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Cable strumming experiments were condutted at’ Castine, Maine in 1981 and from an
icebreaker in 1983. The purpose was to study the vibration characteristics of lorig flexible:
cylinders subjected to: vortex-induced oscillation. Particular emphasis was placed. on the
investigation of the relationship between in-line and cross-flow vibration, Under non-lock-in,
random vibration conditions, linear spectral analysis indicated that in-line and cross-flow

response were linearly independent of each other, while the results of modal analysis showed
that the moving average vibration energies in these two directions were strongly related. A
higher order spectral analysis was performed to demonstrate a non-linear correlation between
in-line and cross-flow vibration of flexible ‘cylinders excited by vortex shedding: in.‘both
uniform flow and sheared flow conditions. . ; R ;
The results of bispectral analysis demonstrated the existence of a quadratic relationship
between in-line and cross-flow motion under both lock-in and non-lock-in conditions. The
well-known frequency doubling phénomena in in-line response was proven to be the result of
such a quadratic correlation. : : , '

" INTRODUCTION

MANY TYPES of ocean-based structures, such as marine risers, TLP tension members, deep
water pipelines and hydrophone cables are susceptible to vortex-induced vibration. These
strumming oscillations are of great practical importance because they may cause failure
by fatigue. e ; g : e

The resolution of problems associated with prediction of vortex-induced vibration has
proven to be extremely. difficult, due to the complex; non-linear interactions between the
structural motions and the vortex-shedding. The well-known wake capture phenomenon
is a typical example of such non-linear interactions. A sampling of papers on this topic
can be found in Referénces [1]-[4]. S TS , ;

The emphasis in the literature - has been placed mostly on the study of vibration
characteristics in the cress-flow direction. The behavior in the in-line direction is much
less well understood. No attempt has been made previously to investigate the relationship
between cross-flow and in-line response, or equivalently, between lift and drag forces
under non-lock-in conditions. Even the answer to the preliminary question of whether
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they are correlated or independent is not available for non-lock-in conditions. In the
design of, for example, a marine riser, the correlation between the response in these two
perpendicular directions plays an important role in fatigue life estimation, because of its
relation to the stress statistics of the structure. ‘

One of the purposes of the experiments described in this paper was to study the
relationship between in-line and cross-flow response of long flexible cylinders under
realistic field conditions. These tests were more realistic than laboratory ones, because it
was possible to use cylinders of sufficient length so that many different natural modes
could be excited, simultaneously, in both directions. The experiments at Castine were
performed on flexible cylinders, 75 ft (22-86 m) long, which were exposed to a uniform
current. Measurements taken included current, drag, tension, and biaxial acceleration at
seven locations unequally spaced along the test cylinder. Linear spectral analysis of
lock-in and non-lock-in response data revealed little coherence between in-line and cross-
flow vibration. ,

A frequency doubling relationship between cross-flow and in-line response has long
been observed for lock-in conditions and has been evident in an approximate sense in the
broad-band spectral characteristics typical of multi-moded non-lock-in conditions.
Quadratic operations are known to have frequency doubling characteristics.

Furthermore, by a least squares error-minimization method, it was possible to evaluate
the individual modal contributions for in-line and cross-flow motions under lock-in and
non-lock-in conditions, thus enabling the computation of vibration energy. The results of
modal analysis showed that there existed a strong correlation between the drag coefficient
and the total vibration energy as well as a correlation between the in-line and cross-flow
vibration energy. The evidence suggested that a spectral analysis technique capable of
detecting quadratic system behavior was required. Bispectral analysis is specifically
sensitive to quadratic relationships. The cross-bicoherence spectrum ultimately provided
definitive evidence of a quadratic correlation between cross-flow and in-line response
under both lock-in and non-lock-in conditions. ‘

In linear spectral estimation the assumption is made that two different frequency
components in the same or different time series are independent of one another.
Therefore, if one computes the coherence between a sinusoidal signal and the square of
the same time series, the result is zero at all frequencies. This is because the process of
squaring generates a new time series, which has as its principal frequency component a
sinusoid at twice the original frequency. This can be proven by simple trigonometric
identities for sine squared. The squaring process is nonetheless explicitly deterministic and
there must be a phase relationship between the two time series. Linear coherence function
analysis is incapable of revealing such correlations. :

Quadratic operations are ones which involve squares or products of variables in an
equation or in times series. The bispectrum and the bicoherence are capable of revealing
such quadratic correlations. The bispectral estimator is nothing more than the expected
value of the product of three different Fourier coefficients which are computed by an
FFT. For example, the ensemble average of many independent computations of the
product between the ith, jth and (i+j)th Fourier coefficients will be zero, unless the
(i+j)th component is phase-related to the i and j components. This would be the case if
the i+j component had been generated by a product of terms involving the frequencies at
i and j. It will be shown in this paper that numerous quadratic relationships exist between
the in-line and cross-flow motions produced by vortex-induced lift and drag forces.

