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BUILDING DYNAMIC CAPABILITIES:  

INNOVATION DRIVEN BY INDIVIDUAL, FIRM, AND NETWORK LEVEL EFFECTS  

 
Abstract 
 Following the dynamic capabilities perspective, we suggest that antecedents to innovation can be 
found at the individual, firm, and network level.  Thus, we challenge two assumptions common in prior 
research: (1) that significant variance exists at the focal level of analysis, while other levels of analysis are 
assumed to be homogeneous, and (2) that the focal level of analysis is independent from other levels of 
analysis.  Accordingly, we advance a set of hypotheses to simultaneously assess the direct effects of 
antecedents at the individual, firm, and network level on innovation output.  We then investigate whether 
a firm’s antecedents to innovation lie across different levels.  To accomplish this, we propose two 
competing interaction hypotheses.  We juxtapose the hypothesis that the individual, firm, and network-
level antecedents to innovation are substitutes versus the proposition that these innovation mechanisms 
are complements.  We test our multi-level theoretical model using an unusually comprehensive and 
detailed panel dataset that documents the innovation attempts of global pharmaceutical companies within 
biotechnology over a 22-year time period (1980-2001).  We find evidence that the antecedents to 
innovation lie across different levels of analysis and can have compensating or reinforcing effects on 
firm-level innovative output. 
 
Key words: dynamic capabilities; organizational learning; innovation; multi-level theory; longitudinal  

panel data; pharmaceutical and biotechnology industries 

INTRODUCTION 

 The recent extension of the resource-based view into dynamic markets provides a fresh 

perspective for analyzing how firms develop new capabilities to cope with shifting markets.  This 

theoretical perspective posits that a firm’s ability to “integrate, build, and reconfigure internal and 

external competences to address rapidly changing environments” lies at the center of its capability to 

innovate (Teece, Pisano, and Shuen, 1997: 516).  Dynamic capabilities facilitate not only the ability of an 

organization to recognize a potential technological shift, but also its ability to adapt to change through 

innovation (Hill and Rothaermel, 2003).  Eisenhardt and Martin (2000: 1107) suggest that antecedents to 

dynamic capabilities, which they describe to be “processes to integrate, reconfigure, gain and release 

resources—to match and even create market change,” can be found at the individual, firm, or network 

level (see also Zollo and Winter, 2002).   

 Assuming that firms can draw on antecedents across different levels to build dynamic 

capabilities, several important but under-explored questions arise, such as: Where is the locus of the 

antecedents to firm-level dynamic capabilities?  Does the locus lie within the individual, within the firm, 

or within networks?  If so, which levels are relatively more important?  Or, does the locus of the 

antecedents to dynamic capabilities lie within the intersection of any of these levels?  In other words, 

does the locus lie across multiple levels of analysis?  If the locus of the antecedents to dynamic 
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capabilities lies across multiple levels of analysis, are the different mechanisms to innovate complements 

or substitutes? 

 Extant research generally focuses on only one level of analysis, while neglecting other levels of 

analysis, thus opening the door for spurious findings due to unobserved heterogeneity.  When studying 

the dynamics of technological innovation, for example, researchers generally analyze incumbent firms as 

a more or less homogenous group of firms or as an industry, thus neglecting to investigate firm-

differential performance (Christensen, 1997; Foster, 1986; Henderson and Clark, 1990; Tushman and 

Anderson, 1986).  Likewise, when analyzing firm-differential performance, researchers invoke constructs 

like resources, competences, capabilities, processes, and routines (Barney, 1991; Henderson and 

Cockburn, 1994; Nelson and Winter, 1982; Peteraf, 1993), while neglecting individual-level 

heterogeneity.  Finally, the handful of researchers that highlight individual-level heterogeneity as an 

antecedent to firm-level heterogeneity (Lacetera, Cockburn, and Henderson, 2004; Zucker and Darby, 

1997a; Zucker, Darby, and Brewer, 1998; Zucker, Darby, and Armstrong, 2002), generally discount firm- 

and network-level effects. 

 Recent theoretical contributions (Felin and Foss, 2005; Felin and Hesterly, 2006; Klein, 

Dansereau, and Hall, 1994; Dansereau, Yammarino, and Kohles, 1999), however, have identified two 

serious problems with the dominant uni-level research approach, which we find particularly salient to our 

research question concerning the locus of antecedents to dynamic capabilities.  First, concentrating on 

only one level of analysis implicitly assumes that most of the heterogeneity is located at the chosen level, 

while alternate levels of analysis are considered to be more or less homogenous.  Studies of firm level 

heterogeneity assume, for example, that significant variation occurs at the firm level of analysis, while 

individuals are more or less homogenous or randomly distributed across firms.  Second, when focusing on 

one level of analysis, researchers implicitly assume that the focal level of analysis is more or less 

independent from interactions with other lower- or higher-order levels of analysis.  Firm-level 

heterogeneity, for example, is assumed to be relatively independent from individual- or network-level 

effects.  Taken together, the assumptions of homogeneity in and independence from alternate levels of 

analysis are serious concerns that can potentially lead to spurious empirical findings. 

 To address the threats of homogeneity and independence, we develop a multi-level theoretical 

model that accounts for potential heterogeneity in and across three different and distinct levels when 

explaining and predicting innovation:  The individual level, representing internal investments such as 
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employee hiring; the firm level, representing internal investments such as research and development 

(R&D); and the network level, representing external investments such as alliances or acquisitions.   

 The integrative theoretical model advanced herein enables us to not only assess the effect of each 

innovation antecedent, while explicitly controlling for potentially confounding lower- or higher-order 

levels of analysis, but also to assess if, and how, the different innovation antecedents across the three 

levels of analysis interact with one another.  First, in order to challenge the assumption of homogeneity 

across levels of analysis, we develop direct effects hypotheses pertaining to each of the three levels of 

analysis.  Second, to assess the validity of the assumption of independence across levels, we advance two 

competing interaction hypotheses concerning the potential complementary or substitutive nature of 

innovation antecedents in the intersections across different levels of analysis:  individual – firm, 

individual – network, and firm – network.   

 We selected the global pharmaceutical industry as the research setting to empirically test our 

integrative theoretical model across multiple levels of analysis, because this industry experienced a 

radical technological transformation with the advent of biotechnology based on genetic engineering, 

genomics, and other novel research.  We document herein the attempts of incumbent pharmaceutical 

companies to build the capabilities necessary to innovate within biotechnology.  Methodologically, we 

make a contribution by developing and analyzing a unique panel dataset that approaches the population of 

observations across different levels of analysis and categories.  To empirically test our hypotheses, we 

leverage fine-grained longitudinal data on over 900 acquisitions, 4,000 alliances, 13,200 biotechnology 

patents, 110,000 non-biotechnology patents, 135,000 scientists, 480,000 journal publications, and 9.2 

million journal citations. 

THEORY AND HYPOTHESES DEVELOPMENT 

Individual-Level Effects 

 Intellectual Human Capital.  Uni-level research implicitly assumes not only that non-focal levels 

of analysis are homogenous, but also exhibits a lack in considering the importance of non-focal levels 

when predicting heterogeneity at the focal level of analysis (Felin and Foss, 2005; Felin and Hesterly, 

2006).  By investigating individual-level effects as a critical antecedent to firm-level innovation, we 

question the legitimacy of the assumption of homogeneity across levels.  We posit that intellectual human 

capital can be heterogeneously distributed across firms and therefore must be accounted for when 

investigating firm-level innovation.  We consider intellectual human capital to be highly skilled and 

talented employees like research scientists, who hold advanced graduate degrees and doctorates.  In our 
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sample of global pharmaceutical companies, about 0.5% of all employees fall in this category, as research 

scientists that publish in academic journals. 

To understand the role of intellectual human capital in a firm’s ability to build new capabilities, 

researchers have highlighted the emergence of tacit knowledge resulting from the interaction of highly 

skilled human capital (Almeida, Song, and Grant, 2002; Kogut and Zander, 1992).  As an example, 

Henderson and Cockburn (1994) find that locally embedded knowledge and skills among a firm’s 

intellectual human capital may be a unique innovation competence for the firm.  More specifically, the 

disciplinary focus of groups of scientists within a firm creates deeply embedded knowledge that is not 

easily codified and thus difficult to transfer or imitate.  For instance, pharmaceutical firms often develop 

expertise in specific areas, such as Eli Lilly’s focus on diabetic therapy or Hoffman-La Roche’s expertise 

in the area of anti-anxiety drugs.  In a similar fashion, Leonard-Barton (1992) indicates that the tacit 

knowledge developed by skilled engineers with a specific production process over an extended period of 

time may develop into a source of innovation.  Taken together, the specificity of the external and internal 

learning necessary for a firm to innovate favors those firms that invest in and maintain significant levels 

of intellectual human capital.  

