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ABSTRACT

In a previous study [1] the authors have shown that
the expected duration of visit by the windspeed to the criti-
cal velocity interval of a structural member is an important
time scale in determining the ultimate fatigue damage of
the member due to vortex-induced vibration in naturally
.time varying winds. In this paper, a Gaussian windspeed
assumption is introduced in which the expected duration
of visit can be expressed explicitly in terms of simple wind
statistics. This assumption is verified with high sampling
rate maritime wind data. The wind statistics necessary for
calculation of the expected duration of visit are extracted
from the raw wind data.

INTRODUCTION

Vortex-induced vibrations of structural members have
been the source of fatigue damage to offshore platforms
during fabrication and transportation and to flarebooms
during in-service conditions. To avoid failures, it is impor-
tant for designers to be able to predict such vibrations as
well as the resulting fatigue damage.

Current response prediction methods generally assume
that when the mean wind speed is within the critical wind
speed range for a given structural member, then it is ade-
quate to compute the steady state response of the member
and the associated fatigue damage rate. However, practical
experience has revealed [2] that these methods over-predict
the response, and, predict structural failures too frequently.

Fei & Vandiver [1] discovered from wind tunnel exper-
iments that large-scale variations in the mean windspeed

typically prevent vortex-excited vibrations of an elastic
cylinder from reaching steady state amplitudes. In other
words, if the duration of time that the windspeed stays
within the critical velocity range for the member is less
than the transient buildup time for the lightly damped
vibration of the member, then the fatigue damage rate is
reduced. When the wind is considered as a random pro-
cess, the ratio between the two time scales is important
in determining the ultimate fatigue damage rate. The two
time scales are the duration of visit by the windspeed to a
critical velocity interval and the rise time of the structural
response.

Based on the results of wind tunnel experiments, Fei
& Vandiver [1] proposed a probabilistic model for the pre-
diction of the expected fatigue damage rate of a structural
member excited by random winds. The model accounts
for the effects of unsteady windspeeds and finite structural
response rise times. The variability of the windspeed is
characterized by the expected duration of a visit by the
mean windspeed to the critical velocity interval of a par-
ticular structural member. For a stationary wind process,
Fei [3] has shown that the expected duration of visit de-
pends on the cumulative distribution functions and the
mean upcrossing rates of the windspeed evaluated at the
boundaries of the critical velocity interval.

In this paper, a Gaussian windspeed assumption is in-
troduced, which allows the expected duration of visit to be
expressed explicitly in terms of simple wind statistics. This
assumption is tested by comparison to results computed
directly using high sampling rate real maritime wind data.
Wind statistics, extracted from the data, are used in the
Gaussian model to predict the expected duration of visit.



These predictions are compared to the direct results.

EXPECTED DURATION OF A VISIT BY THE
WINDSPEED IN A CRITICAL VELOCITY IN-
TERVAL |a, b]

The duration of a visit by the wind speed to an in-
terval [a,b] is defined as the undisrupted length of time
that the wind speed spends between levels a and b. The
definition of the duration of a visit by the wind speed to an
interval can be illustrated in Figure 1. T4, the duration
of a visit to an interval, starts with either an upcrossing of
the windspeed at level o or a downcrossing of windspeed
at level b, and ends with either an upcrossing at b or a
downcrossing at a. In the same figure, 7}, 4 is the period
that the windspeed spends outside of [a, b].

