Incorporating Robustness in Passenger Aviation Planning Models

Amy Cohn, Shervin Ahmadbeygi, and Yihan Guan (University of Michigan) Peter Belobaba (MIT)

2007 Sloan Industry Studies Annual Conference

Michigan**Engineering** Industrial and Operations Engineering

Motivation

- Airline scheduling is complex due to lots of interdependent expensive resources
- To fully utilize resources such as crews and aircraft, airlines develop schedules with minimal slack
- Plans that are efficient on paper may not be robust in practice
- Delays can propagate downstream from one flight to another, assuming there is limited buffer between the flights

Challenging Questions

- How do we assess the robustness of a schedule?
- How do we compute the value of robustness within a schedule?
- How do we incorporate robustness in the planning process?

Our Goals

- Develop metrics for assessing robustness
- Understand the relationship between the structure of a network schedule and the potential for delay propagation
 - Not simulating operational performance
 - Not reviewing historical data
 - Instead, focus on inter-connections between resources in the network plan

Propagation Trees

- Consider the impact of a "root delay"
 - Mechanical failure
 - Ground hold
- How much can an isolated delay impact the rest of the system?
 - Not considering correlations
 - Not considering recovery options (swaps, cancellations...)
 - Focus is on network structure, relationship between plan and potential for propagation

Propagation Tree: Example

Analysis Metrics

- Magnitude ratio of total propagated delay to original root delay
- □ Severity Total number of disrupted flights
- Depth Length of longest path
- Note: Metrics are functions of the root flight delay and its length

Example Revisited

Analysis Procedure

- □ For each flight and each value of the initial delay (15, 30, ... 180) minutes
 - Construct the propagation tree
 - Keep track of the analysis metrics
- Two carriers
 - One traditional hub-and-spoke carrier
 - One niche "low-fare" carrier
 - Single snapshot in time

Worst-Case Scenarios

- How significant can propagation be?
 - Worst-case severities of 7, 10
 - Worst-case depths of 6, 10
 - Worst-case magnitude 5.78, 6.16
- Observations
 - All associated with 180-minute root delay
 - All are extreme (only 4 flights with severity of 7, one with severity of 10)
 - Very little impact of branching!

Severity with 180 Minute Root Delay

Severity	# Flights	% Flights	# Flights	% Flights
10	1	0.24	0	0.00
9	1	0.24	0	0.00
8	3	0.73	0	0.00
7	4	0.98	4	0.23
6	5	1.22	6	0.35
5	14	3.41	20	1.16
4	18	4.39	68	3.96
3	36	8.78	201	11.69
2	65	15.85	303	17.63
1	99	24.15	460	26.76
0	164	40.00	657	38.22
Sum	410	100.00	1719	100.00

Depth with 180 Minute Root Delay

Depth	# Flights	% Flights	# Flights	% Flights
10	1	0.24	0	0.00
9	1	0.24	0	0.00
8	2	0.49	0	0.00
7	3	0.73	0	0.00
6	4	0.98	2	0.12
5	13	3.17	20	1.16
4	19	4.63	68	3.96
3	37	9.02	202	11.75
2	64	15.61	302	17.57
1	102	24.88	468	27.23
0	164	40.00	657	38.22
Sum	410	100.00	1719	100.00

Depth Ratio with 180 Minute Root Delay

Depth Ratio	# Flights	% Flights	# Flights	% Flights
1	235	57.32	1033	60.09
(0, 1)	11	2.68	29	1.69
0	164	40.00	657	38.22
Sum	410	100.00	1719	100.00

Magnitude with 180 Minute Root Delay

Magnitude	# Flights	% Flights	# Flights	% Flights
(6, 7]	2	0.49	0	0.00
(5, 6]	3	0.73	3	0.17
(4, 5]	9	2.20	12	0.70
(3, 4]	14	3.41	62	3.61
(2, 3]	42	10.24	198	11.52
(1, 2]	73	17.80	316	18.38
(0, 1]	103	25.12	471	27.40
0	164	40.00	657	38.22
Sum	410	100.00	1719	100.00

Severity Across All Delay Lengths

Severity

Depth Across All Delay Lengths

Depth of the tree

Depth of the Tree

Magnitude Across All Delay Lengths

- CW: "Propagated delays are more significant than the original delays themselves."
- □ True or false?
- Both!
 - When delays propagate, the propagated delay can be significantly larger than the initial root delay...
 - ...but lots of delays don't propagate at all.
 - Off-peak times
 - □ Crews going off-duty
 - □ Aircraft going off-rotation
 - End-of-day effects

Magnitude Across All Delay Lengths

- CW: "A single delay can "snowball" through the entire network."
- □ True or false?
- False
 - Buffers keep delays from propagating extensively (i.e. number of impacted flights is contained)
 - Down periods
 - □ Crews going off-duty
 - □ Aircraft going off-rotation
 - □ Crews and aircraft staying together
 - Propagation trees tend to only have one branch
 - Limited numbers of down-stream delays still has significant cost impact

- CW: "Keeping crews and aircraft together can mitigate the impact of disruption."
- □ True or false?
- True
 - Most of the "trees" we saw did not actually branch at all
 - Nonetheless there can be significant propagation (e.g. 8 – 10 flights deep in the tree)
 - Can keeping crews and aircraft together ever *increase* propagation?

- CW: "Delays that occur early in the day can cause greater propagation than delays later in the day."
- □ True or false?
- □ True (on average)

23

- CW: "It is most important to prevent delays early in the day."
- □ True or false?
- □ False

What's Missing

- Cabin crews
- Passenger itineraries
- □ International flights
- Correlations
- Recovery operations
- Weighted probabilities of root delays

What Comes Next

- □ Continue analysis
 - Additional carriers
 - Expand scope
- □ Assessing value of robustness
- □ Incorporation in schedule planning
 - Current work in schedule design