

## LEAN TRANSFORMATION IN THE U.S. AEROSPACE INDUSTRY:

## APPRECIATING INTERDEPENDENT SOCIAL AND TECHNICAL SYSTEMS

Joel Cutcher-Gershenfeld

University of Illinois, Urbana-Champaign

### Overview

## Lean Enterprise Value Challenge for the Aerospace Industry

> National Aerospace Facility Survey

Lean Implementation Analysis

"Becoming 'lean' is a process of eliminating waste with the goal of creating value"



### "Islands of Success"

#### **C-130J production**

Throughput of extrusion shop from 12 days to 3 minutes

#### Automatic code generation

- > 40% reduction in time
- > 80% improvement in quality

Military electronic modules from commercial lines at TRW

- > 73% cost reduction
- F-16 Build-to-Print Center
  - ➢ 75% cycle time reduction

#### 777 floor beam

- > 47% assembly time reduction
- P & W General Machining Center
  - > 67% reduction in lead time

#### **Delta IV launch vehicle**

> 63% reduction in floor space

GE Lynn aircraft engine facility

> 100% on time deliveries

Joint Direct Attack Munition (JDAM)

> 63% reduction in unit cost

#### Source:

*Lean Enterprise Value: Insights from MIT's Lean Aerospace Initiative,* Earll Murman, Thomas Allen, Kirkor Bozdogan, Joel Cutcher-Gershenfeld, Hugh McManus, Deborah Nightingale, Eric Rebentisch, Tom Shields, Fred Stahl, Myles Walton, Joyce Warmkessel, Stanley Weiss, Sheila Widnall (Palgrave, 2002)

### Initial Evidence of Enterprise Transformation

- F-16 maintained sales price and decreased order-to-delivery time by up to 42% while production rate decreased 75%
- C-17 unit priced decreased from \$260M to \$178 M for final 80 aircraft of 120 aircraft buy.
- Northrop Grumman ISS lean enterprise implementation reduced throughput times for major systems by 21 to 42%.
- F/A18-E/F EMD completed on time, within budget (without rebaseline) while meeting or exceeding performance requirements.
- Raytheon realized \$300M FY 2000 bottom line benefits from its enterprise wide Six Sigma program

Source:

*Lean Enterprise Value: Insights from MIT's Lean Aerospace Initiative,* Earll Murman, Thomas Allen, Kirkor Bozdogan, Joel Cutcher-Gershenfeld, Hugh McManus, Deborah Nightingale, Eric Rebentisch, Tom Shields, Fred Stahl, Myles Walton, Joyce Warmkessel, Stanley Weiss, Sheila Widnall (Palgrave, 2002)

## 2002 National Facility Survey: Overview and Process

### > Overview:

A nationally representative sample of aerospace facilities to examine instability, new work systems, skills & capability, intellectual capital, and related matters

#### > Process:

- > Sample drawn from national aerospace directory
- Mailed survey to approximately 2500 facilities
- Special panel established for respondents to 1999 National Facility Survey – drawn from same source
- Second mailing and follow-up telephone calls
- Data presented based on 362 responses
  - Note: Approximately 300 returned as "not in the aerospace industry" or returned to sender as bad addresses

#### > Note:

> 1999 survey responses: 194



- Cross-sectional data – longitudinal results in some cases
- Single respondents from facilities
- Post 9/11– a major discontinuity
- Hypotheses

   examined first bivariate and then muliti-variate
- Causality not always clear

### Profile Data on Facilities and Respondents: 2002 Survey Data

#### Facility Profile

- > Average Number of Employees:
  - ➢ 558 employees
- > Average Year Began Operations:
  - > 1976
- Average % Sales to Largest Customer:
  - > 30%
- Average Number of Major Government Programs:
  - 5.4 Programs
- Average Number of Major Commercial Programs:
  - > 8.9 Programs
- Product Volume Primary Product:
  - > Low: 60% Med: 32% High: 8%
- Unionization Among Respondents:
   15%

#### Industry Sector Distribution

| $\succ$ | Aircraft Frames/Structures: | <b>24%</b> |
|---------|-----------------------------|------------|
| $\succ$ | Aircraft Engines:           | 13%        |
| $\succ$ | Avionics:                   | 15%        |
| $\succ$ | Spacecraft and Missiles:    | <b>6%</b>  |
|         | Other (mostly suppliers):   | 42%        |

#### **Respondent Profile**

- Average Years of Experience in Aerospace:
  - > 24 years
- Average Age Range:
  - ➢ 46–55 years
- Average Education Level:
  - Undergraduate Degree and some Graduate Education

## Organizational Change Initiatives: 1999 and 2002 Survey Data



There are a broad range of change initiatives found across the industry, with Employee Involvement and TQM being the more common and the most growth in Lean and Kaizen Improvement Efforts.