In the case of random wind, the duration of visit is
a random variable that depends on the mean rates of
crossings by the wind speed at levels a and b. The exact
distribution of the duration of a visit by the wind speed
to an interval is not known except for very few random
processes {4). However, it was shown in Fei [3] that the
exact mean of the duration of visit can be calculated as fol-
lows, provided that the wind speed is a stationary random
process:

To derive the mean value E[7[, 4], we need to apply
a nonlinear transformation to the windspeed process V(t).
Let X(t) be a random process that can be derived from
V(t) in the following way:

X(@) =y - (V(t) —a)(V(t) - b) 1)

where y is an arbitrary positive real constant. -

This transformation, as expressed in Equation 1, estab-
lishes a nonlinear mapping from V(t) to X(t). Specifically,
the windspeed samples within the velocity interval {a,b]
are mapped to the samples of the process X (t) which have
the values greater or equal to y. The windspeed samples
outside the interval {a, b] are mapped to the samples of the
process X (t) which have the values less than y. Therefore,
calculating the mean duration of a visit by the windspeed
to the interval [a,d] is equivalent to calculating the mean
length of stay by the process X (t) above the level y.

Figure 2 shows the time history of the process X(t),
which is derived from the windspeed process V() shown in
Figure 1, through the nonlinear transformation expressed
in Equation 1. T, and T} are, respectively, the successive
times which X (t) spends above and below the threshold y.
Since a < V < b corresponds to X > y, thus Ty = Tja4;. In
the following, we will derive E[T}] in terms of the statistics

of X(t), then express E[7[, s} in terms of the statistics of

~

v(t).

E(T}), the mean value of T}, can be expressed as below
for a stationary random process X (¢) [5).

ET,] = 2
¥
where Fx (y) is the CDF of the process X (t) evaluated
at y. py is the mean rate of crossing the level X(t) =y at
positive slopes.

1-Fx(y)
+

Since ¢ £ V"< b corresponds to X > y, the proba-
bility of the windspeed within the critical velocity interval
is equivalent to the probability that the derived process
X (t) exceeds the level y. Since each upcrossing at the level
X (t) = y corresponds to either a simultaneous upcrossing
at the level V(t) = o or a simultaneous downcrossing at the
level V (t) = b, the frequency of crossing the level X(t) =y
at positive slopes is equivalent to the frequency of crossing
the level V(t) = a at positive slopes and crossing the level
V(t) = b at negative slopes. Therefore, Fx(y) and u; can
be related to the statistics of V'(¢) as follows.

1-Fx(y) = Fv(b)-Fv(a) (3)
By = vi+y ,
v+t 4)

where Fy(b) and Fy(a) are, respectively, the cumula-
tive distribution functions (CDFs) of the windspeed process
V(t) evaluated at b and a. v is the mean rate of cross-
ing the level V(t) = a at positive slopes, v} and v are
the mean rates of crossing the level V(t) = b at positive
and negative slopes respectively. Since every up-crossing
is followed by a down-crossing, v;* = v;. The mean rate
of crossing the level V() = 0 can be expressed as follows [5).

1 00
i=v=3 [ 1viavenn o

-0

where p.y, (v, ©) is the joint probability density function
(PDF) of the random process V/(t) and its time derivative
process V().

Substituting Equations 3 and 4 into Equation 2, we
arrive at the equation for the mean duration of a visit by
the windspeed to the critical interval [a, b].

Fy (b) - Fy (a)
R ©

Where Fv(c) is the cumulative distribution function
(CDF), which specifies the probability that the wind speed
is less than or equal to ¢; v} is the mean rate of crossing

ElT) =

* the level V() = ¢ with positive slopes, and:
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Fv(c) = (7)

/ pv(v)dv
0

o0

o=} /

2 -0

Where pv(v) is the PDF of the wind speed and

Py (v, ) is the joint PDF of the wind speed and its time

derivative. Usually lower case symbols are used as argu-

ments of PDF’s. Upper case symbols are used as real time

dependent variables. -

191y (c,0)do (8)