These conclusions are verified using data gathered at the experimental site in Castine,
Maine, and on very long cables deployed in sheared currents under the ice in the Arctic in
1983. ‘ : ' '
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THE EXPERIMENTS
CASTINE—1981

The site chosen for the experiment was a sand-bar located at the mouth of Holbrook
Cove near Castine, Maine. At low tide, the sand-bar was exposed, allowing easy access to
the test equipment, while at high tide it was covered by about 10 ft (3 m) of water. The
test section was oriented normal to the direction of the current which varied from 0 to
2-4ft/s (0-73 m/s) over the tidal cycle with only small spatial differences over the section
length at any given moment. The data-taking station for the experiment was the R/V
Edgerton, moored approximately 300 ft (91-5 m) from the sand-bar and chartered from
the MIT Sea Grant Program. Figure 1 shows a schematic diagram of the test section.

Hydrautic cylinder

. . ’ Current '
Tension ioad cell meter . . R
) / Drag measuring device

Te;t cylinder N } LY

Mudiine

Pivot joint
Anti-rotation bar
le 75 ft —>
.‘ . N
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Figure 1. Schematic diagram of the experiment test section.

A 75ft (2286 m) long instrumented cable was developed specifically for this

experiment. The outer sheath for the cable was a single piece of clear flexible PVC tubing,
which had an outer diameter of 1% in (3-18 cm) and an inner diameter-of 1-0 in (2:54 cm).
Three 4 in diameter stainless steel cables ran through the tubing and served as tension-
carrying members. Seven biaxial pairs of accelerometers were placed along the cable at
positions L/8, L/6, L/4, 2L/5, 5L/8, and 3L/4, where L is the length of the cable. The
accelerometers were Sundstrand Mini-Pal Model 2180 Servo Accelerometers, which are
sensitive to the direction of gravity. The biaxial pairing of these accelerometers made it
possible to determine their orientation and hence extract real vertical (cross-flow) and
horizontal (in-line) accelerations of the cable at the seven locations. For some tests the
composite cable was placed inside a steel tube of outer diameter 1-631 in (414 cm) and
inner diameter 1-493 in (3-79 cm), referred to as the pipe.
" A load cell mounted at one end of the test cylinder measured the horizontal shear force
on one end of the test cylinder. The cylinder and its two end supports were symmetric,
and therefore the measured force was one half the total drag force on the cylinder. Mean
drag force was measured. The load cell was a Sensotec Model 41, packaged for
underwater use. The current was measured by a Neil Brown Instrument Systems
DRCM-2 Acoustic Current Meter located 12-5 ft (3-66 m) from the west end of the test
cylinder and 2 ft upstream. It was set so that it determined the current at the level of the
test cylinders. The current was found to be spatially uniform to within 3-0% from end to
end for all current speeds above 0-5 ft/s (0-15 m/s). Additional details can be found in
References [5]-[7].
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THE ArRcTIC—1983

During an Arctic cruise in the summer of 1983 on the Research Vessel Polarstern, cable
strumming experiments were conducted in sheared currents near the ice edge in the
Frahm Strait close to the eastern coast of Greenland. The cables, up to 2000 ft (610 m)
long, were suspended vertically under the ice and provided data with hundreds of modes
responding simultaneously. Current profiles were recorded using the same acoustic
current meter, and acceleration was measured using biaxial pairs of piezoelectric
accelerometers. For complete details see References [8] and [9].

PRELIMINARY ANALYSIS OF THE DATA FROM CASTINE
DETERMINATION OF DISPLACEMENT RESPONSE AND DRAG COEFFICIENTS

The orientation of. the biaxial accelerometers was' initially unknown. However, the
accelerometers used were sensitive to gravity and gave a DC offset to the recorded signal
in proportion to the vector component of gravity. From the DC offset the accelerometer
orientation angle was obtained. After this angle was found, the in-line and cross-flow
accelerations were obtained by performing a vector rotation.

