The Impact of Manufacturing Offshore on Technology Trajectories in the Automotive and Optoelectronics Industries

> Erica R.H. Fuchs Post-Doctoral Fellow M.I.T. Microphotonics Center M.I.T. Industrial Performance Center

Background: Gains From Trade?

- Trade may not advantage U.S. economy
 - Real wages will fall (Samuleson 2004)
- Gains enough to compensate losers
 - Short term, developing countries' skills won't compete
 - By the time skills improve, U.S. further ahead (Bhagwati 2004)
- Does everyone win?
 - Net job growth, not disappearance (Berger 2000)
 - Middle-wage and low-end jobs being lost (Berger 2000)
- Key for U.S. to stay ahead: Innovation (Grossman & Helpman 1991)
 - Imitation to Innovation (Kim 1997, Amsden 2001, Breznitz 2005, Arora 2005)
 - Innovation increases in the U.S. (Grossman & Helpman 1991)
 - Manufacturing matters (Cohen & Zysman 1987, Macher and Mowery 2004)
 - Geography constrains knowledge flows (Teece 1977, Mansfield 1982,
 - Differentiate: life cycle (Vernon 1966), knowledge type (VonHippel 1994), design (Baldwin 2000, Sturgeon 2002, Sturgeon 2005)

Research Question

Are firms' manufacturing location decisions changing their technology development incentives, and thereby the technology development path of these industries?

Methods: Two-Case Study (Glasner and Strauss 1967, Eisenhardt

1989, Yin 1994)

Two Cases:

- Automotive: FR Polymer Composite Unibody
- Optoelectronic: Integrated Optoelectronic Components

Both Cases: Emerging Technologies

- In early stages of development, implementation
- Substitute for products on today's market
- Physical properties associated with demand preferences expected in long term

Both Cases: Moving Manufacturing Offshore

- Auto: Market Proximity (Humphrey 2001)
- Opto: Cost Reduction

Methods: For Each Case

Technology Development Incentives: PBCM (Kirchain & Field 2000)

Technology Description

Device Description Material Properties Operating Conditions Factor Prices

Data Collection (Jick 1979)

- Design: current, emerging alternatives
- Production: current, new requirements
- Location: differences in production variables

23 companies >50% market 5 of the 7 companies w/ dominant share of market Over 100 interviews

- Technology Development Path: Semi-structured interviews (Glasner and Strauss 1967, Eisenhardt 1989)
 - Design decisions in the U.S. vs. offshore
 - Explanation or logic behind decisions

Findings: In Both Cases...

Modeling

- Manufacturing offshore (developing E. Asia) shifts relative economic position of emerging design and prevailing design
- Emerging design more cost competitive in U.S. production structure; prevailing design more cost competitive in developing East Asia
 Interviews
- Firms produce prevailing design offshore
- Decisions economically advantageous in shortterm, may overlook long-term consequences

Case: Integration in Optoelectronic Transmitters

- Produce multiple functions on a single chip
- Originally, driven by telecom market
 - Improve network performance; reduce size, cost

- Long term, computing (Moore's Law)
 - Interconnect bottleneck, multi-core paradigm
 - Computer optical bus: integration seven functions

Dramatic Shift in the Telecom Market

Industry driver: performance innovation **preserved** efficiency & cost

Year

Options to Reduce Cost

Technology Solution: Integration

Location Solution: Low Wage Environment

- Major cost driver: packaging, assembly, test
 - Material- and labor-intensive, back-end processes
- Two ways to reduce back-end costs
 - Production in low-wage environment (prevailing design)
 - Technology development: integration
- 15 of 16 firms moved offshore

Model Results: U.S.-Based Production

(Srouce: Fuchs, Bruce, Ram, Kirchain (2006) Process-Based Cost Modeling of Photonics Manufacture *Journal of Lightwave Technology*. 24(8): 3175-3186.)

Integration Unable to Compete Against Developing East Asia Cost Reductions

Annual Production Volume (x10³)

Annual Production Volume (x10³)

(Source: Fuchs, E. and Kirchain, R. (2005) Changing Paths: The Impact of Manufacturing Offshore on Technology Development Incentives in the Optoelectronics Industry. Proceedings of the Annual Meeting of the Academy of Management. August 2005.)

Results: Barriers to Pursuing Path of Integration

Barriers to transferring knowledge

- Constant design engineer attention required on production line
- Lack of skilled local design engineers, back-end assembly workers

Barriers to producing in both locations

Current market size doesn't support multiple
plant sites (Fuchs & Kirchain 2005, Schabel 2005)

A Dilemma for Firm Strategy?

Case

• Short-term markets: lower costs, long-term markets: innovation

Results

- Offshore manufacturing:
 - Reduces cost-competitiveness of emerging design
 - Reduces viability of pursuing integrated technology

By moving production, are firms reducing their incentives and ability to "stay ahead?"

Changing Paths?

U.S. Firms...

- 15 of 16 moved offshore (15 \rightarrow 8)
 - Not producing emerging technology
 - No R&D efforts on integration
 - Dominating telecom market
- Small firm in U.S. manufacturing emerging tech
 - Unclear if going to survive

Slow path, change path, or change institutions?

Cross-Case Findings: Similarities

In two very different cases...

- Manufacturing offshore shifts relative economic position of emerging design and prevailing design
- Emerging design more cost competitive in U.S. production structure; prevailing design more cost competitive in developing East Asia
- Firms produce prevailing design offshore
- Decisions economically advantageous in shortterm, may overlook long-term consequences

What can we learn from these two cases?

- Manufacturing location matters for design competitiveness.
 - As engineers, should we be designing for manufacturing location?
 - Should we be forcing firms to manufacture in the U.S.?
- Optoelectronics Case: <u>Extremely Constrained</u>!
 - Difficulty separating manufacturing from R&D
 - Small market, only able to afford one manufacturing facility
 - Typical of small, high-tech firms? (Holbrook 2000, Pisano 1997, Bohn 2005)

Implications of Manufact Oring Offering Perford irm Strategyogy Development