The windspeed interval [a,b] is usually determined
from the range of reduced velocities that will allow the
vortex shedding frequency from the member to lockin or
synchronize with the natural frequency of the member.
The reduced velocity is determined as V, = ‘,'( 5 Where
V is the windspeed. f, is the member natural frequency
and D is the diameter. The critical velocity of the member
is for the purpose of this study taken to be that value of V
which yields a reduced velocity of 6.0. The range, [a, b], of
the critical velocity interval is defined in terms of the lower
and upper bound values of reduced velocity for the interval
of windspeed which allow lockin. In this study those values
are taken as 5.0 and 6.5. The use of a reduced velocity of
6.0 and the proposed critical reduced velocity range (from
5.0 to 6.5) are based on extensive wind tunnel experiments
on a pinned-pinned beam [3]. These values may be ap-
plicable to most offshore structural members with both
ends attached since they have mode shapes similar, if not
identical, to that of a pinned-pinned beam.

It is clear from Equation 6 that the mean duration
of an undisrupted visit to a critical velocity interval de-

pends not only on the probability distribution of the wind

speed V(t), but also on the properties of its time deriva-
tive process, V(t), due to the dependence of Equation 6
on the mean rates of crossings. Mean upcrossing rates of
random processes can be calculated from Equation 8 for
known joint PDF of the windspeed and its time derivative.
- However Equation 8 is not the only way to calculate mean
upcrossing rates of random processes. Grigoriu [6] showed
that mean upcrossing rates of non-Gaussian random pro-
cesses can be determined from related Gaussian processes,
through a univariate, nonlinear transformation as follows.

Let Y be a Gaussian random process of the same
sampling rate and_total length as V(¢), which consists of
random variables ¥; of zero mean and unit variance. Then
there exists a real function h(Y;) such that

Vi = g(Vi) = Fy' (&(V:)) )
where @& is the CDF of ¥; and &) =

e f exp (—0.55%)dj. Since both Fyy and & are mono-
tones, g 7is guaranteed to possess one to one mapping. The
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mean upcrossing rate of level ¢ of the random process V(t),
can be obtained from crossings of level § = g~*(c) of the
stationary Gaussian process Y (t), since the g-function in-
creases monotonically and since V(t) and Y (t) upcross the
levels ¢ and § respectively at the same instances. Thus

-1
c 10
\/—¢(g (c)) ( )‘
where o; is the standard deviation of Y(t). It
can be determined from o; and the CDF of V() [6];

$(§) = —s=exp(—0.577) is the PDF of the standard normal
variable.

However, if the windspeed can be simplified as a Gaus-
sian process, then both the CDF and the mean upcrossing
rates can be expressed in the following standard analytical
forms:

_ ¢ 1 __(v V)
Fo(o) = /o ——exp( yiv (1)
o= e exp(- V)) (12)

where V is the mean windspeed; ov is the standard
deviation of the windspeed; oy is the standard deviation
of the time derivative of the windspeed (or the wind accel-
eration).

Combining Equations 6, 11 and 12, E[7, 5)} can be ex-
pressed explicitly in terms of wind statistics as given below:

b ( _'22
fa ;2:'0‘/ exp (— ”20‘; )d‘U

BlTenl = 5 a=V)2 b-7)2
225 {exp (- 282) + exp (- 6252 }
v v
(13)
AINTRODUCTION OF A GAUSSIAN WIND-

SPEED APPROXIMATION

In the analysis of random winds, the Gaussian windspeed
approximation is very attractive because the PDF of the
Gaussian windspeed pv(v) only depends on two statistics,
namely the mean windspeed V and the standard deviation
of the instantaneous windspeed ov:

(w-V)
20%

pv(v) = exp (- )

1
V2noy
Furthermore, the Gaussian windspeed approximation
enables the expected duration of visit to be expressed in
terms of only a few wind statistics. Before the Gaussian




windspeed approximation can be employed with confi-
dence, it must be verified using real maritime wind data.
It is known that natural winds are not always Gaussian
random processes. Nonetheless a Gaussian model can be
shown to be useful if it produces conservative engineering
predictions. ’ ‘