Firm innovative performance is at least partially a function of the value of its human capital (Hitt, 

Bierman, Shimizu, and Kochhar, 2001).  Thus, organizations are expected to invest more in acquiring, 

retaining, and training intellectual human capital as the value of their human resources increases 

(Gardner, 2005).  Such a case has emerged within the realm of the biopharmaceutical industry, where 

changes in drug discovery and development have enhanced the need for the input of scientists who are 

skilled in a wide variety of disciplines, some of which, like molecular biochemistry, are newly emerging 

(Cockburn, Henderson, and Stern, 2000; Henderson and Cockburn, 1994).   

 

Hypothesis 1a: A firm’s innovative output is a positive function of its intellectual human capital. 

 Star Scientists.  Numerous empirical and qualitative studies provide convincing evidence that not 

all intellectual human capital is created equally, giving rise to the notion that significant heterogeneity 

exists within highly specialized intellectual human capital.  Lotka (1926) was one of the first to note a 

highly skewed distribution pertaining to research output among scientists.  When studying scientific 

publications in chemistry, he found that only about 5% of scientists were responsible for more than 50% 

of the total scientific research output.  A similar skewed distribution in research output is also reflected in 

the patenting activity in U.S. and Japanese semiconductor firms (Narin and Breitzman, 1995) and the 
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patenting output in German companies in the chemical, mechanical, and electronic industries (Ernst, 

Leptien, and Vitt, 2000).   

 Therefore, we suggest that intellectual human capital can be conceptualized as consisting of two 

components: star scientists and non-star scientists.  We understand a star scientist to be someone that is, 

by an order of magnitude, both more productive in and more influential on a specific research field than 

the average (non-star) scientist active in this field.  In particular, we hypothesize that there exists a 

positive and significant relationship between a firm’s star scientists and its innovative output, above and 

beyond the effects of non-star scientists. 

 Within the context of entrepreneurial biotechnology ventures, star scientists have been shown to 

affect the geographic location of firm entry into new technologies (Zucker et al., 1998) and to exert 

significant positive effects on a wide range of firm-level measures, such as the number of products on the 

market, publishing propensity, and network connections (Audretsch and Stephan, 1996; Zucker, Darby, 

and Torero, 2002).  Ties to stars have also been shown to shorten the time to initial public offering (IPO) 

and to increase the amount of IPO proceeds (Darby and Zucker, 2001).  Thus, the assumption of lower-

level homogeneity inherent in most firm-level and alliance research is even more questionable when 

considering star scientists as part of a firm’s intellectual human capital.   

Star scientists assume gate-keeping and boundary-spanning roles – critical functions in a firm’s 

ability to innovate (Allen, 1977; Allen and Cohen, 1969; Tushman, 1977; Tushman and Katz, 1980).  

Gatekeepers are the few key individuals within a firm who are capable of understanding and translating 

contrasting coding schemes.  Boundary-spanners are able to bridge organizational and environmental 

boundaries to act as an information filter by evaluating, streamlining, and organizing knowledge flows 

from external sources.  Gatekeepers and boundary-spanners thus facilitate an organization’s ability to 

collect, assimilate, and apply external information in a two-step process.  They are able to gather and 

understand external information and then translate and disseminate this information into terms that are 

meaningful and useful to other organization members.   

A firm’s star scientists not only function as technological boundary-spanners and gatekeepers, but 

also as the organization’s information and knowledge core.  Other important pathways through which star 

scientists can improve the innovative output of firms include: 1) positive spillovers to other researchers 

through the changing of behavioral and cultural norms, such as legitimizing a stronger focus on basic 

research; 2) changing the strategic direction of the firm’s research and human resource policies; and 3) 

recruiting other like-minded scientists (Lacetera, et al. 2004). 
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 We propose that star scientists can be recruited from the labor market, and that they can be a 

source of firm-level heterogeneity in innovation.  This assertion is true if firms have different ex-ante 

expectations of the rent-generating potential of a star scientist.  Our hypothesis, therefore, follows 

Barney’s (1986) treatment of strategic factor markets, which relaxes the strong assumption of perfectly 

competitive factor markets, and in turn posits that strategic factor markets are characterized by an element 

of imperfection.  Some preliminary evidence for this assumption is found in the recent work by Stephan, 

Higgins, and Thursby (2004), who show that in the case of biotechnology IPOs, Nobel laureate scientists 

allow significant rents to accrue to the firms who hired them, because their total compensation packages 

were considerably less than the stock price premium they created based on their outstanding scientific 

reputations.   

 

Hypothesis 1b: A firm’s innovative output is a positive function of its star scientists, controlling for non-

star scientists. 

Firm-level Effects 

 We posit that heterogeneity in internal R&D capability across firms partly explains innovative 

performance differentials.  Rosenberg (1990) underscores the importance of internal R&D by stressing 

that a firm needs a significant internal research capability to recognize, understand, appraise, and apply 

internal knowledge that has been placed on the shelf.  Another important by-product of an internal R&D 

capability is the creation of firm-specific knowledge that enables a firm to take advantage of knowledge 

generated externally (Cohen and Levinthal, 1989).  Tilton (1971), for example, observes this phenomenon 

in the semiconductor industry.  He concludes that continued investments in internal R&D created an in-

house research capability that enabled these firms to keep abreast of the latest developments in 

semiconductor research, to develop new technology internally, and also to recognize, appraise, and 

assimilate new technology developed elsewhere. 

 Continuing investments in a firm’s R&D capability are necessary, because R&D effectiveness is 

path dependent, and thus, failure to invest in internal R&D at one point in time may foreclose future 

options in a particular technology (Cohen and Levinthal, 1989).  In support of this notion, Helfat (1994a) 

provides convincing evidence for the hypothesis that ongoing R&D investments create a firm-specific 

capability, whose heterogeneous distribution across firms tends to persist over time (Helfat, 1994b).  

Moreover, Helfat (1997) also demonstrates a positive direct effect of R&D capability on innovative 

performance in the petroleum industry.  Thus, a firm’s R&D capability has the potential to be the kind of 
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valuable, rare, inimitable, and non-substitutable resource that can form the basis for superior innovation 

performance (Barney, 1991; Peteraf, 1993).  

 When confronted with a new technological paradigm, a firm’s internal R&D capability is 

especially relevant to innovative performance.  Multiple new technologies or different versions of the 

same underlying technology frequently compete until a new dominant design emerges (Anderson and 

Tushman, 1990).  Internal research capability enables the incumbent firm to more accurately assess and 

appraise the many new technology trajectories that present themselves following radical technological 

changes.  In their multi-industry study, Rothaermel and Hill (2005) show that a firm’s internal R&D 

capability has a positive effect on firm financial performance.  This was especially true for 

pharmaceutical companies following the emergence of biotechnology, because it allowed them to identify 

promising research areas more readily.  Further, a firm’s R&D capability has become more critical to 

innovative performance as many industries have become more science-driven, and as such, firms are now 

even more compelled to leverage advances in the fundamental sciences (Cockburn, et al. 2000; Narin, 

Hamilton, and Olivastro, 1997).   

 
Hypothesis 2: A firm’s innovative output is a positive function of its R&D capability. 

Network-Level Effects 

Significant technological breakthroughs are generally exogenous to firms, because no single firm 

can keep abreast of all technological developments through internal R&D.  Powell, Koput, and Smith-

Doerr (1996) provide support for the hypothesis that in industries characterized by complex and rapidly 

expanding knowledge bases, the locus of innovation lies within a network of learning composed of 

incumbent firms, new entrants, and research institutions, rather than within the boundaries of individual 

firms.  Thus, to build new capabilities within an emerging technological paradigm, incumbent firms 

frequently need to leverage their external networks to source new technology.  Networks can provide 

access to knowledge and resources that are not readily available via market exchanges (Gulati, 1999; 

Gulati, Nohria, and Zaheer, 2000).   

While the resource-based view tends to focus on the importance of the internal asset base of the 

firm, researchers have recently posited that network relationships may allow a firm to leverage unique 

resource combinations.  Dyer and Singh (1998) highlight relation-specific assets, knowledge-sharing 

routines, complementary resources and capabilities, as well as effective governance as antecedents to an 

interorganizational competitive advantage.  The ability to leverage external networks to adapt to a rapidly 

changing environment is emphasized by Teece et al. (1997) and Eisenhardt and Martin (2000) as one 
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possible manifestation of a dynamic capability.  Strategic alliances and acquisitions of new technology 

ventures are generally considered to be alternatives to the external sourcing of technological knowledge 

by incumbent firms (Hill and Rothaermel, 2003; Higgins and Rodriguez, 2006; Vanhaverbeke, Duysters, 

and Noorderhaven, 2002).  Therefore, we investigate how each type of external sourcing strategy affects 

an existing firm’s innovative output. 

