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The human visual system possesses a remarkable ability to detect and identify faces even under 
degraded viewing conditions. The fundamental challenge in understanding this ability lies in 
determining which facial attributes the visual system uses for these tasks. Here we describe 
experiments designed to probe the limits of these abilities and determine the relative 
contributions of internal versus external facial features for the detection and identification tasks. 
The results provide strong constraints and guidelines for computational models of face 
perception. 

 
Introduction 
 
Many current machine-based face-processing systems share two common characteristics: 1. they 
require relatively high-resolution images in order to operate satisfactorily, and 2. they use primarily 
the inner section of the face (eyes, nose and mouth) while disregarding the external features (hair and 
jaw-line) as being too variable. It is instructive to ask how the requirements and performance of these 
systems compares with that of human observers. The human visual system (HVS) often serves as the 
de-facto standard for evaluating machine vision approaches. Clearly, in order to be able to use the 
human visual system as a useful standard to strive towards, we need to first have a comprehensive 
characterization of its capabilities. 
 
In our investigation of the HVS's capabilities, we shall focus on two key face-perception tasks: 
face detection ('is this a face?') and face identification ('whose face is it?'). For both, we shall 
describe experiments that address two questions: 1. how does human performance change as a 
function of image resolution? and 2. what are the relative contributions of internal and external 
features at different resolutions? Let us briefly consider why these two questions are worthy 
subjects of study. 
 
The decision to examine recognition performance in images with limited resolution is motivated 
by both ecological and pragmatic considerations. In the natural environment, the brain is typically 
required to recognize objects when they are at a distance or viewed under sub-optimal conditions. 
In fact, the very survival of an animal may depend on its ability to use its recognition machinery 
as an early-warning system that can operate reliably with limited stimulus information. Therefore, 
by better capturing real-world viewing conditions, degraded images are well suited to help us 
understand the brain’s recognition strategies. More pragmatically, impoverished images serve as 
‘minimalist’ stimuli, which, by dispensing with unnecessary detail, can potentially simplify our 
quest to identify aspects of object information that the brain preferentially encodes. 
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The decision to focus on the two types of facial feature sets – internal and external, is motivated 
by the marked disparity that exists in their use by current machine-based face analysis systems. It 
is typically assumed that internal features (eyes, nose and mouth) are the critical constituents of a 
face, and the external features (hair and jaw-line) are too variable to be practically useful. It is 
interesting to ask whether the human visual system also employs a similar criterion in its use of 
the two types of features. 
 
It is important to stress that the limits of human performance do not necessarily define upper 
bounds on what is achievable. Specialized identification systems (say those based on novel 
sensors, such as IR cameras) may well exceed human performance. However, in many real-world 
scenarios using conventional sensors, matching human performance remains an elusive goal. Our 
experiments can not only give us a better sense of what this goal is, but also what computational 
strategies we could employ to move towards it and, eventually, past it. 
 
Face Detection 
 
Previous studies of face perception in degraded images have been designed exclusively to study 
within-class discrimination (‘whose face is it?’) rather than face classification per se (‘is this a 
face?’). Consequently, no systematic data exist about the dependence of face-detection 
performance on image resolution and the relative contribution of internal versus external facial 
attributes. We have conducted a series of experiments to address these issues with the goal of 
characterizing the nature of facial representations used by the human visual system. The detailed 
set of studies can be found in (Torralba and Sinha, 2001). Here, we report two specific 
experiments: 
 
Experiment 1: How does face detection accuracy with inner facial features change as a function 
of available image resolution? 
Experiment 2: Does the inclusion of external features improve face detection performance? 
 
To be able to conduct these experiments, we have to confront an interesting question - what 
patterns should we use as non-faces? Selecting random fragments from non-face images is not a 
well-controlled approach. The face/non-face discrimination can be rendered unnaturally easy for 
certain choices of non-face images (for instance, imagine drawing non-face patterns from a sky 
image). We need a more principled approach to generating non-face patterns.  
 
In very general terms, we would like to be able to draw our non-face patterns from the same 
general area in a high-dimensional object space where the face patterns are clustered. Morphing 
between face and non-face patterns is not a satisfactory strategy since all the intermediate morphs 
do have a contribution from a genuine face pattern and cannot, therefore, be considered true non-
faces. An alternative strategy lies in using computational classification systems that operate by 
implicitly encoding clusters in multidimensional spaces [Yang & Huang, 1994; Sung and Poggio, 
1994; Rowley et al, 1995]. Non-face patterns on which such systems make mistakes can then 
serve as the distractors for our psychophysical tasks. This is the approach we have used in our 
work. The key caveat to keep in mind here is that the multidimensional cluster implicitly used by 
these computational systems may be different from the cluster encoded by the human visual 
system. However, based on the high-level of classification accuracy that at least some of these 
systems exhibit, it is reasonable to assume that there is a significant amount of congruence 
between the clusters identified by them and human observers. 
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Experiment 1: Face detection at low-resolution 
What is the minimum resolution needed by human observers to reliably distinguish between face 
and non-face patterns? More generally, how does the accuracy of face classification by human 
observers change as a function of available image resolution? These are the questions our first 
experiment is designed to answer. 
 