Once the in-line and cross-flow accelerations were found, it was necessary to undertake
a complex process to determine the displacement-time histories by double integration. In
the frequency domain, the transfer function of an integrator possesses a singularity at zero
frequency. Therefore, low frequency noise components near this singularity blow up and
smear the output signal from the integrator. To avoid this, an effective filtering and
integration procedure was developed. The details may be found in the thesis by
Jong [10].

A broad view of the data may be obtained by examining compressed 24 h records of
drag coefficient, current speed, and r.m.s. displacement response as shown in Figure 2.
Data was collected on the rising tide. This example represents one complete experimental
run. . , .

The data shown were calculated by a moving average whose window was 853 s in
length, which is long enough to average over many cycles of vibration, but short enough
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Figure 2. Moving average record of the r.m.s. displacement at L/8, current, and drag coefficient for the pipe.
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Figure 3. Cross-flow displacement at lock-in.

to show subtle variations in behavior. The displacement data were taken from location
L/6. Over the 24 h span of time shown in the figure, some periods correspond to lock-in
response, and others to non-lock-in. As the current speed fell within a lock-in range, a
substantial increase of cross-flow and/or in-line r.m.s. displacement was apparent. A
corresponding elevated -plateau in the drag coefficient is also observed. These are raw
r.m.s. displacements at the location specified and have not been corrected for mode shape.
Due to the fact that these raw data are highly positional and mode shape ‘dependent, the
in-line and cross-flow r.m.s. displacements in the figure do not give a good indication of
any relationship existing between the two. A modal analysis is required to represent the
behavior of the entire cylinder and to understand the relationship between in-line and
cross-flow motion. It is instructive to begin with sample time histories typ1ca1 of lock-in
and non-lock-in behavior, i

RESPONSE CHARACTERISTICS UNDER LOCK-IN CONDITIONS

Lock-in occurs when the vortex shedding frequency falls within a few percent of a natural
frequency of the cylinder. The vortex shedding process is synchronized with the cylinder
motion, and a stable, periodic, transverse displacement of nearly constant amplitude is
observed. Figure 3 shows an example of a cross-flow displacement time-history of the
pipe at L/4 during lock-in with the third mode. Figure 4 is the corresponding acceleration
power spectrum, presented on a logarithmic scale. The domina,n response peak is at
2:4 Hz. All spectra shown in: tlns ‘paper were, ‘computed using ‘a '100-pole maximum
entropy spectral estimator. [11] The input’was an autocorrelation . function 34s in
maximum lag, computed from 136 s of data. The sampling rate was 30 Hz.

In the in-line direction, the motion is quite different. A periodic displacement of non-
constant amplitude is apparent in Figure 5. Figure 6 presents the correspondmg
acceleration power spectrum. One important observation in this result is that the
dominant frequency in the in-line direction is 4-8 Hz, exactly double that in the cross-flow
direction. This frequency doubling phenomenon was always observed under lock-in
conditions.

By double integration of both measured in-line and cross-flow acceleration - time-
histories, it is possible to plot the trajectory of the motion of a point on the cylinder.
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Figure 4. Acceleration spectrum of cross-flow response at lock-in. f, =2-4 Hz; f3 = 4-8 Hz.

Figure 7 shows the motion at L/4 projected onto a plane which is normal to the cylinder
axis (orbital diagram). This point on the pipe prescribed figure-of-eight motions. In this
case the cross-flow motion resulted from lock-in of the third mode at a frequency of
2-4 Hz. The in-line motion was primarily at twice the frequency. of the cross-flow motion
and was dominated by response in the fifth mode. The fifth-mode natural frequency for
this cylinder is twice that of the third mode. Though at different frequencies the two
motions must be highly correlated.

At this point in the analysis, one does not generally know for certain which natural
modes of vibration are responding. It will in fact be shown that the in-line response,
though sharply peaked at one frequency, does not always correspond to a resonant
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Figure 5. In-line displacement at lock-in.
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Figure 6. Acceleration spectrum of in-line response at lock-in. fo = 2-4 Hz; f, = 4-8 Hz.
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Figure 7. Orbital motion at L/4 at lock-in.

natural frequency, as it does in this case. Under lock-in conditions it is always at twice the
cross-flow lock-in frequency.