Strategic Alliances.  Strategic alliances are voluntary arrangements between firms to exchange 

and share knowledge and resources with the intent of developing processes, products, or services (Gulati, 

1998).  It is not surprising that strategic alliances are often highlighted as an important mechanism used 

by firms to access external technology.  Indeed, alliances have become commonplace as firms try to 

absorb or learn capabilities and knowledge from other firms (Ahuja, 2000; Hagedoorn, 1993; Powell et 

al., 1996; Rothaermel, 2001).  There are multiple pathways by which a firm’s alliances with providers of 

new technology can affect its innovative output.  Among other benefits, alliances enable partners to share 

technological knowledge, take advantage of scale economies in research, and leverage complementary 

assets (Teece, 1992).   

Extant empirical research provides evidence for the notion that strategic alliances enhance 

innovative output.  With regard to new technology ventures, prior studies demonstrate that strategic 

alliances increase patent and new product development rates for biotechnology start-ups (Deeds and Hill, 

1996; Shan, Walker, and Kogut, 1994) and predict innovation rates in the semiconductor as well as in the 

microcomputer industry (Rothaermel, Hitt, and Jobe, 2006; Stuart, 2000).  Considering incumbent firms 

rather than start-ups, Ahuja (2000) examines the position of chemical firms within the industry’s network 

and finds that direct network connections had a positive relationship with innovative output.  Thus, we 

suggest that an incumbent firm’s strategic alliances with the providers of new technology, like research 

universities and new technology ventures, have a positive effect on the firm’s innovative output.   

 

Hypothesis 3a: A firm’s innovative output is a positive function of its alliances with new technology 

providers. 

 Acquisitions.  Acquisitions are an increasingly important strategic tool for attaining the external 

technological know-how to supplement internal R&D efforts in a timely manner (Chesbrough, 2003; 

Ranft and Lord, 2002; Vanhaverbeke et al., 2002).  We make the assumption that acquisitions are 

network-level mechanisms, primarily because the targets acquired by the pharmaceutical firms within our 

sample are, for the most part, similar to the firms with which they ally.  That is, the majority of the 

acquired firms are small biotechnology firms focused predominantly on basic research, drug discovery, 
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and early stage development.  Acquisitions of small technology ventures are not idiosyncratic to 

biotechnology, since they are commonplace in many other high-technology industries (Vanhaverbeke, et 

al. 2002).   

Within the biotechnology industry, large pharmaceutical firms often use acquisitions to facilitate 

innovation (Galambos and Sturchio, 1998).  Higgins and Rodriguez (2006) find that, in order to overcome 

declining internal R&D productivity, many pharmaceutical firms have successfully innovated by 

acquiring biotechnology ventures.  For example, Hoffman-La Roche, DuPont, and Schering-Plough all 

began to engage in serial acquisitions of small, specialized biotechnology firms in the mid-1980s instead 

of forming alliances (Galambos and Sturchio, 1998). 

 

Hypothesis 3b: A firm’s innovative output is a positive function of its acquisitions of new technology 

firms. 

Interactions Across Levels – Complements or Substitutes? 

To challenge the assumption of independence across levels of analysis, we shift our analysis to an 

investigation of interactions across levels, and their effects on innovation.  Specifically, we pursue the 

question of whether the interactions across levels are complementary or substitutive in nature.  Two 

activities are said to be complements if the marginal benefit of each activity increases in the presence of 

the other activity.  For example, one would suggest that cardio-vascular exercise is more effective in 

reducing the risk of heart disease if combined with a low-cholesterol diet, and vice versa.  On the other 

hand, two activities are said to interact as substitutes if the marginal benefit of each activity decreases in 

the presence of the other activity.  Here, one would suggest that cardio-vascular exercise and pursuing a 

low-cholesterol diet are substitutes in achieving a lower risk of heart disease.  Note that while cardio-

vascular exercise can still have an absolute positive effect on lowering the risk of heart disease, over and 

above a low-cholesterol diet, the marginal effect of cardio-vascular exercise is diminished in the 

substitution scenario, and vice versa.1  Given the dearth of prior theoretical and empirical research 

pertaining to the locus of innovation antecedents across levels, we advance both a complementary and a 

substitutive hypothesis in a competing fashion.   

                                                 
1 Formally: Let xi denote one activity (e.g., recruitment of intellectual human capital) and xj denote a second activity 
(e.g., forming strategic alliances), then these two activities are said to be  

complements if 

j

i

x

x

∆

∆
 > 0, and substitutes if 

j

i

x

x

∆

∆
 < 0.   

Complements and substitutes correspond to interactions in moderated regression analysis, because their combined 
effects differ from the sum of their separate parts.  Specifically, complements are represented by positive interaction 
effects reflecting their synergizing behavior, while substitutes are represented by negative interaction effects 
reflecting their compensating behavior (see Cohen, Cohen, West, and Aiken, 2003: 255-260). 
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Interactions Across Levels – Complements  

Interaction between Individual and Firm-Level Effects.  A positive interaction between individual 

and firm-level effects is likely, when considering that a firm’s level of R&D capability is a function of its 

prior related knowledge (Cohen and Levinthal, 1989, 1990).  Relevant prior knowledge allows the firm to 

recognize the value of new information and to exploit it for commercial ends.  In the pharmaceutical 

industry, the primary source of such knowledge is located upstream in the value chain, residing within 

research universities and new biotechnology ventures.  Existing pharmaceutical companies must thus 

possess the requisite intellectual human capital to gain access to this research community, assimilate the 

new knowledge, and subsequently apply it to commercial ends. 

We posit that an increase in a firm’s level of intellectual human capital results in a commensurate 

increase in a firm’s R&D capability.  Likewise, a firm that has significant R&D capability is more likely 

to experience an increase in the effectiveness of its intellectual human capital due to better research 

facilities, more knowledgeable colleagues, and cultural norms and processes that are more conducive to 

innovation (Hitt, Hoskisson, Ireland, and Harrison, 1991).  As an example, Groysberg, Nanda, and Nohria 

(2004) find that that when star financial analysts switched firms, both the worker and new employer saw a 

decrease in short-term performance.  The effect was stronger when the star analyst switched from a higher 

performing firm to a lower performing one.  This indicates that there are important firm-level 

complementary or supporting assets and processes that are required for an individual employee to realize 

a high level of performance.  In a similar fashion, Lacetara et al. (2004) show that the hiring of star 

scientists positively interacts with firm-level policies, capabilities, routines, and people, thus indicating a  

potential complementarity between individual and firm-level factors. Taken together, these observations 

lead us to suggest that the complex interactions between individual and firm-level capabilities have the 

potential to transform resources obtained in strategic factor markets (e.g., the recruitment of scientists) 

into valuable, rare, inimitable, and non-substitutable resource combinations that can form the basis of a 

firm-level innovation advantage (Barney, 1986, 1991; Lacetera, et al. 2004). 

Interaction between Individual and Network-Level Effects.  We posit that a firm’s scientists 

positively moderate the effects of its alliances and acquisitions on its innovative output.  Stuart, Ozdemir, 

and Ding (2003) assert that, within the realm of biotechnology firms, the breadth of the external networks 

of academic scientists employed by a firm facilitates the organization’s ability to identify and incorporate 

pertinent university research.  The presence of technological gatekeepers and boundary-spanners can help 

offset different coding schemes between organizations, specifically between academic institutions and 
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corporate R&D laboratories, thereby facilitating communication and knowledge transfer between 

organizations (Allen and Cohen, 1969; Tushman and Katz, 1980).  The effect of this gate-keeping and 

boundary-spanning is particularly important to firms attempting to innovate, because the tacit nature of 

many new discoveries often make it necessary for the inventing scientist to assist in the firm’s 

commercialization process (Stuart et al., 2003). 

Due to their social and professional embeddedness in the scientific community, a pharmaceutical 

company’s scientists are critical in evaluating the quality and potential fit of research that is conducted in 

universities and biotechnology ventures, and thus play a key role in directing the large pharmaceutical 

companies towards promising alliance partners (Liebeskind, Oliver, Zucker, and Brewer, 1996).  This is 

an especially important task given the fact that, across the world, hundreds of universities and more than 

2,000 biotechnology ventures are active in some area of biotechnology research (BioScan, diverse years). 