Raw wind data with varying mean windspeeds and
turbulence levels were evaluated. These wind data were a
product of a measurement program sponsored by the Statoil
Joint Industry Project on Maritime Turbulent Wind Field
Measurements and Models. Project members included:
Amoco Norway Oil Company, Conoco Norway Inc., EIf
Aquitaine Norge A/S, Exxon Production Research Com-
pany, A/S Norske Shell, Norsk Hydro, Statoil and Saga
Petroleum A/S. The database consists of several hundred
hours of high quality wind data, obtained at exposed sites
on the western coast of Norway. The raw wind data ana-
lyzed in this paper consisted of five hundred raw windspeed
records taken at 5 different elevations. Each raw windspeed
record is 40 minutes long with a sampling frequency of 0.85
Hertz. The 40-minute mean windspeed varied between 13
[m's™'] and 31 [m-s™!), and the turbulence level varied
between 7% and 30%. A description of the wind measure-
ment program and some wind data may be found in Odd
Jan Andersen and Jorgen Lovseth [7].

The Gaussian windspeed approximation was tested
in the following way. .For a given raw windspeed record,
the expected duration of visit, E[Ti,b)], was evaluated by
two methods. Method one was to evaluate Fy(z) and
v numerically from the raw record, and then calculate
E[Tla,5)] by definition in Equation 6. This value of the
expected duration of visit was defined as the Numerical
Duration. Method two was to estimate the sample wind
statistics ¥, ov and oy, from the raw record, and then
calculate the expected duration of visit by Equation 13.
Since Equation 13 assumes that the underlying windspeed
is a Gaussian process, the expected duration calculated
using this method was denoted as the Gaussian Duration.
The comparison between the Numerical Duration and the
Gaussian Duration should indicate the adequacy of the
Gaussian windspeed approximation.

Figures 3 and 4 show the variations of the Numer-
ical Duration and the Gaussian Duration with different
values of Veri¢ and therefore with different [a,b]. In Fig-
ure 3, twelve 40-minute windspeed records with similar
values of wind statistics (V = 15 [ms™!] and ¥ =0.17)
were selected, and the Numerical Duration corresponding
to each value of Vi was averaged across all 12 records.
The Gaussian Duration was calculated from the average
values of sample wind statistics from all 12 records. In
Figure 4, eleven 40-minute windspeed records with similar
values of wind statistics (V' = 20 [m-s™'] and 2¥ = 0.084)
were selected, and both the Numerical Duration and the
Gaussian Duration were calculated similarly.
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Figures 3 and 4 are typical examples revealing that
both the Gaussian Duration and the Numerical Duration
follow similar trends, and that more importantly the Gaus-
sian Duration appears to be a consistently conservative
estimate compared to the Numerical Duration. These ob-
servations also hold for wind records with different statis-
tics [3]. Since a conservative estimate in the expected
duration leads to a conservative estimate in fatigue dam-
age rate, the Gaussian windspeed mode! is a useful and
conservative predictor of fatigue damage.

ANALYSIS OF WIND STATISTICS FROM MAR-
ITIME WIND DATA

To implement the proposed probabilistic prediction
methodology requires the input of wind statistics and struc-
tural parameters. These wind statistics include the mean
windspeed V, the standard deviation of the instantaneous
windspeed ov, and the standard deviation of the time
derivative of the windspeed (wind acceleration) oy. In
this section, wind statistics ov and oy, are analyzed from
high-sampling rate real maritime wind data.

Figure 5 shows the observed values of ov as a function
of V at three different elevations. Each pair, (V, ov), was
calculated numerically from a 40-minute maritime ‘wind-
speed record with a sampling frequency of 0.85 Hertz.

