~*

OTC 5006

The Prediction of Lockin Vibration on Flexible Cylinders in a

Sheared Flow
by J.K. Vandiver, Massachusstts Inst. of Technology

Copyright 1985 Offshore Technology Conference

This paper was presented at the 17th Annual OTC in Houston, Texas, May 6-9, 1985. The material is subject to correction by the author. Permission to

copy s restricted to an abstract of not more than 300 words.

* Abstract

A method is proposed for the prediction of
the flow induced vibration response of flexible
cylinders such as cables, pipes, and risers, in a
sheared flow. The significance of material and
hydrodynamic sources of damping is discussed. The
reduced damping or response parameter plays a key
role in response prediction. However, the
dependence of the response parameter and therefore
the response amplitude on the ratio of cylinder
mass per unit length to the displaced fluid mass
per wit length is shown to be widely
pisunderstood. Under lockin conditions, damping is
important in determining response amplitude, but
cylinder mass per unit length is not.

Introduction

Flexible cylinders, such as cables, drill
pipe, and marine risers, often exhibit an harmonic
flow induced vibration response known as lockin.
Under uniform flow oonditions, lockin has been
extensively studied and empirical response
prediction techniques are often adequate.

However, real ocean applications often require
response prediction under non-uniform (sheared)
flow conditions. Very long cylinders with closely
spaced natural frequencies rarely exhibit lockin
behavior and frequently behave ms infinite strings
(1). For shorter cylinders, with well separated
natural frequencies, lockin with one mode is
possible, even in the presence of shear. However,
in such cases, response amplitude is very
difficult to predict and it is often difficult to
determine which mode, if any, will dominate the
response. In this paper, a method for predicting
lockin in a sheared flow is proposed. The method
makes extensive use of the concept of the response
parameter or reduced damping, as it is sometimes
called.

A very common misconception regarding the
response perameter is pointed out. The response
parameter is shown to be primarily a function of

damping and is specifically not a funotion of the

cylinder mass per unit length.

References and figures at end of paper.

Normal Mode Model of lockin Vibrations

A pipe or cable under tension heas, from an
analytical view, an infinity of natural modes.
When the cylinder is deployed with ite
longitudinal axis normal to an incident uniform
flow, vibration is caused by the shedding of
vortices in the wake of the cylinder. The vortex
shedding process generates both fluctuating lift
and drag forces on the cylinder. Under the
correct circumstances, described extensively in
the literature, (2,3) a phenomena known as lockin
may occur. Lockin is characterized by the
synchronization of the wake with either the
cross-flow (1i1ft direction) oscillations or with
the in-line (drag direction) vibrations. This
paper focuses on cross-flow lockin only, in which
one croes flow mode dominates the response. At
lockin in & uniform flow the 1lift forces are
coherent over the entire length of the cylinder.
A normel mode sélution to the partial differential
equation of motion may be obtained, and is briefly
reviewed below.

Consider a beam or string under temsion with
fixed ends as defined in Figure 1. Let the
vortex-induced cross-flow displacement be given by

y(x,8) = § q (6)¥, (x) (1)
i

where the v,(x) are the mode shapes and the q}(t)
are the moddl amplitudes. Using the method o
normal mode superposition, and assuming
insignificant demping related intermodal coupling,
a set of independent equations of motion are
obtained, one for each mode. These equations are
of the forms

u 193 )

iqi+R + K

19 = Ni(t)

This equation ie eimply that of a linear, single
degree of freedom mass-spring-dashpot system

" excited by a force N,(t), known as the modal
exciting force for n%de i. There exists one such
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equivalent oscillator for each mode of interest.
Mi’ Ri’ and Ki are known respectively as the modal
ngss, damping and stiffness. The ratio of K, to ¢, = /2 (1)
M dyiolds the undamped natural frequency for the
node. 1
|1, ()| = 7K (12)
wy = \/l(j_/M:L (3)
' Therefore, the response magnitude is
M, and R, are given by the following equations: .| INil 1
qi ‘. K. 2;- (13)
L 2 i i
M, = J m(x)¥,(x)dx (4)
i 0 i
L 5 The term Ni/K1 is the static deflection of the
ni = [ rx)¥(x)dx (5) oscillator” in"response to & constant force N,, and
0 the term 1/27, 1s the dynamic amplification factor

where m(x) and r(x) are the mass per unit length
and equivalent linear damping coefficient per unit
length. m(x) includes the added mass of fluid and
r(xg has units of force per unit velocity per unit
length.