The interaction between a firm’s level of intellectual human capital and the effect of R&D 

acquisitions on innovation is emphasized by research revealing that if an acquiring firm possesses 

information relevant to the value of the target’s research, which is often accurately evaluated by the 

acquiring firm’s scientists, there is not only a greater likelihood of acquirer success, but also a greater 

probability that this knowledge may allow the firm to overcome some of the valuation difficulties that 

generally plague acquisitions (Higgins and Rodriguez, 2006).   

Interaction between Firm and Network-Level Effects.  Without sufficient internal research 

capability developed at the firm-level, firms are not likely to recognize important developments outside of 

their existing competences, and thus limit their ability to innovate (Cohen and Levinthal, 1990).  Prior 

empirical work indicates that a level of commonality between the firm’s internal research capability and 

external research may be necessary for successful knowledge transfer (Lane and Lubatkin, 1998), because 

alliances are dyadic exchanges between organizations searching for diverse sets of knowledge (Gulati et 

al., 2000).  Moreover, it has been demonstrated that pharmaceutical firms possess an informational 

advantage over capital markets in assessing the research quality of biotechnology start-ups (Lerner, Tsai, 

and Shane, 2003), thus creating a synergistic effect between a firm’s R&D capability and its alliances and 

acquisitions. 

 

Hypothesis 4: Antecedents to innovation located at the intersections between the individual and the firm 

level (H4a), between the individual and the network level (H4b), and between the firm 

and the network level (H4c) complement one another such that interactions across levels 

are positive, and thus increase a firm’s innovative output. 
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Interactions Across Levels – Substitutes  

In juxtaposition to the prior hypothesis, we propose that the different mechanisms to advance 

innovation across the individual, firm, and network levels are substitutes for one another.  This implies 

that the simultaneous pursuit of innovation across multiple levels would actually reduce a firm’s 

innovation output, at least at the margin.  The theoretical foundation for this argument is based on the fact 

that investments in the various innovation antecedents tend to be path-dependent, and as such, early 

decisions affect outcomes distant in time (Direckx and Cool, 1989; Cohen and Levinthal, 1990).  

Moreover, these investments are predominantly undertaken to attain the similar end of innovation, and 

thus, the different innovation antecedents may exhibit some element of equifinality.  In support of this 

notion, Cockburn, et al. (2000) demonstrate that while initial conditions were an important factor 

influencing the adaptation of pharmaceutical firms to science-driven drug discovery, the firms also 

exhibited significant variance in their strategic choices and the subsequent speed of adaptation.   

From a manager’s perspective, firm innovation can be seen as a constrained optimization 

problem.  In high-technology industries, which are often characterized by short time horizons, firms face 

not only limited financial resources, but perhaps more importantly, limited managerial resources.  While 

all production decisions can be understood as constrained optimization, this problem is especially salient 

when different innovation mechanisms can be substitutes for one another, because using them in tandem 

might result in decreased innovative output at the margin.  Therefore, a firm attempting to innovate might 

need to choose between different innovation antecedents located at different levels in a discriminating 

fashion. 

The different innovation antecedents across multiple levels can be seen as distinct, strategic 

alternatives, and thus as substitutes on the path to attaining firm-level innovation.  As an example, 

Pennings and Harianto (1992) analyzed the U.S. banking industry’s attempt to implement home banking, 

and found that the propensity of a firm to chose one innovation mechanism over others was history 

dependent in the sense that the choice was determined, to a large extent, by the firm’s accumulated skills 

in a specific mechanism.  The authors suggest that some computer, banking, and pharmaceutical firms 

have chosen to innovate through internal corporate ventures, while other organizations have based their 

business model on innovation through either acquisitions or alliances.  Merck is an example of a 

pharmaceutical firm that has historically chosen to build its research capabilities internally, whereas 

Hoffman-La Roche and Eli Lilly have been more prolific in their use of acquisitions and alliances to 
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innovate (Galambos and Sturchio, 1998).  Thus, firms make significant investments in their chosen mode 

of innovation, because there are fundamental differences between the underlying innovation mechanisms.   

It is important to emphasize that firms frequently discriminate between these strategic 

alternatives, because a tension often exists between these different modes of innovating (Pennings and 

Harianto, 1992; Vanhaverbeke, et al. 2002).  The tension between these alternatives is born from the 

fundamentally different set of skills and capabilities that must be developed in order for a firm to 

effectively innovate along a particular path.  By using one innovation mechanism repeatedly over time, 

firms learn by doing, and thus build up competences in that specific innovation mechanism (Levitt and 

March, 1988).  Some firms have become proficient in recruiting and retaining star scientists, because they 

have learned how to address the surrounding human resource issues (Galambos and Sturchio, 1998; 

Zucker and Darby, 1997b).  By contrast, other firms have built firm-level R&D capabilities through an 

ongoing investment strategy (Helfat, 1994a, 1994b).  Furthermore, some firms have developed alliance 

capabilities through learning-by-doing.  This strategy often proves successful because it allows for the 

superior selection of alliance partners, as well as the contracting, monitoring, managing, and, if necessary, 

exiting of alliances (Anand and Khanna, 2000; Kale, Dyer, and Singh, 2002; Rothaermel and Deeds, 

2006).  Yet other firms have learned superior acquisition and integration capabilities by engaging in 

multiple acquisitions over time (Haleblian and Finkelstein, 1999; Hayward, 2002).  Taken together, these 

observations indicate that firms prefer to leverage the innovation mechanism in which they have built up 

some competence (Pennings and Harianto, 1992).  This idea implies that exploitation of the expertise in 

the preferred innovation antecedent drives out exploration of alternative innovation mechanisms 

(Levinthal and March, 1993), and thus can lead to competency traps (see Levitt and March, 1988). 

By developing expertise in certain innovation mechanisms, switching costs between the different 

mechanisms can be substantial, and thus make the use of more than one mechanism cost prohibitive 

(Levinthal and March, 1993).  Switching costs are illustrated by the detrimental effects that substituting 

disparate modes of innovation can have on managerial perceptions and organizational culture.  For 

example, managers may perceive that a significant investment in a network activity is intended to take the 

place of firm-level spending on R&D or intellectual human capital (Hitt et al., 1991).  Additionally, a 

firm’s acquisitions can potentially not only interrupt the R&D process, but also alter an organizational 

culture focused on innovation, thus lowering an employee’s incentive to follow through with the 

innovation process.  Indeed, acquisitions were found to reduce both R&D expenditures and innovation 

outputs, thus pointing towards a substitution effect (Hitt, Hoskisson, and Ireland, 1990). 
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Prior research also indicates that different methods of innovating are often substituted for each 

other only when the current mode of innovation is determined to be ineffective.  As an example, Higgins 

and Rodriguez (2006) find that firms that are experiencing deterioration in their internal R&D 

productivity are more likely to engage in an acquisition strategy in order to augment their innovation 

efforts.  In a similar fashion, firms may use one mode of innovation to compensate for a lack of 

experience using another mode (Bower, 2001).  For example, the sharing of information and R&D 

personnel that often accompanies alliances can serve to reduce a firm’s need to invest in internal R&D.  

Additionally, alliances with universities can provide a firm with ancillary research services that would 

otherwise need to be developed internally (George, Zahra, and Wood 2002).  Indeed, the authors find that 

firms with ties to universities have lower R&D expenditures than those lacking such ties.  Taken together, 

these observations suggest that different innovation antecedents across multiple levels of analysis may 

substitute for one another. 

 
Hypothesis 5: Antecedents to innovation located at the intersections between the individual and the firm 

level (H5a), between the individual and the network-level (H5b), and between the firm 

and the network level (H5c) substitute for one another such that interactions across 

levels are negative, and thus decrease a firm’s innovative output. 

METHODS 

Research Setting 

We chose the global pharmaceutical industry to empirically test the proposed multi-level 

theoretical model for a number of reasons.  The need for pharmaceutical firms to innovate is illustrated by 

the following trends, all in constant 1999 U.S. dollars (Higgins and Rodriguez, 2006): total R&D 

expenditures have grown from $6.8 billion in 1990 to $21.3 billion in 2000 (17% of sales); new drug 

development costs have increased from $231 million to $802 million between 1990 and 2000, and 

average sales per patented drug has fallen from $457 million in 1990 to $337 million in 2001.  Moreover, 

emergence of biotechnology presented a new technological paradigm with respect to drug discovery and 

development for incumbent pharmaceutical companies (Pisano, 1997).   