RESPONSE CHARACTERISTICS UNDER NON-LOCK-IN CONDITIONS

When the vortex shedding frequency is outside of the lock-in range, non-lock-in vibration
results. The response is characterized by random fluctuations of amplitude and frequency
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Figure 8. Power spectrum of cross-flow acceleration at non-lock-in; £, = 1-70 Hz; fz=2-00 Hz; f. =320 Hz;
fp=640Hz.

in both in-line and cross-flow directions. The lift force correlation length along the
cylinder becomes much shorter than that at lock-in. Figures 8 and 9 show typical
acceleration power spectra in the cross-flow and in-line directions. Wide band lift and
drag forces are implied. Figure 10 shows the corresponding orbital diagram; the random
walk character of the figure gives no evidence of correlation. An important observation to
be made is that spectral peaks in the in-line response occur at frequencies which are equal
to the sums of various combinations:of two spectral peak frequencies in the cross-flow
direction. For example, peak E in Figute 9.at 3-70 Hz is the sum of 1-70 and 2-:00 Hz from

0

In-line acceleration power (dB)

.~ Frequency (Hz) .
Figure 9. Power spectrum of in-line acceleration at non-lock-in. f; = 3:70 Hz; fr = 490 Hz; f; = 810 Hz.
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Figure 10. Orbital motion at L/8 at non-lock-in. )
peaks A and B. Peak F in Figure 9 is at 4-9 Hz which, not coincidentally, is the sum of
the frequencies of the peaks A and C in the cross-flow spectrum shown in Figure 8. The
frequency doubling and summing phenomena seen in the lock-in and non-lock-in data
- suggest non-linear quadratic correlation. Furthermore, linear coherence between
displacements in the two directions is very low [10, 12]. In-line response peaks for both
lock-in and non-lock-in cases frequently do not correspond to natural frequencies. The
subject of which modes account for this response is an interesting one and will be
discussed in the next section.

MODAL ANALYSIS

In this section, a least squares error minimization method is used to estimate the modal
displacements of all the participating modes. Vibration energies in both directions are
then calculated from the modal displacements and the known mode shapes. By this
method of modal analysis, the response of the cylinder can be expressed in terms of a
superposition of mode shapes Y;(x) multiplied by the modal displacements P,(t) {10, 13],
ie. : ,

y(x, t) = 3 P(t) Y(x). 0]

In this experiment, the response was measured at seven unequally spaced positions. A
least squares method was used to estimate the modal displacement time histories in terms
of the measured responses at these seven positions. For each test case the response was
dominated by a finite number of modes, usually two to six in number. A/first guess at the
responding modes was obtained by inspection of the response spectrum at any one
location. By summing the normal mode responses over the apparent participating modes,
the following equations are obtained, where the range M -to- N covers all of the
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participating modes. For taut, constant tension, pin-supported, uniform cylinders, the ith
mode shape is given by a sinusoidal curve as
Y(x) = sin (inx/L). 2

At time t = t,, the response of position x = x; can be expressed as
N
y(xj5 to) = ,_ZM Py(to) Yi(x;) + E(xy), (3
where E(X)) is the error term. Rewriting equation (3) in matrix form,
{y} = [Y}{P}+{E}, @

where

y; is an element in the vector of the measured response at ¢,
Y,; is an element in the mode shape matrix,
P; is an element in the vector of the natural coordinates at ¢,,
E; is the error vector,
andi=M,N,j=117.
The sum of error squares, ee, is given by

ee = {E}T{E} = ({y} - [YH{PD"({y} —[Y{P}
= (T =2{P}TTIYT {0} +{PYIYT'[YI{P}. O

The vector of natural coordinates P; is to be determined such that the error squared term
is minimized,

min [ee] = min [{E}T{E}]. ©6)
et d(ee) ’
ap, (7)
and solye for P(1), i.e. , ;
o {P} = [[YI"LYTI'[YD " {3} ®
{P} =[T1{»}, | ' ©)

where [T] is the transfer matrix
[T1=I[[Y]'[YI]"'[Y] (10)