The dampiné fatio for mode 1 is given by

Ry
;. =
i 2“1“1

(6)

If one specifies an hermonic input and assumes an
harmonic output of the following forms

iwt ’
N (e) = [N | e v , (7

. . i(wt-
ay(t) = [q | et15®

then & solution for the magnitude of the response
per unit input force and the phase between the
force and the response may be directly obtained.

la, | N

1
2 |H (w)] = (9
N i w2 w22
(1= "+ (2g; =7
i

i

-1 2z (u/w
¢ = tan ~ [ 3 ] (10)
w
(1- -3 )
9y

B, (y) is known as the frequency function or the
reaponee amplitude operator (RAO).

-At resonance, the frequency of the external
excitation is equal to one of the natural
frequencies of the system, indicated here as u, .
If the corresponding modal damping ratio is small
then the response of this mode will dominate the
response of all other non-resonant modes. This is
the case under crose-flow lockin conditions in a
uniform flow. Therefore, it is appropriate to
model the crose-flow, resonant lockin response in

terms of the normal mode equivalent single degree °

of freedom system reviewed above.

At reaonanco, the magnitude and phase of the
response reduce to .

(8) -

due to the resSonance. Invoking the definition of
the damping ratio, z,, from Equation 6, thie
response expression %an be rewritten as:

X

la; | = wR, L

This expression will be of considerable use in the
next section, on the interpretation of the
response parameter. Henceforth, all discussion
will pertain to the response of a single mode.

Understanding the Response Parameter, S, = g /u

Due to a natural evolution in the
understanding of the factors which determine
lockin response behavior, over the years this
eritical parameter has been expreaaed in many
forms, reviewed below.

Response parameter:
2

S = cs/u = 218, ks ' (}ST

Structural demping ratio:

Gs Ri
s T T Zum, (16)
11
Mase ratio:
2
Ho= ‘—%D"T ’ (17)
8178, 'm
t
Reduced damping:
2m6s 4nmcs
ks 3 "7 ae
pD pD
Responee parameter
. 81!25 2m§
S = —t 8 : (19)
G pDz .

s is the damping ratio due to structural
diaaipation of energy only, and does not include
hydrodynamic sources of damping. 6’ is the
associated logarithmic decrement. 1 is
proportional to the ratis of the displaced fluid
mass per unit length m0D“/4 to the mass (including
added mags) per unit length of the cylindor, m.
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For cylinders that do not have a constant mass
per unit length, the m in these equations is
replaced with an equivelent uniform mass per unit
length m_, m_is the equivalent constant mass per
unit length wlich would yield the same modal mass
from BEquation 4 as the actual variable mass per

unit length m(x). Therefore
L 2
f m(x)\}‘i (x)dx
m =2 (20)
e L 2
f Wi (x)dx
~ 0

For the remainder of this paper, a constent mass
per unit length m shall be assumed, to simplify
the analysis. '

D ie the cylinder diameter, assumed constant,
and S, is the Strouhal number given by

(21)

where f_ ig the vortex shedding frequency and U is
the fre8 stream fluid velocity. At lockin the
natural frequency and the vortex shedding
frequency are assumed to be equal.

(22)

n(ni
Over many years the variety of these evolved forms
has led to confusion and misinterpretation of the
significance of the various terms which form the
response parameter SG'

21rfs = ms = 2ﬂStU/D

The most serious misinterpretation 1s the
implication that lockin response amplitude depends
on the mass ratio, M. It has been generally
believed that very dense cylinders respond with
lower amplitudes than low density ones, This is
not true. It is in fact dependent on fluid
exciting forces and structural damping (not
demping ratio). The mass per unit length of the
cylinder is only important in determining the
natural frequency. The validity of these
statements can be demonstrated by simply drawing-
upon definitions, as shown below.

From Equations 18 and 6
4ﬂme(s

k = =
s op? oD% 20

4mm R,
e i (23)

M

Using the definitions of modal mass, and
effective mass per unit length from Equations 4
and 20 ylelds, .

2mR, S
= 24

kg L (24)

pD wy é?i (x)dx

For the case of constant damping constant per unit
length, r(x)=r

21

2
pD wi

k = (25)

If k, is not a function of n{x) then from Equation
15 neither 1is SG'

Sg = 2"St2ke (15)
2.2

5 an’s R,

G=

L
pDzw. S Y 2(x)dx

i i

0

Ri is the equivalent, linear, structural modal
damping. The actual source of damping may not in
fact be linear. For most interesting vibration
cases the damping is low and for any specific
steady state response amplitude an equivalent
linear damping is an acceptable approximation.