The observed ov shows poor correlation with the mean
windspeeds. The scatter of the data is caused by differ-
ences in the atmospheric stability. When the atmosphere
is stable, the velocity fluctuation is generated only by the
shear gradient in the velocity profile, resulting in a small
value of ov. When the atmosphere is unstable, the veloc-
ity fluctuation is generated not only by the shear gradient
in the velocity profile, but also by unstable atmospheric
convection, resulting in a large value of ov. A strong at-
mospheric instability is characterized by a strong negative
temperature gradient in the vertical direction (higher tem-
perature close to ground).

To obtain the values of oy, the windspeed sequence
needs to be differentiated with respect to time using an
accurate numerical differentiation scheme. Figure 6 shows
the observed values of oy, as a function of V at three dif-
ferent elevations. The time sequence of V was derived
numerically from 40-minute raw windspeed records using
the central difference scheme.

At a given elevation, Figure 6 shows that o, is highly
correlated with V. ¢y, increases with V, suggesting higher
rates of turbulence production at higher windspeeds. At
a constant value of V, oy, decreases as elevation increases.
This is because the presence of the earth’s boundary layer
causes a larger shear gradient in the velocity profile near



the surface, which in turn generates more turbulence and
contributes to a larger oy,. It is worth pointing out that
unlike ov, oy appears to be independent of atmospheric
stability. The data in Figures 5 come from widely varying
stability conditions.

In terms of the expected duration of visit, the ratio
between ov and oy is more important than oy, as shown
in Equation 13. Mathematically -2-3-9;\’- is the inverse of the

mean upcrossing rate at the mean windspeed. Figure 7
shows the value of Z¥ as a function of V. This figure is

compiled from the da‘éa in Figures 5 and 6.

The scatter of the values of TX against V is caused

by the effect of stability on oy . Although stability is not
indicated in this plot, the minimum value of {}5— is 2.5

[s}] independent of mean windspeed and occurs in stable
atmosphere. It can be as large as 15 [s] 46 [m] above
ground, when the atmosphere is strongly unstable. 10 [s]
is an upper bound in all but 4 of the sample cases, and
is suggested as a rough rule of thumb for estimates of x

for maritime winds. Fei [3] shows that typical durations Xf
visit of the wind to critical intervals defined by a reduced
velocity range of 5 to 6.5 are from 10 to 20 seconds. Typical
rise times of structural members are given by ¢, = . -
where ¢ is the structural damping ratio of the structural
member. ¢, may be as large as 100 periods of vibration
for lightly damped welded steel members. For a typical
vibration frequency of 3 Hertz, this equates to a rise time
of 33 seconds. Therefore the typical rise time of a member
on an offshore platform is substantially longer than the
expected duration of visit to the critical velocity interval.
Steady state response is frequently not achieved and actual
damage rates are less than steady state assumptions would
predicg. (

e
2 !

CONCLUSIONS

The extension of these results to other geographi-
cal locations will require analysis of local wind statistics.
These results do not include the effect of variations of wind
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 direction. This is a topic for additional research.
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Figure 1: Duration of a visit by the wind speed to an interval [a, b]
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X 4 X = y-(V-a)*(V-b)
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Figure 3: Variation of average numerical and Gaussian durations with critical velocity, from 12 windspeed
records with V' = 15 [m-s~1] and large velocity fluctuations (5 =17%)
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Figure 4: Variation of average numerical and Gaussian durations with critical velocity, from 11 windspeed
records with V = 20 [m-s~!] and small velocity fluctuations (¥ = 8%)

8 ) 1 i I 1
7r +: wind data at 5 [m] : -4
o: wind data at 10 [m]

6r x: wind data at 46 [m] % B
— n o ]
gs .
>4t X X i
£ X
=y +4 ¥ octo ©
o3 ¥y ¢+ & OX x xx x X -

, & 8xx “x % X
X xR X

2r % x X 7

1F 4

0 1 | 1 i 1

5 10 15 20 25 30 35

40-minute mean windspeed [m/s]

Figure 5: Variation of oy with V at three different elevations
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Figure 7: Variation of mean upcrossing periods (=§‘é—) with V at three different elevations
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