Equation (9) decomposes the measured response at the seven positions into the natural
coordinates, provided the mode shapes are known and the guess of the responding modes
is initially correct. Figure 11 shows an example of the in-line pipe displacement at-
position L/8. In the displacement spectrum, there are several -peaks, each likely
corresponding to one particular mode to be identified. Using the method discussed above,
the natural coordinate time histories were obtained for the 4th, 5th, 6th, and 7th modes.
These modal displacement time-histories are shown in Figure 12. Each time-history
represents an antinode displacement for that mode expressed in inches. A scale of —1 to
+1in is shown on the Figure. All modal time-histories are to be considered to have a
zero mean. Their sum, correctly weighted by the value of the respective mode shapes at
any particular location, would equal the displacement at that point.

At constant current speed, when the cylinder is at non-lock-in, the participation of
different contributing modes varies with time as illustrated in Figure 12. It is enlightening
to study this feature of non-lock-in response on a longer time scale. A 448 s record of non-
lock-in pipe response was analyzed and: the contributing modal displacements were
evaluated. Moving average r.m.s. modal displacement responses in both directions were
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Figure 11. In-line displacement at L/8 at non-lock-in; 4th, 5th, 6th, and 7th modes responding.

calculated. These are plotted (in inches) in Figures 13 and 14. The r.m.s. value of the
individual modal antinode responses are shown. Notice that as the response of one mode
recedes, another appears to take its place.

The amplitude scales on Figures 13 and 14 are to be interpreted as follows. Each modal
r.m.s. amglitude is plotted above a horizontal line representing zero deflection for that
mode. If the scale given on the left edge of the Figure and spanning 0 to 2-0 in (5-08 cm) is
moved upwards until zero corresponds to the zero line for the mode of interest, then the
response can be read-off directly. For example, the maximum r.m.s. response for mode 2
is approximately 0-72 in (1:83 cm).

The same graphical scaling method is used in Figure 15, except that the units of energy
are ft Ib and of current speed are ft/s. The drag coefficient is dimensionless.

4th mode

5th mode

In—line mode displacement (in)

7th mode T AR
=10

0 34
Time (s)

Figure 12. Natural coordinate time-histories for the dth, 5th, 6th, and 7th in-line modes of the pipe.
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Figure 13. Natural coordinate r.m.s. displacements for the 2nd, 3rd, 4th, and 5th cross-flow modes of the pipe.

Moving average vibration energies were calculated from these natural coordinates and

mode shapes in both in-line and cross-flow directions as shown in Figure 15. The
vibration energy is given by :

E(t) = 4L [EIP}(t)in/L)* + TP2(in/L)* +mP3(t)], (11)

where the dot denotes differentiation with respect to t. Obvious correlations exist between
in-line and cross-flow vibration energy and between vibration energy and drag coefficient,
as can be seen in Figure 15. The high plateaus in drag coefficient and response energy
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Figure 14. Natural cootdinate r.m.s. displacements for 3rd, 4th, 5th, 6th, énd 7th in-line modes of the pipe.
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Figure 15. Current velocity (ft/s) drag coefficient, and vibration energy (ft 1bf).

correspond to perlods when one mode was able to dominate the response, and lock-in or
partial lock-in over a portion of the cylinder existed. This figure represents flow
conditions at the boundary between lock-in and non-lock-in behavior. A scatter diagram
of the in-line vibration energy versus drag coefficient is plotted in Figure 16. The temporal
history is retained by connecting successive points as indicated by the arrows. A very clear
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Figure 16. Drag coefficient versus total in-line vibration eriergy.
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memory phenomenon is revealed. Drag coefficients are higher while going into lock-in
than coming out. ‘ ‘

As mentioned before, the in-line response frequencies are equal to the sums of pairs of
cross-flow response frequencies. It is usually not obvious which in-line modes respond.
Modal identification methods were used to provide the answer, with some very surprising
results. One interesting case is described below. -

For a taut cable, all of the natural frequencies are integer multiples of the lowest.
Therefore, under lock-in conditions, it is reasonable to expect that the fluctuating drag
forces will excite an in-line mode whose natural frequency. is twice that of the mode which
is responsible for the cross-flow lock-in. This is not always the case, however, as will be
shown. In the example, a modal analysis of data taken with the bare cable revealed that
the cross-flow vibration was a second-mode lock-in. It was expected that the unsteady
drag forces would excite the fourth in-line mode, because its natural frequency was the
same as the drag force fluctuations. However, modal analysis revealed that in-line motion
was in the third mode, instead of the fourth mode as had been expected. The frequency of
this third motion was not the natural frequency of the third mode, but was in fact equal to
the natural frequency of the fourth mode. The response was not resonant with the fourth
mode, but was an inertia-controlled response of the third mode.