There is experimental confirmation that SG
and hence the predicted response do not depend
specifically on the mass ratio but on the ratio
tg/u. As shown, this is because in taking this
ratio the dependence on mass per unit length
cancels out. Griffin in reference (7) presents a
plot of response amplitude, 2Y/D, versus reduced
velocity Vr=U/f D where f_ 1is the natural
frequency. ThiB figure 18 reproduced in figure 4.

Two different cases are shown, one in air and
one in water. For both the ratio ¢_/u 1s
approximately constant. However, the dampin
ratios and therefore the mass ratios are different
by an order of magnitude. Bothelo has also
obserzg? this apparent lack of specific dependence
on . .

Both Griffin and Botelho have pointed out
another interesting fact, which cen be seen in
Figure 4. The in.water case haes a larger damping
ratic, by a factor of 10, and therefore it has a
much broader bendwidth, than the in air case with
lower damping. The halfpower bandwidth for a
linear oscillator is equal to Zciw . Thus one
would expect to see a wider region of large
anplitude response in a figure such as 4, for
those cylinders with larger damping ratios. This
author is of the opinion that the consequence of a
higher damping ratio is to make lockin vibration
of the cylinder less sensitive to local variations
in flow velocity (hence reduced velocity) and
therefore more tolerant of shear. In other words,
two geometrically similar cables with the same
reduced damping but different damping ratios will
respond differently to & shear. The one with the
higher damping ratio will likely experience lockin
over a greater portion of its length.

For most engineers S, has little physical
meaning. In the next secgion, an attempt is made
to clarify it. .

An Interpretation of SG' The_Response Parametef

- No one denies its importance but a common
sense interpretation is needed for S,. To develop
one requires a statement of the equation of motion
for the normal mode excited at resonance during
lockin. At lockin the 1lift force per unit length
in phase with the cross-flow velocity of the
cylinder can be expressed as '

£(x,t) = 1/2 pUzDCL(x).iwit (27
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The model exciting force is given by
L

N, (t) = / f(x,t)¥ (x)dx (28)
i 0 i

t

21' iw
= 1/20U°DS C (%) ¥, (x)dxe i (29)
0 L i

Using the expression in Equation 29 for the modal
exciting force, the non-linear feedback mechanisms
which control response amplitude have been
replaced with an equivalent linear exciting force
in phase with the velocity of the cylinder.
Implicit in this expression are the following
assunptionss

i. The 1lift coefficlient C,(x) must be chosen to
yield the response amp&itude which would be
observed in an experiment and can be
estimated from compiled date of SG versus
response amplitude, Figure 2.

ii. lockin exists over the entire cylinder
length.

1ii. The modal damping on the left hand side
arises from non-hydrodynamic sources only.
This i8 because cL(x) is a 1ift coefficient
which reflecte the net fluid dynamic force on
the cylinder. It is in fact the difference
between 1ift force in phase with the velocity
of the cylinder due to circulation, and fluid
resistive forces due to pressure drag and
friction drag opposing the cross-flow
velocity of the cylinder. In an experimental
sense the net 1lift force is the only
measurable quantity and is therefore used
here. Under shear conditions, lockin over a
portion of the length is likely. Outside of
the lockin region fluid drag forces will have
to be estimated and used to modify the
estimate of R,, This will be addressed in
the section oni response predicton in sheared
flow.

iv. Fluid forces in phase with the displacement
and acceleration also exist. They are
assumed to affect only the fluid added maes
of the cylinder and are included in the
expression for the modal mass, Mi‘

Let the integral shown below be defined as
P, where the u refers to the uniform flow case,

L

P = g CL(x) Wi(x)dx (30)

Recalling Equation 14, an expression for the modal
response amplitude at resonant lockin can be found

v | 5 o00”
lq:Ll " W.R, R Pu (31)
i'i ii

From Equation 1 the response magnitude of the
entire cylinder to the one resonant mode is

y(x) =]QJwi(x) (32)

which, when expressed as a double amplitude in
diameters peak to peak, can be written as

2y00) 2|q,| ¥,
D D

Substitution for lqil from Equation 31 leads to

2{N,|[ VY.
2y(x) _ l 1| 1(X) (34)
D Dw,.R,
ivi
pUz‘l’i(x)P‘.l
=g (35)
W%
Recalling that
B wiD
U= (23)
2’rrSt

and the expression for S; in Equation 26, leads
to:

2y(x) _ Puwi(X) (36)
D L 2

s.J ¥, (x)ax

GO i

The maximum response occurs at the maximum value
of the mode shape and therefore

2yxgax - Pu\l’i,max (37)

L >
S S ¥, (x)dx
G 0 i

Therefore, S; 18 a dimensionless group which
1s an integral part of the expresasion one finds
for a prediction of response amplitude, and
therefore an experimentally observed dependence of

response on S, should not be surprising.