The emergence of a new technological paradigm provides a “natural laboratory” for 

organizational researchers, because they can then observe when and how the existing firms have been 

able to build innovation capabilities.  Pharmaceutical drug discovery within the traditional chemical 

paradigm is based on random screening, whereas biotechnology is informed by a more science-driven 

approach that includes genetic engineering, genomics, and molecular biochemistry, among other 

disciplines.  The scientific breakthroughs underlying biotechnology, such as recombinant DNA (rDNA) 
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and hybridoma technology, were accomplished in the mid-1970s.  The first new biotechnology drugs 

reached the market for pharmaceuticals in the 1980s.   

In their attempts to build innovative capabilities in biotechnology, incumbent pharmaceutical 

firms made extensive use of all of the innovation mechanisms described earlier.  Pharmaceutical 

incumbents have made a substantial investment in human capital, especially in the recruitment of star 

scientists (Zucker and Darby, 1997a, 1997b).  The pharmaceutical industry also exhibits one of the 

highest R&D intensities, because firm performance depends on continuous innovation through discovery 

and development of proprietary drugs, which creates patent races, temporary monopolies, and winner-

take-all scenarios (Arthur, 1989).  Additionally, the biotechnology industry has been identified as having 

one of the highest alliance frequencies (Hagedoorn, 1993) and as an industry where firms outsource R&D 

through acquisitions (Higgins and Rodriguez, 2006).  Considering these factors, we submit that the global 

pharmaceutical industry is an appropriate setting to test the proposed multi-level theoretical model 

predicting innovation. 

Sample 

In an effort to limit a potential survivor bias when drawing our sample, we began our data 

collection process by compiling a list of all pharmaceutical firms alive as of 1980 based on standard 

industry classification (SIC) reports and a variety of industry publications.2  Through this process, we 

identified 93 incumbent pharmaceutical firms worldwide.  We defined an incumbent pharmaceutical firm 

as a firm that focuses on human therapeutics and was founded prior to the emergence of biotechnology in 

the mid-1970s.  The pharmaceutical companies in the sample, like Fujisawa (Japan), Novartis 

(Switzerland), or Merck (U.S.), are generally large enterprises with an emphasis on proprietary drug 

discovery and development.   

In a second step, we constructed a detailed “family tree” for each of these 93 firms for the 1980-

2001 time period.  We used multiple industry publications to construct the family tree from 1980 

onwards, including Dun and Bradstreet’s ‘Who Owns Whom?’ and annual Standard & Poor’s Industry 

Reports.  Through this method, we identified 12 horizontal mergers among the pharmaceutical firms.  

When a horizontal merger took place, we combined the past data of the two merging firms, and tracked 

the combined entity forward.3  Thus, the sample for final analysis consisted of 81 firms.4   

                                                 
2 Including: BioScan (annual volumes), Burrill & Company Life Sciences Annual Industry Reports, Compustat, 

Datastream (Thomson Financial), Ernst & Young’s Annual Biotech Industry Reports, FIS Mergent, and Scrip’s 

Yearbooks on the Global Pharmaceutical Industry, among other sources. 
3 We explicitly controlled for horizontal mergers in the regression analysis through the inclusion of an indicator 
variable (details below). 



OS-SPEC-05-0713.R3: Building Dynamic Capabilities 

 16 

We tracked annual data for each of the 81 sample firms, beginning in 1980 until the end of 2001 

(81 x 22 = 1,782 firm-year observations).  We chose our study period to begin in 1980, which was the 

year when the commercialization of biotechnology began in earnest.  This increase in commercialization 

activity can partly be explained by three important events that occurred in 1980 (Stuart, Hoang, and 

Hybels, 1999: 323): (1) the phenomenal success of Genentech’s IPO, the first public biotechnology firm, 

(2) the passage of the Bayh-Dole act, which sanctioned university patenting of inventions that resulted 

from federally funded research programs; and (3) the decision of the Supreme Court that life forms can be 

patented.5  In addition, the Cohen-Boyer patent (U.S. Patent 4,237,224), disclosing recombinant DNA, 

was granted to Stanford University in 1980, thereafter allowing non-exclusive license to this breakthrough 

technology for a nominal fee. 

It is important to note that the 81 sample firms accounted for the vast majority of the sales in the 

global pharmaceutical industry.  Tracking detailed pharmaceutical sales is difficult, because firms 

generally do not report sales differentiated by industrial sector.  Nonetheless, we were able to track the 

detailed pharmaceutical sales of 35 sample firms that were not diversified outside pharmaceuticals.  These 

35 focused pharmaceutical companies represent only 38% of the initial sample but accounted for 69% of 

the total sales for pharmaceuticals worldwide (IMS Health, 2003).  We are fairly confident that the 

remaining 46 firms account for a minimum 20% of pharmaceutical sales given the oligopolistic structure 

of this industry.  These data suggest that the sample drawn for this study is indeed representative of the 

global pharmaceutical industry. 

Dependent Variable 

 Innovative Output.  The dependent variable for this study is the innovative output of 

pharmaceutical firms within biotechnology.  We followed prior research that measured innovative output 

by a firm’s patents (e.g., Ahuja, 2000; Hagedoorn and Schakenraad, 1994; Henderson and Cockburn, 

1994; Owen-Smith and Powell, 2004; Shan et al., 1994; Stuart, 2000).  To specifically assess the 

pharmaceutical firm’s innovative performance in biotechnology, however, we proxied their innovative 

output by the number of biotechnology patent applications granted in each year during the 1980-2001 

                                                                                                                                                             
4 To assess the validity of the initial sample obtained, we independently sampled the databases maintained by 
Recombinant Capital, a research firm specializing in biotechnology.  We tracked 125 pharmaceutical companies, 
among which all our 93 original firms were listed.  This enhanced our confidence in the initial sample, where we 
tracked the firms forwardly rather than just sampling on surviving firms at the end of the study period.  The 
remaining 32 firms were either smaller firms, which did not receive sufficient coverage to merit inclusion in any of 
the industry publications that we consulted, or were more recent entries into the industry, and thus did not qualify 
under our definition of an “incumbent pharmaceutical firm.” 
5 Diamond v. Chakrabarty 447 U.S. 303 (1980). 
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study period, while explicitly controlling for lagged biotechnology patents and for non-biotechnology 

patents.   

 Relying on patent applications granted is the preferred choice, because it provides a closer link 

between the timing of the invention and its recording (Hall, Jaffe, and Trajtenberg, 2000).  Based on the 

population of biotechnology patents, a 3-year average time lag exists between the date patents are applied 

for by the inventing firm and the date when they are granted by the U.S. Patent and Trademark Office 

(U.S. PTO).  In addition, the estimated time lag between the date of a completed invention and the patent 

application date is no more than 2-3 months (Darby and Zucker, 2003).  Since the U.S. PTO only records 

patent application dates when patents are granted, we obtained its most recent report including patent data 

until the end of 2004.  The time series for this study ends in 2001 by design, thus attenuating any potential 

right truncation effect.  

 Research indicates that patents represent not only an important measure of innovative output, but 

also are an externally validated measure of technological novelty (Ahuja, 2000; Griliches, 1990; 

Henderson and Cockburn, 1994).  Additionally, patents have been shown to be critical to success in the 

pharmaceutical industry and are closely correlated with other performance measures, such as new product 

development, profitability, and market value (Comanor and Scherer, 1969; Henderson and Cockburn, 

1994).  The reliability of patent count data has been established empirically, because prior research 

demonstrates that patent count data are highly correlated with citation-weighted patent measures, thus 

proxying the same underlying theoretical construct (Hagedoorn and Cloodt, 2003; Stuart, 2000).  The 

bivariate correlation between patent counts and citation-weighted patents has been shown to be above 

0.77 (p < .001) in the pharmaceutical industry (Hagedoorn and Cloodt, 2003), which is especially relevant 

for this study, and above 0.80 (p < .001) in the semiconductor industry (Stuart, 2000), indicating some 

generalizability of this assertion.  In sum, a pharmaceutical firm which patents heavily in biotechnology 

can be seen as building innovation capabilities within a new technological paradigm. 

 The source for the patent data was the Technology Profile Report maintained by the U.S. PTO.  

Due to generous support from the U.S. PTO, we were able to obtain detailed data on the complete 

population of all biotechnology patents awarded to the global pharmaceutical companies in this sample 

annually.6  The average pharmaceutical firm in our sample was granted approximately seven 

biotechnology patents per year. 