### Lean Scale

- Simultaneous/concurrent engineering
- **AdMinimal** "in-process" inventory
- Mereducing cycle times
- **General Sector Provide Sector Sect**
- Mc Scheduling on a "pull" basis driven by customer orders
- **M**Preventative maintenance
- **Med**Tightly integrated suppliers
- and employees

- **H**<sup>€</sup> In-process inspection
- **end** Job rotation
- **Continuous improvement**
- "Flow" of material or design ideas — no wasted steps
- O Definition of the second state of the second
- High levels of worker responsibility on the job
- Extensive formal group process training

| Scale Construction: | 1 & 2 = Not found at all in this facility |
|---------------------|-------------------------------------------|
|                     | 3 & 4 = Partly true of this facility      |
|                     | 5 & 6 = Completely true of this facility  |
| Scale Reliability:  | Alpha = .88                               |

## Conceptual Model: <u>Causes</u> and Consequences



### **Preliminary Hypotheses on Control Factors**

### ➢ H1a – Sector

Lean practices will be least common among suppliers and the space sector of the aerospace industry

#### > H1b – Volume

Lean practices will be more widely used in high volume operations; least widely used on low volume operations

### > H1c – Age

Lean practices will be more widely used in newer operations; least widely used in older operations

#### > H1d – Size

Lean practices will be more widely used in medium sized facilities; least widely uses in small or large facilities

#### H1e – Union Status

Lean practices will similarly practiced in unionized and non-union facilities

## Industry Sector and Lean Practices: 2002 Survey Data



Preliminary support for H1a: Lean practices will be least common among suppliers and the space sector of the aerospace industry

## **Product Volume and Lean Practices:** 2002 Survey Data



Preliminary support for H1b: Lean practices will be more widely used in high volume operations; least widely used on low volume operations

# Facility Age and Lean Practices: 2002 Survey Data



Preliminary support for H1c: Lean practices will be more widely used in newer operations; least widely used in older operations

# Facility Size and Lean Practices: 2002 Survey Data



Preliminary support for H1d: Lean practices will be more widely used in medium sized facilities; least widely uses in small or large facilities (though large facilities are slightly higher)

## **Union Status and Lean Practices:** 2002 Survey Data



Potential rejection of H1e: Lean practices will similarly practiced in unionized and non-union facilities (unionized facilities are slightly more likely to be higher on the lean scale)

## Conceptual Model: Causes and <u>Consequences</u>



## Preliminary Hypotheses on Context Factors

- H2a Use of Temporary / Contract Workers, Use of Overtime, Use of Outsourcing, Loss of People with Critical Skills, Scope of Worker Responsibility
  - > The impact of lean practices on workforce operations will be indeterminate
- H2b Worker Satisfaction, Turnover, Absenteeism, and Employment Workforce Outcomes
  - > The impact of lean practices on employee outcomes will be indeterminate
- H2c Productivity, Quality Performance, Schedule/Delivery Performance, and Profitability Economic Performance Outcomes
  - Lean practices will have a positive impact on all economic performance outcomes
- H2d Components of Lean Scale and Outcome Measures
  - Different elements of the lean scale will be associated with appropriate workforce and economic performance outcomes

## Impact of Lean on Workforce Operations: 2002 Survey Data



Preliminary support for H2a: The impact of lean practices on workforce operations will be indeterminate (with a potential effect on increasing the scope of worker responsibility)

# Impact of Lean on Workforce Outcomes: 2002 Survey Data



Potential rejection of H2b: The impact of lean practices on employee outcomes will be indeterminate (facilities higher on the lean scale are, in fact, higher on three of the four workforce

9 – Cutcher-Gershenfeld, ILIR & IESE, UIUC 2007 – Contact: joelcg@uiuc.edu OUtcomes