Methods 
Subjects were presented with randomly interleaved face and non-face patterns and, in a 'yes-no' 
paradigm, were asked to classify them as such. The stimuli were grouped in blocks, each having 
the same set of patterns, but at different resolutions. The presentation order of the blocks 
proceeded from the lowest resolution to the highest. Ten subjects participated in the experiment. 
Presentations were self-timed. 
 
Our stimulus set comprised 200 monochrome patterns. Of these, 100 were faces of both genders 
under different lighting conditions (set 1), 75 were non-face patterns (set 2) derived from a well-
known face-detection program (developed at the Carnegie Mellon University by Rowley et al 
[1995]) and the remaining 25 were patterns selected from natural images that have similar power-
spectra as the face patterns (set 3). The patterns included in set 2 were false alarms (FAs) of 
Rowley et al's computational system, corresponding to the most conservative acceptance criterion 
yielding 95% hit rate. Sample non-face images used in our experiments are shown in figure 1. All 
of the face images were frontal and showed the face from the middle of the forehead to just below 
the mouth. Reduction in resolution was accomplished via convolution with Gaussians of different 
sizes (with standard deviations set to yield 2, 3, 4, and 6 cycles per face; these correspond to 1.3, 
2, 2.5 and 3.9 cycles within the eye-to-eye distance ('ete'). All spatial resolutions henceforth are 
reported in terms of number of cycles between the two eyes). 
 

 
 

Figure 1. A few of the non-face patterns used in our experiments. The patterns comprise false 
alarms of a computational face-detection system and images with similar spectra as face images.  
 
From the pooled responses of all subjects at each blur level, we computed the mean hit-rate for 
the true face stimuli and false alarm rates for each set of distractor patterns. These data indicated 
how subjects’ face-classification performance changed as a function of image resolution. Also, 
for a given level of performance, we were able to determine the minimum image resolution 
required. 
 
Results 
Figure 2 shows data averaged across 10 subjects. Subjects achieved a high hit rate (96%) and a 
low false-alarm rate (6% with Rowley et al’s FPs and 0% with the other distractors) with images 
having only 3.9 cycles between the eyes. Performance remained robust (90% hit-rate and 19% 
false-alarm rate with the Rowley et al's FA distractor set) at even higher degrees of blur (2 
cycles/ete). In proceeding from 2 to 1.3 cycles/ete, the hit-rate fell appreciably, but subjects were 
still able to reliably distinguish between faces and non-faces. 
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Figure 2. Results from experiment 1.The units of resolution are the number of cycles eye to eye. 
 
The data suggest that faces can be reliably distinguished from non-faces even at just 2 cycles eye-
to-eye using only the internal facial information. At even lower resolution (1.3 cycles/ete), while 
the hit rate falls significantly, there is still a clear distinction between true faces and distractors. 
Performance reaches an asymptote around 4 cycles/ete. 
 
Impressive as this performance of the HVS is, it may be an underestimate of observers’ 
capabilities. It is possible that the inclusion of context can improve performance further. In other 
words, in experiment 1, subjects made the face vs. non-face discrimination on the basis of the 
internal structure of faces. It has traditionally been assumed that this is the pattern that defines a 
face. However, it is not known whether the HVS can additionally use the external features to 
improve its discrimination and to better tolerate image resolution reductions. Experiment 2 
addresses this issue. 
 
Experiment 2: The role of local context in face-detection 
The prototypical configuration of the eyes, nose and mouth (the 'internal features') intuitively 
seems to be the most diagnostic cue for distinguishing between faces and non-faces. Indeed, 
machine based face detection systems typically rely exclusively on internal facial structure [Sung 
& Poggio, 1994; Rowley et al., 1995; Leung et al. 1995]. External facial attributes such as hair, 
facial bounding contours and jaw-line are believed to be too variable across individuals for 
inclusion in a stable face representation. These attributes constitute the local context of internal 
facial features. To assess the contribution of local context to face-detection, we repeated 
experiment 1 with image fragments expanded to thrice their sizes in each dimension (see figure 
3). The experimental paradigm was the same as for experiment 1. Subject pools for experiments 1 
and 2 were mutually exclusive. 
 