                                                 
6 The U.S. PTO compiled these data based on all biotechnology patens in the following patent classes: 424 [Drug, 
bio-affecting and body treating compositions (different sub-classes)], 435 [Chemistry: Molecular biology and 
microbiology], 436 [Chemistry: Analytical and immunological testing], 514 [Drug, bio-affecting and body treating 
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 It may be argued that the patent data imply a bias in favor of U.S. companies; however, the patent 

literature, especially with respect to biotechnology patents, suggests otherwise.  First, the U.S. represents 

the largest market worldwide for biotechnology, and thus it is almost compulsory for firms to first patent 

in the U.S. before patenting in any other country (Albert, Avery, Narin, and McAllister, 1991).  Second, 

firms that are active in biotechnology have a strong incentive to patent in the U.S., because intellectual 

property protection has been consistently supported by U.S. courts (Levin, Klevorick, Nelson, and 

Winter, 1987).   

Independent Variables 

 Intellectual Human Capital and Star Scientists.  Focusing on entrepreneurial biotechnology 

ventures, Zucker, Darby, and their colleagues were one of the first to create a measure to proxy star 

scientists (Zucker and Darby, 1997b; Zucker et al., 1998; Zucker et al., 2002).  They identified a set of 

327 star scientists based on their outstanding productivity up until April 1990.  The primary criterion for 

selection was the discovery of more than 40 genetic sequences as reported in GenBank (1990), which is a 

worldwide directory of all articles reporting newly discovered genetic sequences.  Following this early 

time period, Zucker and colleagues identified stars as scientists that had published 20 or more articles, 

each reporting one or more genetic-sequence discoveries.  These 327 stars constituted only 0.75% of the 

population of biotechnology scientists, but accounted for 17.3% of all the published articles.  A star 

scientist, therefore, published more than 23 times as many articles as the average scientist.  Recently, 

Lacetera et al. (2004) identified a star scientist as someone whose three year moving average of annual 

publications was greater than five for at least one year.   

 To be conservative, we applied a more stringent definition of stardom than either Zucker et al. 

(1997b) or Lacetara et al. (2004).  We constructed our star measure as follows.  We searched the ISI 

Science Citation Index database to identify academic journal articles published between 1980 and 2004 

that met the following criteria: 1) had a keyword related to biotechnology (excluding social science 

research and non-human focused research, e.g., agricultural or veterinarian), and 2) could be 

unambiguously connected with one of the pharmaceutical firms in the sample, given the necessity of 

assuring that each of the authors was affiliated with a sample firm.  From the population of over 480,000 

academic journal articles, we collected the following information: author’s name, author’s affiliations, 

journal name, article title, keywords, publication year, number of times cited.  Note that our time period to 

                                                                                                                                                             
compositions (different sub-classes)], 530 [Chemistry: Natural resins or derivatives; peptides or proteins; lignins or 
reaction products thereof], 536 [Organic compounds], 800 [Multicellular living organisms and unmodified parts 
thereof and related processes], 930 [Peptide or protein sequence], PLT [plants]. 
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identify stars is by design somewhat longer than the study period (by three years), because this allows us 

to account for a “rising star” effect to some extent, an issue that is particularly pertinent towards the end 

of the study period due to the necessary right censoring inherent in any study attempting to capture a 

dynamic phenomenon. 

Once we completed the process of extracting the information for the 480,000 journal articles for 

each pharmaceutical firm, we compiled a list of total authors based on their publication record and 

aggregate times cited.  This query yielded approximately 135,000 authors, who published an average of 

3.8 articles and were cited an average of 66.4 times.  We then tied back each author to the pharmaceutical 

firms in our sample based on the authors’ affiliations as indicated in the journal article(s).  Thus, the total 

number of a firm’s scientists who published research pertaining to biotechnology in academic journals 

was our proxy for a firm’s intellectual human capital (Scientists [total]).  The average firm in the sample 

employed 214 publishing research scientists per year. 

Next, based on the distributions of citations and publications, we identified star scientists from the 

population of scientists using three different and increasingly more stringent approaches.  The first 

method identified 2,392 “publication stars”: scientists who published, on average, more than 27 papers 

during the 25-year period, 1980-2004 (z-score > 3.0 or 3 standard deviations above the mean).  The 

second approach yielded 1,570 “citation stars”: scientists whose publications had been cited at least 847 

times (z-score > 3.0).  Finally, our last approach was to identify researchers that were both publication 

and citation stars.  In this intersection, we identified 851 star scientists.  The 851 stars are less than 0.65% 

of the total population of scientists, but produced 15.2% of all publications and accrued 27.3% of all 

citations.  This implies that the average star scientist from this dataset published more than 25 times as 

many articles and is cited more than 45 times as often as the average scientist.  Because applying both a 

publication and citation filter is a fairly stringent and thus conservative approach to identifying a star, we 

used it as our proxy for star scientists (Star Scientists).7  This process also implies that the difference 

between total scientists and star scientists is our proxy for non-star scientists, which we insert in the 

regression analysis to isolate the effect of star scientists on innovative output more fully.  The average 

pharmaceutical firm employed about 17 star scientists and 197 non-star scientists in a given year over the 

study period.   

                                                 
7 Alternatively, we proxied stars by whether a researcher had received a Nobel Prize in either chemistry or medicine, 
the two fields relevant to our study.  We cross-referenced the list of all Nobel Laureates with our author database to 
assess whether any of the Nobel Laureates had published research articles where they listed a pharmaceutical 
company as their affiliation.  This process yielded 23 Nobel Laureates who published 148 papers.  The variance 
among firms, however, was too small for any meaningful econometric analysis. 
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To accurately connect scientists to pharmaceutical firms, it was important to establish a link 

between the point in time when a scientist was employed by a pharmaceutical firm and the resulting 

intellectual property (IP) disseminated in a journal publication.  First, we further investigated the 

publication time lag between initial submission and appearance of a journal article in the natural sciences.  

In stark contrast to the social sciences, where the time lag between initial article submission and 

publication in a journal can take several years, the initial submission to publication lag in the natural 

sciences is rather short; it is estimated to range, on the average, from three to six months (Greene, 1987; 

Murray and Stern, 2004).8 

Second, the issue of scientist mobility is critical to our analysis.  Some further analysis reveals 

that scientists within the pharmaceutical industry, however, do not change employers frequently.  Based 

on the propensity to switch employers for all of the over 135,000 scientists in the sample, we found that 

the average non-star scientist has worked for only 1.3 pharmaceutical firms (standard deviation 0.9) 

during the 22 years of our analysis, while the average star scientist has worked for 3.4 firms (standard 

deviation 1.8).  This roughly relates to a star scientist changing jobs every 6.5 years, or about three job 

changes during our study period. 

The third, and most critical issue, concerns the accurate link between the locus of IP creation and 

the locus of IP appropriation.  For example, in the social sciences it is the norm that researchers note their 

current employer as the organization of affiliation on a journal publication, even when the IP was created 

while employed by a different institution.  The norms associated with publishing in the social sciences, 

however, differ significantly with those of the natural sciences.  Here, based on interviews with natural 

scientists, we found that each author is required to put down the organization where the IP was generated 

as the affiliation on journal articles rather than his/her current employer.  The question of who owns the 

IP is fairly straightforward in the natural sciences, because each scientist is required to keep a detailed 

research log documenting his or her daily activities, research results, etc.  For example, if Merck were to 

hire a newly-minted PhD graduate, the first few publications that result from the person’s dissertation 

                                                 
8 Notwithstanding this evidence, we further investigated this issue empirically.  We took a random sample of 40 
articles from our database and collected the information from these publications pertaining to date of submission and 
date of publication.  Based on the input received from industry experts, we collected 20 articles from the period 
between 1984 and 1994, while the remaining 20 articles were from the period between 1995 and 2004.  The analysis 
of the data was in line with what we learned from our qualitative data.  The mean time for all 40 papers, from 
submission to acceptance, was 115 days (a minimum of 22 days and a maximum of 263 days).  The submission to 
publication time lag appears to shorten, however, as there was a statistically significant difference for the time to 
publication for papers published between 1984-1994 (mean of 134 days) vs. 1995-2004 (mean of 105 days).  While 
our selection included a number of different journals, there did not appear to be any significant difference between 
them.   
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research would be published under the imprimatur of his/her degree granting university, rather than under 

Merck’s name.  This process also implies that if a star moves, for example, from Lilly to Pfizer, all the 

work s/he has done at Lilly will be published under Lilly’s name, even if the publication date of the article 

coincides with the star being on Pfizer’s payroll.  Here, the current employer would only be mentioned in 

a footnote, for example, as the current mailing address of the author.  All subsequent research where the 

IP is generated at Pfizer’s labs will be published under Pfizer’s name.  This publication norm in the 

natural sciences allows us to track articles and connect them to the locus of IP creation and IP 

appropriation with fairly good accuracy, because the two loci overlap significantly.9  Taken together, 

neither publication time lags, mobility of scientists, nor concerns about IP appropriation are likely to 

introduce any significant error variance. 

