing the LSV

Scintillator Cocktail:

* Pseudocuemene [PC] (50%)

e Trimethyl borate [TMB] (50%)
* PPO (3 g/L)

Reflector: Lumirror E6SR
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Designing the LSV

Scintillator Cocktail:

« Pseudocuemene [PC] (50%)

e Trimethyl borate [TMB] (50%)
* PPO (3 g/L)

Reflector: Lumirror E6SR

55



Designing the LSV

Scintillator Cocktail:

* Pseudocuemene [PC] (50%)
« Trimethyl borate [TMB] (50%)
* PPO (3 g/L)

Reflector: Lumirror E6SR
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Designing the LSV

Scintillator Cocktail:

* Pseudocuemene [PC] (50%)
e Trimethyl borate [PC] (50%)
* PPO (3 g/L)

Reflector: Lumirror E6SR
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Designing the LSV

Lumirror 188 E6SR Reflectance Measurements

&

—— 1 layer, dry
—— 1 layer, soaked 3 days
— 4 layers, dry

Reflectance [5]

1 layer, soaked 3 weeks
1 layer, soaked 4 months
1 layer, soaked 10 months

PPO
Emission
L

peak 700 800
Wavelength [nm]




Designing the LSV
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Prototype Tests

Measurements
* Light yield: 0.47 PE/keV
* Decreased by
0.52%/week

Optical Monte Carlo
e Light yield: 0.46 PE/keV
e Scaled to DS-50
geometry
e Light yield: 0.48 PE/keV
* High enough to detect
i a+Li
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See arXiv:1509.02782

Prototype Tests

Delayed AmBe Spectrum

102

0 100 200 300 400 500 600 700
Energy Deposited [keVee]

a+Li+y
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zNeutron capture producsts are detectable

Prompt signal is detectable
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Testing Prompt Response

63



Testing Prompt Response

F

Light output by scintillation event
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Testing Prompt Response

E E

Incident particle energy
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Testing Prompt Response

LY

High energy electron recoil light yield
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Testing Prompt Response

F =E- LY - QF(E)

Quenching fFactor
(depends on particle type and kinetic energy)
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Testing Prompt Response

F=F v,

1+kb-g—5

Quenching fFactor
Introduces substantial non-linearity for
nuclear recoils
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Testing Prompt Response

Polyethylene collimator
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Testlng Prompt Response

— o | I

Comudence
’ Detectors

— L|qU|d Scmtlllator
& De tecto r

!‘;.:,

At University of Notre Dame
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zNeutron capture producsts are detectable

gPrompt signal is detectable

72



Begin: The DarkSide
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The LSV: A Tale of Two Cocktails

e Phasel

Nov 2013 —Jun 2014
50% PC, 50% TMB
2.5 g/L PPO

Overwhelming 14C
contamination from TMB ~200
kBqg from atmospheric 14C

Neutron capture time ~2.2 us
High light yield >0.5 PE/keV

 Phase ll

Apr 2015 - Present
95% PC, 5% TMB
1.4 g/L PPO

New TMB made from petroleum —
much lower 14C rate ~250 Bq
(measured 4C contamination of new
TMB at the LLNL accelerator mass
spectrometer to be below background)

Neutron capture time ~22 us
High light yield > 0.5 PE/keV
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Original TMEB (50% concentration)

Replacement TMB (5% concentration)

Event Rate/PE

40 60 80 100 120 140 160 180 200
PE




counts

Prompt LSV-TPC Coincidence

LSV Energy Spectrum
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counts

Prompt LSV-TPC Coincidence

LSV Energy Spectrum

-

Ammu

800 1000 1200 1400 1600 1800 2000
PE
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Normal events
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Neutron Vetoing Efficiency

« Calibrations and simulations: vetoing efficiency
IS

- ~7.7% of neutrons capture on 'H; 2.2 MeV v lost ~8% of the time
* 0.62% loss from this channel
- ~0.23% capture after the LSV acquisition window has closed

- ~0.05% leave no signal in LSV at all
* Total efficiency is even larger due to thermalization signal

- Low background — cut with 1 PE threshold (~0.9% acceptance loss)
- Will evaluate using 241/Am3C source
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Results

- "First Results from the DarkSide-50 Dark Matter Experiment at Laboratori Nazionali del
Gran Sasso"

- "Low radioactivity argon dark matter search results from the DarkSide-50 experiment"

e 2 neutrons vetoed that otherwise passed all cuts
- 1 radiogenic

- 1 cosmogenic

* 0 remaining backgrounds!
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Summary

e Detecting WIMPs requires extraordinarily low backgrounds

e Electron recoil backgrounds can be effectively removed using
pulse shape discrimination

e Nuclear recoil backgrounds from surface radioactivity can be
removed with position cuts

e Nuclear recoil backgrounds from neutrons can be removed
with our highly efficient neutron veto

e DarkSide has collected 118 days of data background free
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Further R&D

Surface backgrounds: The other nuclear recoil
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Teflon-
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Usual strategy:
Position cuts
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Usual strategy:
Position cuts

e (x,y) reconstruction
is hard
e Reduces exposure
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Our solution:
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4
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PMT

Contains spectralon cup
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Tested wavelength shifters:
e Tetraphenyl butadiene (TPB)
* P-Terphenyl (pTP)




Nuclear recoils

1 800 1800

Electron recoils

i “‘Whhﬂﬂuhl-- (s

Pmﬁ!rﬂm-ﬂﬁ"ﬂl Imﬂ'"“' "“‘lﬁ

dphw

Using a ?'°Po needle source -






Neutron Rates

* Expect ~10 radiogenic neutron single scatters in the TPC per
year

« Expect ~581 cosmogenic neutrons to enter the TPC per year
(Far fewer will produce single scatters in the WIMP search

region)

- FLUKA simulations show no events in 34 years where a cosmogenic
neutron reaches the TPC and the LSV or WCD fails to trigger

- A. Empl et al. A Fluka study of undergroundcosmogenic neutron
production. JCAP, Aug. 2014.
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Testing Prompt Response: Li(p,n)Be reaction

103



14C Measurement

LSV !%C Spectrum
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Capture a

Capture a
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V/’

Capture on

Detection Mechanisms
. atlisigna | ysigna |

Prompt Signal
Capture a

Capture a

a+Li

(low E i

or thermalize
in cryostat)
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Prompt Signal
Capture a
Capture y

Capture a
Capture y

(low E L e

or thermalize
in cryostat)

Prompt Signal
Capture y

n/;
(high E)

Capture y

(1w E =
or thermalize
in cryostat)

Y

(n captures on det. mat)
Capture y

Capture on TH  |Capture on detector,
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Energy [keV_]
60 80 100 120 140 160 180 200

200 250 300 350 400 450
S1 [PE]
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