Griffin (,4) has compiled and published data
relating S, to observed response. These data are
given in Fﬁgure 2 and represent the results of
many different types of experiments, including
cantilevers, spring mounted cylinders, pivoted
c¢ylinders and cables.

The horizontal axis is SG
and the vertical axis is -
' 1
2y I.2
_Tmax i (38)
DY,
i,max

2(33) .
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where ? V? (x) dx i. The modal response amplitude for each must be
o the same and therefore from Equation 14
I, =1 (39) .
§ Wi (x)ax N, N, g
For example, a string or a beam with pinned ends wR = wR 42)

and constant tension have mode shapes which are
given by
iTx

Wi(x) = sin (—E— ) (40)

and Ii = 3/4 (41)

Other values for I, corresponding to different
mode shapes are gi%en in Reference 4,as is a table
identifying the source of the data used in Figure

The factor I 1/2/w pax Y28 used in an attempt
to reduce the sca%ter iﬁ 5fotting response data
for many different types of structures versus S..
That this was the appropriate factor to use to
accomodate various mode shapes was based on the
assumption that the wake oscillator model
correctly predicts response. Implicit in the wake
oscillator model are particular assumptions
regarding the epatial variation of C.(x). This
author is of the opinion that such models are only
approximations and that much of the scatter in the
data is due to the fact that the correction factor
has substantial error for some types of mode
ghapes.

It should also be noted that only very little
of the data shown in Figure 2 is derived from
cables and beams under tension such as risers and
casing strings, which have essentially sinusoidal
mode shapes. In the last few years a large amount
of experimental data have been accumulated on such
cylinders, and should be compiled in a separate
plot of 2y /D veygus S; without correction
factors sudh as I /¥y pax-

A Proposed Equivalent Response Parameter for
Sheared Flow: §GE

Under shesred flow conditions lockin mey
occur over a limited portion of the cylinder
defined by the range X, o X,. For sections of
the cylinder outside o} this“range lockin does not
occur and energy 1s lost due to hydrodynamic
damping. In the analysis to follow it is assumed
that only one mode has significant response, and
even though exciting forces do exist outside of
the lockin region they are not at the natural
frequency and cause insignificent response. The
method proposed is intended to be used to evaluate
several possible vibration modes, one at a time,
to determine which if any is likely to dominate
the response.

A substantial database exists, which
tabulates observed response versus the response
parameter, SG’ but for uniform flows only. The
approach proposed here takes advantage of this
existing database by providing an estimate of the
response parameter of an equivalent cylinder in a
uniform flow, which would behave the same as the
cylinder in the sheared flow. In order to be
equivalent, both the cylinder in the sheared flow
and the equivalent cylinder in the uniform flow
must have the following characteristics.

where the subscripts e and s refer to the
equivalent and sheared cases respectively.

1i. The exciting force over the regionm x, to X,
must be the same for both cases. Outside &f
this region the forces contributing to lockin
are assumed to be zero for the sheared case,
and appropriate to that of a fully locked in
cylinder in the equivalent case., The
equivalent cylinder experiences lockin over
its entire length and therefore additional
pover is fed into the resonant mode outside
of the region x. to x,. In order for the
response amplitude to"stay constant the modal
damping in the equivalent cylinder must be
increased, so as to dissipate the greater
injected power.

Solving for the equivalent damping

R, —= (43)

The equivalent response peresmeter is obtained
directly from Equation 26.