R&D Capability.  Following prior research (Rothaermel and Hill, 2005), we proxied a 

pharmaceutical firm’s R&D capability by its R&D expenditures, while explicitly controlling for firm 

revenues.  Proxying R&D capability by R&D expenditures is preferred over R&D intensity (R&D 

expenditures divided by revenues), because in the latter measure, significant uncertainty exists as to 

whether any observed effects on innovation are due to the numerator, as hoped for, or due to the 

denominator.  We obtained the financial data used in this study from a number of sources including 

Compustat, Datastream, and FIS Mergent.  All financial variables are inflation-adjusted in constant 2000 

U.S. dollars. 

Biotech Alliances.  To document the alliances that the pharmaceutical firms entered with 

providers of biotechnology research, we tracked each firm’s alliances with universities, research 

institutions, and biotechnology firms.  Moreover, we content-analyzed each alliance description to ensure 

that the focal alliance indeed pertained to the new biotechnology paradigm.  To ensure accurateness and 

completeness of the alliance data, we used various issues of the BioScan industry directory and the ReCap 

database provided by Recombinant Capital.10  The average sample firm entered three alliances per year 

with providers of biotechnology knowledge. 

                                                 
9 The same holds true for patents.  For example, when the Cohen-Boyer patent (U.S. Patent 4,237,224) was granted 
in 1980, it was assigned to Stanford University, the locus of IP creation, even though Boyer had left academia to 
commercialize the breakthrough in rDNA when co-founding Genentech in 1976, the first biotechnology company.  
In general, journal publications precede patents in time.  Murray and Stern (2004) found that the average lag 
between publication of a journal article and subsequent granting of the patent was a little over 3 years (37.5 months) 
for their sample of 169 patent-paper pairs. 
10 BioScan and Recombinant Capital are fairly consistent in their reporting.  We found the inter-source reliability to 
be greater than 0.90 when documenting alliances.  BioScan and Recombinant Capital appear to be the two most 
comprehensive publicly available data sources documenting the global biopharmaceutical industry, and have been 
used frequently in prior research focusing on different questions and generally relying on only one of these two 
sources (e.g., Shan, et al. 1994; Lane and Lubatkin, 1998; Lerner et al. 2003; Powell, et al. 1996).   
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 Biotech Acquisitions.  Following Higgins and Rodriguez (2006), among others, we used the SDC 

Platinum database, published by Thomson Financial, to identify the number of biotechnology 

acquisitions a pharmaceutical firm had consummated during the study period.  Here, we studied each 

acquisition description in detail to ensure that the focal acquisitions were indeed targeted toward the 

sourcing of R&D.  The average pharmaceutical firm in the sample acquired about one biotechnology firm 

every two years. 

Control Variables 

 Lagged Biotech Patents.  We lagged the dependent variable, biotechnology patents, by one time 

period, and included it as a right-hand side variable.  Inserting a lagged dependent variable provides for a 

conservative estimation of the other regressors, and allows us to control for a potential specification bias 

that can arise from unobserved heterogeneity (Jacobson, 1990).  Moreover, lagged biotechnology patents 

can also be interpreted as a proxy for firm size in biotechnology. 

 Non-biotech Patents.  To further reduce the threat of unobserved heterogeneity when using 

biotechnology patents as the dependent variable, it is critical to control for non-biotechnology patents to 

avoid spurious findings, because firms that patent heavily per se might also patent heavily in 

biotechnology and vice versa.  Thus, we included the number of non-biotechnology patent applications 

granted per year as a control variable (Non-Biotech Patents).  These data were obtained from the U.S. 

PTO.  The average pharmaceutical firm was granted approximately 80 non-biotechnology patents per 

year during our study period. 

Firm Merged.  Over the last two decades, the pharmaceutical industry was characterized by 

increasing consolidation due to horizontal mergers.  To account for this effect, we created, as described 

earlier, a comprehensive “family tree” to trace all firms in existence in 2002 back to their various 

“ancestors” alive in 1980.  This approach allowed us to insert a dummy variable indicating if a sample 

firm was the result of a horizontal merger or acquisition (1 = firm merged).  About 13% of all sample 

firms engaged in at least one horizontal merger or acquisition during the study period. 

Pharmaceutical Firm.  The global pharmaceutical industry consists of specialized companies like 

GlaxoSmithKline, Schering-Plough, or Yamanouchi, which focus on proprietary drug discovery and 

development, as well as more diversified companies, most notably chemical companies like DuPont, 

Monsanto, or BASF.  A firm’s level of diversification, therefore, is likely to influence the extent to which 

it attempts to innovate within biotechnology.  We controlled for the varying degree of diversification by 

coding the pharmaceutical companies as 1 if the company is a specialized pharmaceutical firm (Pharma 
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Firm), and 0 otherwise.  Specialized pharmaceutical companies are firms that are active in SIC 2834 

(pharmaceutical preparations manufacturing).  However, if a company is active in both SIC 2834 and in 

SIC 2890 (chemical products manufacturing), for example, it was coded 0, indicating a higher degree of 

diversification.  More than half of the firms (54%) were fully specialized pharmaceutical companies. 

Firm Nationality.  We attempted to assess institutional and cultural differences by coding for the 

nationality of each pharmaceutical firm based on the location of its headquarters.  Thus, one indicator 

variable takes on the value of 1 if the firm is headquarted in the U.S. (U.S. Firm), the other indicator 

variable takes on the value of 1 if the firm is headquartered in Europe (European Firm), with an Asian 

location as the reference category.  The global nature of this sample is highlighted by the fact that only 

34% of the firms are headquarted in the U.S., while 42% are European, and the remaining 24% are Asian 

(mostly Japanese).  Thus, we were able to overcome the U.S. centric bias prevalent in prior research. 

Firm Performance and Firm Size.  Firm performance and firm size have a direct bearing on a 

firm’s innovative performance (Nohria and Gulati, 1996; Schumpeter, 1942).  To control for these effects, 

we inserted a firm’s Net Income, Total Revenues, and Total Assets into to the regression equations.  

Inserting total revenues as a control variable is especially relevant to isolate the effect of R&D 

expenditures on patenting. 

 Time to First Cohen-Boyer Patent Citation.  The Cohen-Boyer patent (U.S. Patent 4,237,224), 

disclosing recombinant DNA technology, represents a fundamental and industry-changing innovation that 

allowed firms to develop new drugs based on genetic engineering (Pisano, 1997).  The time to first 

citation of the Cohen-Boyer patent in a firm’s own patents (backward patent citation) was found to be a 

significant predictor of firm innovation (Fabrizio, 2005), and thus provides an indication of a firm’s speed 

of innovation within the new technological paradigm.  As such, we included it in our regression models as 

a control variable.  To identify when a firm first cited the Cohen-Boyer patent, if at all, we searched both 

the U.S. PTO and the NBER patent databases (Hall, Jaffe, and Trajtenberg, 2001). 

Year Fixed Effects.  Since we investigate a 22-year time period, it is prudent to control for time-

varying factors that affect all firms, including macroeconomic conditions.  We therefore inserted annual 

time dummies for each year, with 1980 being the omitted year and thus serving as the reference year.  

Such year fixed effects also capture secular movements in the dependent variable.  Inserting year 

dummies is useful, because it addresses concerns that underlying secular trends could potentially 

influence our inference by introducing a simultaneity bias in the relationship between the dependent 
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variable, biotechnology patenting, and the main regressors of interest.  In addition, year fixed effects also 

control for any right truncation effect that might remain in the time series. 

Estimation Procedures 

 The dependent variable of this study, a pharmaceutical firm’s patents in biotechnology, is a non-

negative, integer count variable.  Verified by a statistical test for overdispersion (Gourieroux, Montfort, 

and Trognon, 1984), the negative binomial estimation provides a significantly better fit for the data than 

the more restrictive Poisson model.  Negative binomial regression accounts for an omitted variable bias, 

while simultaneously estimating heterogeneity (Cameron and Trivedi, 1986; Hausman, Hall, and 

Griliches, 1984).   

 In theory, either fixed- or random-effects specification can be used to control for unobserved 

heterogeneity (Greene, 2003).  We applied a Hausman specification test (1978), and its result revealed 

that a random-effects estimation is appropriate.11  Therefore, we applied the following random-effects 

negative binomial model: 
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where n is a non-negative integer count variable, representing each pharmaceutical firm’s patents in 

biotechnology.  Thus, )/( εitnP  indicates the probability that pharmaceutical firm i is granted n 

biotechnology patent applications in year t.  The application of a random-effects negative binomial 

estimation addresses concerns of heterogeneity, and enables us to include covariates that tend to be time 

invariant, such as the firm’s time to first citation of the Cohen-Boyer patent, national origin, or degree of 

diversification (Hsiao, 2003).  Moreover, we submit that through the application of the Hausman-

specification test and the resulting random-effects specification, in combination with a rich set of detailed 

control variables, we have effectively addressed any potential endogeneity (Hamilton and Nickerson, 

2003). 