Though not initially obvious, the explanation is quite simple and applies to all taut
cables and pipes with sinusoidal mode shapes. Under lock-in conditions the shedding of
vortices over the entire cylinder is essentially simultaneous, independent of the cross-flow
mode shape. Regardless of the symmetry of the cross-flow mode shape with respect to the
center of the cylinder, the in-line drag force fluctuations are symmetrically distributed.
Therefore, the in-line modal force for all evcn-numbe:ed modes is zero. In this example,
although the drag force fluctuations were at the natural frequency of the fourth in-line
mode (an antisymmetric mode), the dominant modal force corresponded to the third
mode (a symmetric mode), resulting in non-resonant third mode motion [10].

Similar peculiar results of non-resonant, in-line motion also happened under non-
lock-in conditions and can be explained with an understanding of the quadratic
relationship between in-line and cross-flow response.

BISPECTRAL ANALYSIS OF QUADRATIC CORRELATION

From the results of modal analysis there was substantial evidence of a quadratic
relationship between in-line and cross-flow response. Higher order spectral analysis was
required to study the correlation between. time-histories resulting from a non-linear
process. The bispectrum was used here to investigate the quadratic coupling between
response in the cross-flow and in-line directions [10]. General information on non-linear
spectral analysis may be found in References [141-[17].
For a stationary random time series x(t) the auto-bispectrum, B(w;, @), of x(¢) is
defined as: ;
Byx(0), ) = E[XijX;?+k]s (12)

where w; and w, are discrete frequencies.at which a Fourier transform has been computed.
X; and X, are the Fourier transform coefficients computed from the time series x(t) at
frequencies w; and w;, and X%, is the complex conjugate of the coefficient at ;. E[ ]is
the expectation operator and is computed as an ensemble average. The mathematical
definition of the Fourier transform -used is

X, = % LT x(£) exp (i) dt. ' (13)
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In this paper the bispectrum calculations were made in the following way. A stationary
time series was sampled at 30 Hz. Fast Fourier transforms of 100 segments, all 128
samples in length were computed. Ensemble averages using the 100 realizations were used
to compute each bispectrum point. The frequency resolution is therefore 0-23:Hz and the
maximum frequency in the spectrum is 15 Hz. The results are more easily understood
when plotted as coherence functions.

The auto-bicoherence spectrum, a normalized auto-bispectrum is

|Bxxx( wk)l
{E[IX;XkIZJE[|X Fal 1P

By using Schwarz’s inequality, it can be shown that the auto-bicoherence spectrum is
bounded by 0 and. 1. If the component at: w,+a>,,, is related by non-linear quadratic
coupling the auto-bicoherence spectrum will be close to unity. On the other hand, if the
component at o;+ @y is uncorrelated quadratically to the components at oy and w,, the
auto-bicoherence will be near zero. For this apphcatlon, the cross-bispectrum between
two time series x(f) and y(¢) is the most’ useful

Let x(t) and y(f) be two zero-mean jointly statlonary time series; then the cross-
bispectrum between x(¢) and y(t) is

Bxxy(wj, W) = E[Xij Yjﬁ-k] (15)
The cross bicoherence spectrum between x(t) and y(t) is
|Bxxy(wjg wk)' (16)
{EDX; X, 1EQ Y5223

The cross bicoherence spectrum also ranges from zero to unity. Bicoherence functions
require three dimensional plots, one axis each for frequencies w; and w; and a magnitude
axis.