## Impact of Lean on Economic Performance Outcomes: 2002 Survey Data



Preliminary Support for H2c: Lean practices will have a positive impact on all economic performance outcomes

## **Regression Analysis: Economic Performance**

| Variables                           | Productivity |         | Quality                         |                          | Schedule/Delivery               |                       | Profitability                   |              |
|-------------------------------------|--------------|---------|---------------------------------|--------------------------|---------------------------------|-----------------------|---------------------------------|--------------|
|                                     | В            | SE      | В                               | SE                       | В                               | SE                    | В                               | SE           |
| (Constant)                          | 2.224        | .281*** | 2.317                           | .251***                  | 2.399                           | .343***               | 2.235                           | 451***       |
| a. Simultaneous Eng                 | -1.709E-02   | .043    | -5.609E-02                      | .039                     | -9.577E-02                      | .053                  | -5.899E-02                      | 070          |
| b. Minimal In-Process Inventory     | 2.999E-02    | .050    | 5.495E-02                       | .045                     | 6.512E-02                       | .062                  | 3.105E-03                       | .081         |
| c. Reduced Cycle Time               | .167         | .052 ** | .102                            | .047 *                   | .158                            | .064 *                | .114                            | .084         |
| d. Flexible Job Assignments         | 6.978E-02    | .054    | 2.865E-02                       | .048                     | 6.109E-02                       | .066                  | 2.859E-02                       | .086         |
| e. Scheduling on a "pull" basis     | -3.889E-03   | .043    | 108                             | .039 **                  | -2.962E-02                      | .053                  | 3.242E-02                       | .069         |
| f. Preventative Maintenance         | -7.436E-02   | .046 *  | 2.203E-02                       | .041                     | 8.766E-02                       | .057                  | .104                            | .073         |
| g. Tightly Integrated Suppliers     | -1.999E-02   | .048    | -5.080E-02                      | .043                     | 2.827E-02                       | .058                  | -4.326E-03                      | .076         |
| h. High Trust                       | 8.564E-04    | .050    | 7.350E-02                       | .044 *                   | -9.783E-03                      | .060                  | 5.230E-02                       | .080         |
| i. In-Process Inspection            | 1.710E-02    | .044    | 1.848E-02                       | .040                     | 107                             | .054 *                | -6.673E-02                      | .071         |
| j. Job Rotation                     | 2.245E-02    | .048    | 3.190E-02                       | .042                     | -1.351E-02                      | .058                  | 192                             | .076 **      |
| k. Continuous Improvement           | .126         | .066 *  | 4.868E-02                       | .059                     | .140                            | .080 *                | 2.794E-02                       | .105         |
| I. Flow of Material and Ideas       | 6.011E-03    | .064    | .136                            | .058 *                   | -9.162E-02                      | .078                  | -1.699E-02                      | .103         |
| m. Engineering IPTs                 | -1.752E-02   | .041    | -1.232E-03                      | .037                     | 5.272E-02                       | .050                  | 9.717E-02                       | .066         |
| n. Worker Responsibility            | 6.653E-02    | .060    | .122                            | .053 *                   | 2.765E-02                       | .072                  | 6.094E-02                       | .096         |
| o. Formal Group Process<br>Training | 5.033E-02    | .050    | -9.827E-02 * Significant at the | .045 *<br>e .1 level: ** | 4.613E-02<br>Significant at the | .062<br>01 level: *** | 9.118E-02<br>Significant at the | .081<br>.001 |