2. 2
s 4n st Rie
GE = 2 L
pD w, F ¥, (x)dx
o

(44)

2, 2

8178 "m g

= ____E_Es_és (45)
pD

where
R,
7, = 5—55- (46)
1e wi 4 -

and m_ is defined in Equation 20. It remains to
obtaif a detailed expreseion of R, in terms of
R,_, and Nie/Nia' From Equation §§ and item (ii)
a%Sve,-

L
é cL(x)vi(x)dx B, o
Nie/Nis = x2 = ;:
S c_(x)¥, (x)ax
L 1
%

and from Equation 5

L

R, = / (r_(x) + r (x)¥, 200dx (48)
0 8 h i B ) ]

is
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where r_(x) and rg(x) are the structural and

hydrodyﬂamic damping constants per unit length,
respectively. For the sake of example, let r (x)

and r, (x) be constant everywhere except in th

reglon x, to x, vhere r (x) the hydrodynemic
damping_ls required to be zero. This leads to
Lo 2
Ris ™ (rs+rh)£ ¥ (oax
X
-7 2rh‘i‘iz(x)dx (49)
xl

Perhaps the most convenient form in which to
express S,n is in térms of the 8g for the actual
cylinder gn a uniform flow.

Therefore from Equations 26, 43, and 44
(50)

where the subscript u has been added to clarify
which quantities come from a uniform flow case and

which are due to the sheared conditions. This
expression reduces to x
2, 2
P SOy, % (x)dx ‘
u 'h Th %1t
SGE = ;;[l + ;: - ;; E———;*-———]SGU (51)
S ¥, " (x)ax
0 1

Both the quantity in brackets and the ratio Pu/Ps
nust always be greater than or equal to one.

Therefore S, 1s always greater than or equal to
SGE' Note %gat in the limit as the sheared flow
bécomes uniform, Sqg equals Sgu» @8 expected.

To proceed farther requires knowledge of
C. (x), the lift coefficient. As an instructive

eXample, but admittedly without experimental

Justifications, let CL(x) be proportional to the
mode shape Vi(x). ‘

Cp(x) = Cp ¥, (x) (52)
Then the expression for Pu/Ps in Equation 47
simplifies greatly and

L
i ?.2(x)dx
‘h, o * h
SGE = [(1+ ;—) P ——— ;v] SGU (53)

IZY 2(x)dx
xl i

Continuing the examplé, agsume that the second
mode of a cable with the mode shape

21X

L

is excited over one fourth of its length; x,=0 to
x2=L/4, as shown in Figure 3. In that case,

3r
h
sGE (4 + rs) s

If the distributed damping per unit length has
equal hydrodynamic and material components, then

Yé(x) = sin €54)

QU (55)

SGE = 7SGU. (56)

In this particular example, the cylinder in a
sheared flow, with the top quarter of its length

experiencing lockin in the second mode, would
respond at the same amplitude as the same cylinder
in a uniform flow but with a response parameter
seven times as great.

Conclusions_and Recommendations

If only one mode has a natural frequency
excitable by a sheared flow, then a worst case
prediction is given by the method described above.
However, if two or more modes are potential
candidates for resonant lockin excitation then the
equivalent response parameter for each should be
computed. The mode with the lowest SGE is the
most likely lockin candidate. If two or more
modes have low S B values, multimodal non-loeckin
response or beatgng between modes may be obgerved.

The accurate response prediction of flexible
cylinders in sheared flows requires much more
experimental data. Areas of particular weakness
are: 1. the current state of knowledge of the

. hydrodynamic damping on the non-locked in regions

of ‘a cylinder; ii. the form of C,(x) for both
uniform and sheared cases; iii. e means of
estimating the extent of locked~in regions in
sheared flows; iv. the dependence of the locked-
in region on damping ratio and bandwidth..

One model for predicting the locked~in region
has been offered in the literature (5,6).
Experimental observation is needed.

Nomenclature
Cp,(x) 1ift coefficient
D cylinder diameter
I, vortex shedding frequency (Hz)
H, (w) frequency response function or RAO
Ii mode shape correction factor
K modal stiffness ’
ke reduced damping
L length of flexible cylinder
4 modal mass
mym(x) constant and variable mass per unit
length
L constant m equivalent to a variable
m(x)
N modal force
Nie equivalent system modal force
Nia modal force for sheared case
Pu’ Ps integrals in uniform flow and sheared
cages .
qi(t) modal amplitude
Ri modal damping constant
RieRia Rj in equivalent and sheared cases
SG response parameter
SGu’SGE S_:for uniform flow and sheared
flow equivalent
St Strouhal number -
U free stream velocity
Vr reduced velocity

X longitudinal coordinate

Xy 4 X, range of lockin

ylx,%),y(x) cross flow response amplitude

Ypax maximum velue of y(x)

6’ logarithmic decrement for structural
damping

5y modal damping ratio

[ structural modal damping ratio

z equivalent ¢ '

oi® X frequency (r&diana[aec) ,

wy natural frequency
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