(14)

bxxx(wj s wk)

bxxy(wj ’ wk) =

Lock-IN EXAMPLE

Figures 4 and 6 show the acceleration spectra for cross-flow and in-line motion under
lock-in conditions. The principal cross-flow peak occurs at 2-4 Hz and the principal
in-line response peak occurs at 4:8 Hz. The cross-bicoherence for this case, Figure 17, has
its highest peak at frequenc:es (fj» fi) =(2-4 Hz, 2:4 Hz). These figures are presented
showing frequencies ort two axes. The height is to be mterpreted as resultmg from moving
the base of any peak of interest down to the horizontal axis and then estimating the peak
height on the vertical scale of zero to 1-0, shown at the left of the figure. The vertical
frequency axis goes.from 0 to 7-5 Hz as shown on the right of the figure. Therefore, peak
X has a height of 1, and corresponds to a sum frequency of 2-4 Hz+2-4 Hz = 4-8 Hz. This
essentially perfect coherence is the result of a quadratic relationship between the 2-4 Hz
vibration energy in the cross-flow motion and the 4-8 Hz motion in-line.

NON-LOCK-IN EXAMPLE

Figures 8 and 9 show cross flow and in-line response spectra under non-lock-in
conditions. The cross-bicoherence for this case is given in Figure 18. The peaks labeled X,
Y and Z demonstrate the quadratic coherence between peaks E, F and G in the in-line
spectrum and peaks A, B, C and D in the cross-flow spectrum. For example, the peak E
at 370 Hz in the in-line spectrum occurs at the sum of frequencxes at A and.B
(1-70+2-00 Hz). The quadratic relationship is confirmed in peak X in Figure 18 which is
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“f (H2)

fk (HZ)

Figure 17. Cross-bicoherence between cross-flow and in-line response at lock-in. Frequencies:
X= S0 = (2:4,2:4).

£ (Hz)

0

f‘ (Hz)

Figure 18. Cross-bicoherence between cross-flow -and in-line response at non-lock-in. Frequencies:
X=(fnfo) = (1:70,200), fr=fi+fp Y=(f0f)=(170,320), fi=fi+fe. Z=(fsfp)=(1-70,6-40),
Je=Sfut/p

at (f;,f)=(1-7,2-0Hz) and is near 06 in height. Other similar correlations are
specifically indicated in the Figure.

SHEARED CURRENT EXAMPLE

The bispectrum results shown so far are for the uniform flow, low modal density data
obtained at Castine. To investigate the extent to which the hypothesis of quadratic
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Figure 19. Linear spectrum of acceleration response from the Arctic experiment.

correlation can be generalized, a much different data set was needed. The Arctic
experiments conducted by Vandiver and Kim were in sheared flows, using cables which
were long enough to have flow-induced vibration properties characteristic of infinitely
long cables [8, 9].

The test cable, 975 ft (297 m) in length, in this example, was suspended vertically from a
research vessel with a heavy weight at the bottom end. An accelerometer was located at
100 ft (30-5 m) from the bottom end of the cable, orientated at an unknown angle to the
flow. The measured response had both in-line and. cross-flow response components in it.
Figure 19 shows on a linear scale the FFT power spectrum of the measured response with
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Figure 20. Auto-bicoherence of single-axis acceleration data from the Arctic experiment.
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peaks at 4, 8, 12 and 16 Hz. Figure 20 shows the auto-bicoherence for these data
revealing numerous peaks of high coherence. The most notable one is at
(/3> /) = (8-0, 4-0 Hz), thus demonstrating that quadratic correlation exists even in a long
cable, with sheared flow.

CONCLUSIONS

A variety of field vibration data has been used to demonstrate that for all conditions
studied including lock-in, non-lock-in, uniform and sheared flow, quadratic correlation
exists between in-line and cross-flow vibration components.

These results suggest that the time series modeling or prediction of the vibration
response of marine risers, cables, pipelines and other cylinders exposed to currents should
take into account these non-linear correlations. This is especially true when fatigue
damage prediction is a concern, because fatigue is dependent on stress statistics and these
depend on the correlation between various vibration components.

When estimating stress statistics for mechanical systems, it is desirable and often
assumed that the stress-time histories can be modeled as Gaussian random processes. It
is a mathematical fact that if the bispectrum of a time series is non-zero, the time series is
not the result of a Gaussian or normally distributed random process. It is not appropriate
to model flow-induced vibration as a Gaussian random processes.

This paper has demonstrated strong quadratic correlation between cross-flow and
in-line vibration caused by vortex shedding. This suggests that it should be possible to
identify the second-order non-linear transfer function which can relate the cross-flow to
the in-line vibration. In other words, given the cross-flow time series and the proper non-
linear transfer function, one should be able to model or predict the resulting in-line
vibration. This has been done by the authors and is presented in References [10, 12].
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