             
 

Figure 3. Faces (left set) and non-faces (right set) with local context. 



 

 5

Results 
We tested 10 subjects on the ‘expanded’ version of images used in experiment 1. Figure 4 shows 
the results. Performance improved significantly following this change. Faces could be reliably 
distinguished from non-faces even with just 4 cycles across the entire image (which translates to 
0.87 cycles/ete). At this resolution, the internal facial features become rather indistinct and, as the 
results from experiment 1 suggest, they lose their effectiveness as good predictors of whether a 
pattern is a face or not. It is also important to note that the contextual structure across different 
stimuli used in this experiment is very different. Faces were photographed against very different 
backgrounds and no effort was made to normalize the appearance of the context. Given that there 
is not enough consistent information within the face or outside of it for reliable classification, the 
likely explanation for the human visual system's impressive performance is that bounding contour 
information is incorporated in facial representations used for detection. As figure 4 shows, for 
comparable levels of performance, the use of bounding contours nearly halves the resolution 
lower-bounds needed for distinguishing faces from non-faces relative to the internal features only 
condition. Thus, the inclusion of bounding contours allows for tolerance to greater refractive 
errors in the eyes and/or longer viewing distances. This result also provides a useful hint for the 
design of artificial face detection systems. By augmenting their facial representation to include 
bounding contours, computational systems can be expected to improve their performance 
markedly.  

 

 
 

Figure 4. Results from experiment 2. The inclusion of local context (as shown in the top panel) 
significantly improves face detection performance and reduces resolution lower-bounds for 
reliable discrimination. 
  
To the best of our knowledge, this is the first systematic study of face-detection across multiple 
resolutions. The data provide lower-bounds on image-resolution sufficient for reliable 
discrimination between faces and non-faces. They indicate that the facial representations encode, 
and can be matched against, facial image fragments containing merely 2 cycles between the two 
eyes. We can also demarcate zones on the resolution axis where specific facial attributes (internal 
features, bounding contours) suffice for achieving a given level of detection performance. 
Additionally, the results show that the inclusion of facial bounding contours substantially 
improves face detection performance (figure 4), suggesting that the facial representations encode 
this information. 
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The data also show that even under highly degraded conditions, humans are correctly able to 
reject most non-face patterns that the artificial systems confuse for faces. To further underscore 
the differences in capabilities of current computational face detection systems and the HVS, it is 
instructive to consider the minimum image resolution needed by a few of the proposed machine-
based systems: 19x19 pixels for Sung and Poggio [1994]; 20x20 for Rowley et al [1995]; 24x24 
for Viola and Jones [2001] and 58x58 for Heisle et al. [2001]). Thus, computational systems not 
only require a much larger amount of facial detail for detecting faces in real scenes, but also yield 
false alarms that are correctly rejected by human observers even at resolutions much lower than 
what they were originally detected at.  
 
Face identification 
 
Everyday, we are confronted with the task of face identification at a distance and must extract the 
critical information from the resulting low-resolution images. Precisely how does face 
identification performance change as a function of image resolution? Does the relative 
importance of facial features change as a function of image resolution?  Does featural saliency 
become proportional to featural size, favoring more global, external features like hair and jaw-
line?  Or, are we still better at identifying familiar faces from internal features like the eyes, nose, 
and mouth?  Even if we prefer internal features, does additional information from external 
features facilitate recognition?  Our experiments were designed to address these open questions in 
face recognition by assessing face recognition performance across various resolutions and by 
investigating the contribution of internal and external features. Considering the importance of 
these issues, it is not surprising that a rich body of research has accumulated over the past few 
decades. Pioneering work on face recognition with low-resolution imagery was done by Harmon 
and Julesz [1973a, 1973b]. Working with block averaged images of familiar faces of the kind 
shown in figure 5, they found high recognition accuracies even with images containing just 16x16 
blocks. However, this high level of performance could have been due at least in part to the fact 
that subjects were told which of a small set of people they were going to be shown in the 
experiment. More recent studies too have suffered from this problem. For instance, Bachmann 
[1991] and Costen et al. [1996] used six high-resolution photographs during the ‘training’ session 
and low-resolution versions of the same during the test sessions. The prior subject priming about 
stimulus set and the use of the same base photographs across the training and test sessions renders 
these experiments somewhat non-representative of real-world recognition situations. Also, the 
studies so far have not performed some important comparisons. Specifically, it is not known how 
performance differs across various image resolutions when subjects are presented full faces 
versus when they are shown the internal features alone. 
 