## Regression Analysis: Workforce Operations

| Variables                        | Worker Satisfaction Turnover |          | over       | Absenteeism |            |          |
|----------------------------------|------------------------------|----------|------------|-------------|------------|----------|
|                                  | В                            | SE       | В          | SE          | В          | SE       |
| (Constant)                       | 1.859                        | .262 *** | 3.560      | .329 ***    | 3.185      | .277 *** |
| a. Simultaneous Eng              | -4.976E-02                   | .041     | -3.031E-02 | .051        | 9.336E-03  | .044     |
| b. Minimal In-Process Inventory  | -1.023E-02                   | .047     | -6.636E-02 | .059        | 1.142E-02  | .049     |
| c. Reduced Cycle Time            | -1.060E-02                   | .049     | 3.887E-02  | .061        | -6.060E-02 | .053     |
| d. Flexible Job Assignments      | -3.618E-02                   | .050     | 6.688E-03  | .062        | 1.203E-02  | .053     |
| e. Scheduling on a "pull" basis  | -1.940E-02                   | .040     | 2.385E-02  | .050        | .102       | .043 *   |
| f. Preventative Maintenance      | 5.343E-02                    | .043     | -4.534E-02 | .053        | 111        | .045 *   |
| g. Tightly Integrated Suppliers  | 2.948E-02                    | .044     | -2.882E-02 | .057        | 2.237E-02  | .047     |
| h. High Trust                    | .165                         | .046 *** | 171        | .058 **     | 116        | .049 *   |
| i. In-Process Inspection         | -4.258E-02                   | .041     | 5.393E-02  | .051        | .108       | .044 *   |
| j. Job Rotation                  | -1.341E-02                   | .044     | 4.247E-02  | .055        | -2.019E-02 | .048     |
| k. Continuous Improvement        | 2.974E-02                    | .061     | 8.939E-02  | .076        | 3.052E-02  | .065     |
| I. Flow of Material and Ideas    | 6.606E-02                    | .060     | -6.608E-02 | .075        | -1.558E-02 | .064     |
| m. Engineering IPTs              | -6.810E-04                   | .039     | 2.457E-02  | .050        | -9.508E-03 | .043     |
| n. Worker Responsibility         | .150                         | .055 **  | -6.530E-02 | .069        | -6.755E-02 | .058     |
| o. Formal Group Process Training | 6.399E-02                    | .047     | -3.975E-02 | .059        | -3.041E-02 | .050     |

\* Significant at the .1 level; \*\* Significant at the .01 level; \*\*\* Significant at the .001 level

## Conclusions

#### **Context findings (bivariate):**

- > H1a Sector variation airframes and engines are more lean
- > H1b Volume variation medium and high volume are more lean
- H1c Age variation newest facilities are more lean
- H1d Size variation medium and largest are more lean
- H1e Union status variation unionized facilities are more lean

#### Multivariate findings (bivariate and multivariate):

- H2a HR Practices Scope of Worker Responsibility is higher with lean
- H2b HR Outcomes Worker Satisfaction is higher, Turnover is lower, and Employment is higher with lean
- H2c Economic Performance Outcomes Productivity, Quality Performance, Schedule/Delivery Performance, and Profitability Economic Performance Outcomes are all higher with lean
- H2d Components of Lean Scale and Outcome Measures Trust in particular stands out

## Appendix

- > 1999 Industry Profile Data
- > 1999 Outcome Data
- Aerospace industry publications (LERA Aerospace Industry Council and MIT's Labor Aerospace Research Agenda)

# Industry Sector and Lean Practices: 1999 Survey Data



# **Product Volume and Lean Practices:** 1999 Survey Data



# Impact of Lean on Workforce Outcomes: 1999 Survey Data



## Impact of Lean on Economic Performance Outcomes: 1999 Survey Data



## Sample Aerospace Industry Publications

(available at http://www.lera.uiuc.edu/IndustryCouncils/aerospace/index.html)

#### **Resource Guide:**

Collective Bargaining in the Face of Instability: A Resource for Workers and Employers in the U.S. Aerospace Industry

#### **Case Studies:**

> A Decade of Learning

International Association of Machinists and Boeing Joint Programs

Transformation Through Employee Involvement and Workplace Training: The Challenge of a Changing Business Context

Rocketdyne Propulsion and Power and the United Automobile Workers

Employing Activity Based Costing and Management Practices Within the Aerospace Industry: Sustaining the Drive for Lean

Boeing Commercial Airplane Group, Wichita Division and the International Association of Machinists

Fostering Workplace Innovation and Labor-Management Partnership: The Challenge of Strategic Shifts in Business Operations

Pratt and Whitney (UTC) and the International Association of Machinists

**Fostering Continuous Improvement in a Changing Business Context** 

Textron Systems

From Three to One: Integrating a High Performance Work Organization Process, Lean Production, and Activity Based Costing Change Initiatives

Boeing Commercial Airplane Group, Wichita Division and the International Association of Machinists

Note: Publications developed through MIT's Labor Aerospace Research Agenda; available through the Labor and Employment Relations Association's Aerospace Industry Council website