 
 

Figure 5. Images such as the one shown here have been used by several researchers to assess 
the limits of human face identification processes. 
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Our experiments on face recognition were designed to build upon and correct some of the 
weaknesses of the work reviewed above. Here, we describe an experimental study with two goals: 
1. assessing performance as a function of image resolution and 2. determining performance with 
internal features alone versus full faces.  
 
The experimental paradigm we used required subjects to recognize celebrity facial images blurred 
by varying amounts. We used 36 color face images and subjected each to a series of blurs. The 
subjects were shown the blurred sets, beginning with the highest level of blur and proceeding on 
to the zero blur condition. We also created two other stimulus sets. The first of these contained 
the individual facial features (eyes, nose and mouth), placed side by side while the second had the 
internal features in their original spatial configuration. Three mutually exclusive groups of 
subjects (each containing 8 individuals) were tested on the three conditions. In all these 
experiments, subjects were not given any information about which celebrities they would be 
shown during the tests. Chance level performance was, therefore, close to zero.  
 
Results 

Figure 6 shows results from the different conditions. It is interesting to note that in the 
full-face condition, subjects can recognize more than half of the faces with image resolutions of 
merely 7x10 pixels. Recognition reaches almost ceiling level at a resolution of 19x27 pixels.  

 

 
Figure 6. Recognition performance with internal features (with and without configural cues). 
Performance obtained with whole head images is also included for comparison. 
 
Performance of subjects with the other two stimulus sets is quite poor even with relatively small 
amounts of blur. This clearly demonstrates the perceptual importance of the overall head 
configuration for face recognition. The internal features on their own and even their mutual 
configuration is insufficient to account for the impressive recognition performance of subjects 
with full face images at high blur levels. This result suggests that feature-based approaches to 
recognition are likely to be less robust that those based on the overall head configuration. Figure 
7 shows an image that underscores the importance of overall head shape in determining identity. 
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Figure 7. Although this image appears to be a fairly run-of-the-mill picture of Bill Clinton and Al 
Gore, a closer inspection reveals that both men have been digitally given identical inner face 
features and their mutual configuration. Only the external features are different. It appears, 
therefore, that the human visual system makes strong use of the overall head shape in order to 
determine facial identity. (From Sinha and Poggio, 1996)  
 
Conclusion 
  

Progressive improvements in camera resolutions provide ever-greater temptation to 
use increasing amounts of detail in face representations in machine vision systems. Higher image 
resolutions allow recognition systems to discriminate between individuals on the basis of fine 
differences in their facial features. The advent of iris based biometric systems is a case in point. 
However, the problem that such details-based schemes often have to contend with is that high-
resolution images are not always available. This is particularly true in situations where 
individuals have to be recognized at a distance. In order to design systems more robust against 
image degradations, we can turn to the human visual system for inspiration. Many of the factors 
that the human visual system has to be tolerant to are the same ones that today’s computer vision 
systems are trying to grapple with. It makes sense, therefore, for us to turn to the human visual 
system in our search for clues about effective processing schemes. This is the key motivation 
underlying the experimental studies we have described here. The goal is to establish a common 
performance standard that different computer vision schemes can be evaluated against, and also 
to gain insights into what kinds of image information the human brain relies on to accomplish its 
feats of recognition. Our experimental results suggest some surprising lower-bounds on image 
resolutions sufficient for different face-perception tasks and also indicate the types of facial 
attributes the HVS relies on.  
Our current work focuses on computationally modeling the experimental data reported here. We 
have made some headway on the task of face detection (Thoresz and Sinha, 2001; Sadr et al., 
2001). The key question we have addressed is: What kind of internal representations can support 
robust detection performance across different illumination conditions and resolutions? We 
suggest that a candidate answer may be found in the response properties of early visual neurons. 
Based on available neuro-physiological evidence, we have developed a scheme that 
conceptualizes early visual neurons as rapidly saturating contrast edge detectors with large 
supports. This idealization leads to a representation scheme wherein objects are encoded as sets 
of qualitative image measurements over coarse image regions. The use of qualitative 
measurements leads not only to a reduction in the problem’s computational complexity, but also 
renders the representations invariant to sensor noise and significant changes in object appearance. 
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Our approach uses qualitative photometric measurements to construct a face signature that is 
largely invariant to illumination changes and can operate on very low resolution images. We have 
tested a computer implementation of this scheme on a large database of real images containing 
frontal faces and have found the results to be encouraging (70% hit rate and 10% false alarm 
rate). Figure 8 shows some results of using the qualitative representation for face detection. 
 

 
Figure 8. Results of using a qualitative representation scheme to encode and detect faces in 
images. Each box corresponds to an image fragment that the system believes is a face. The 
representation scheme is able to tolerate wide appearance and resolution variations. 
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