 Further, to interpret the results in a meaningful manner and to reduce potential collinearity, we 

standardized all independent variables before entering them into the various regression models.  We 

standardized the independent variables prior to creating their cross products to test the moderating 

hypotheses (Cohen, et al., 2003).  To compensate for a potential simultaneity bias and to enhance any 

causality claims, we lagged the financial measures (net income, assets, revenues, and R&D expenditures) 

as well as biotechnology alliances and biotechnology acquisitions by one year. 

                                                 
11 To assess how sensitive our results are to the reported random-effects specification, we additionally applied a 
fixed-effects estimation.  The results remained robust. 
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RESULTS 

Table 1 depicts the descriptive statistics and the bivariate correlation matrix, while Table 2 

presents the regression results for the direct effect hypotheses (H1 through H3, Models 2, 3, and 4), and 

Table 3 provides the results for the interaction hypotheses (H4 and H5, Models 5 and 6).  We first 

estimated a baseline model including the control variables only (Model 1).  Each subsequent model 

represents a significant improvement over the baseline model at p < .01, or smaller. 

Insert Tables 1 and 2 about here 

Results – Direct Effect Hypotheses 

The results shown in Model 2 provide support for Hypothesis 1a, indicating that a firm’s 

innovative output is a positive function of its intellectual human capital (p < .001), which we proxied by a 

firm’s total number of research scientists that (co-)authored at least one research article pertaining to 

biotechnology in a scientific journal.   

In Hypothesis 1b, we postulate that a firm’s innovative output is a positive function of its star 

scientists, above and beyond any effects of the firm’s non-star scientists.  To highlight the importance of 

explicitly controlling for non-star scientists, and thus to demonstrate the threat of unobserved 

heterogeneity, we first estimated the effect of a firm’s star scientists on innovative output, without 

controlling for non-star scientists (Model 3).  The results in Model 3 reveal that a firm’s star scientists are 

a positive and statistically significant predictor of innovative output (p < .01).  This finding would lead us 

to claim support for the hypothesis that a firm’s innovative output is positive function of its star scientists.  

In Model 4, however, we inserted the number of non-star scientists to more fully isolate any star scientist 

effect.  The results demonstrate that it is not the star scientists that are a significant predictor of innovative 

output, as hypothesized in H1b, but rather it is the firm’s non-star scientists that are a positive and 

statistically significant predictor of a firm’s innovative output (p < .05).  We thus reject Hypothesis 1b.  

This finding has two important implications. 

First, it demonstrates the seriousness of the threat of unobserved heterogeneity.  Had we not 

explicitly controlled for a firm’s non-star scientists, we would have accepted the hypothesis that stars are 

a significant predictor of innovative output, and thus committed a serious Type I error – accepting the 

research hypothesis when the null hypothesis is true in reality.  Second, a closer look at the results 

presented in Models 3 and 4 reveals a fully mediated relationship between a firm’s star scientists and its 

innovative output.  This relationship is implied, given that inserting non-star scientists leads to a positive 

and statistically significant effect of non-star scientists on innovative output, while the effect of star 
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scientists switches from being statistically significant in Model 3 to not being statistically significant in 

Model 4.12  This implies that the relationship between star scientists and innovative output is fully 

mediated by non-star scientists. 

We find that R&D expenditures, our proxy for R&D capability, are negative and statistically 

significant in predicting a firm’s innovation output (p < .05 in Models 2 and 4).  This does not imply, 

however, that R&D expenditures have an absolute negative effect on biotechnology patenting.  Rather, it 

may indicate that the functional relationship between R&D expenditures and biotech patenting could be 

non-linear.  When we include the linear and squared term of R&D expenditures in a post-hoc analysis 

(presented in the far right column of Table 2), we indeed see that the relationship between R&D 

expenditures and patenting is characterized by diminishing returns, because the linear term of R&D 

expenditures is positive and statistically significant (p < .05), while the squared term is negative and also 

statistically significant (p < .001).  This result is not caused by multicollinearity, since the VIFs between 

linear and squared R&D terms reach only 2.45, well below the cut-off point of 10 (Cohen, et al. 2003). 

Recall that our estimation technique is a negative binomial regression, and thus a non-linear, 

exponential estimation technique as explicated in equation (1) above.  Therefore, to interpret the reported 

beta coefficients in a meaningful manner, one needs to exponentiate the respective beta value [exp(β) or 

e
β] to obtain the incidence rate ratio, holding all other variables constant (see Long, 1997: 228-229; for a 

recent application see Ichino and Maggi, 2000).13   Table 4 provides an interpretation of the direct effects 

and interaction effects on biotechnology patenting.  We herein translate beta values into incidence rate 

ratios and factor changes.  When comparing the factor changes obtained for the statistically significant 

linear direct effects, we find that intellectual human capital (14%) had the strongest effect on 

biotechnology patenting, divided into star scientists (8%) and non-star scientists (10%), followed by 

biotechnology acquisitions (5%). 

Insert Tables 4 about here 

We do not find support for Hypothesis 3a, suggesting that a firm’s innovative output is a positive 

function of its alliances with new technology providers.  The results, however, do reveal support for 

                                                 
12 It is important to note that this result cannot be attributed reasonably to collinearity, because the bivariate 
correlation between stars and non-stars is r = .57.  While these two constructs are significantly correlated, and thus 
fulfill the requirement for potential mediation (Hair, Black, Babin, Anderson, and Tatham 2006), it also indicates 
discriminant validity because the bivariate correlation is well below the conventional ceiling of r = .70.  Moreover, 
all variance inflation factors for stars and non-stars were below 1.5, thus well below the traditional cut-off ceiling of 
10 (Cohen et al., 2003). 
13 A negative beta value translates into an incidence rate ratio of less than 1, while a positive beta value translates 
into an incidence rate ratio of greater than 1. 
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Hypothesis 3b, positing that a firm’s innovative output is a positive function its acquisitions of new 

technology firms, because the coefficients for biotechnology acquisitions are positive and statistically 

significant (p < .05 in Models 2-4).   

Results – Interaction Hypotheses 

We propose two competing interaction hypotheses, which we evaluate in Models 5 and 6 

presented in Table 3.  In Hypothesis 4 we posit that the different innovation antecedents across levels 

complement one another, while in Hypothesis 5 we suggest that they substitute for one another.   

We find support for the hypothesis that a firm’s intellectual human capital (proxied by its total 

scientists) and a firm’s R&D capability are substitutes for one another, because the interaction between 

these two variables is negative and statistically significant (p < .01 in Model 5).  Star scientists and R&D 

capability also substitute for one another, because their interaction is negative and significant (p < .05 in 

Model 6).  When evaluating the interactions between individual and network-level effects, we find that a 

firm’s 1) intellectual human capital and its biotechnology alliances and 2) its non-star scientists and its 

biotechnology alliances are substitutes for one another, because the interaction effects are negative and 

significant (p < .001 in Models 5 and 6, respectively).  Taken together, this implies that individual and 

firm-level effects as well as individual and network-level effects compensate for one another when 

pursued in parallel, at least at the margin.  For example, for pharmaceutical firms with a high level of 

intellectual human capital, alliances are less important to achieve biotech patenting.  Thus, new 

knowledge generated through research efforts by scientists may compensate for new knowledge that 

could be gained from external sources.  This points to some level of equifinality based on the different 

internal and external knowledge sources. 

When focusing on the interactions between firm and network-level factors, we find that a firm’s 

R&D capability and its biotechnology alliances complement one another, because the interaction effects 

are positive and significant in both Models 5 and 6 (p < .01 and p < .001, respectively).  Here, firm- and 

network-level effects reinforce one another when pursued in parallel, at least at the margin.  For 

pharmaceutical companies with a high level of R&D capability, the incremental benefit of pursuing 

alliances increases biotech patenting over and above simple additive effects.  This finding points to 

positive knowledge spillovers between an internal R&D capability and external knowledge sources, at 

least for alliances. 

In sum, the pattern for the interaction effect results suggests that individual-level antecedents to 

innovation (intellectual human capital, star scientists, and non-star scientists) appear to be substitutes for 
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firm-level antecedents to innovation (R&D capability) as well as for network-level antecedents 

(biotechnology alliances) to innovation, thus lending support to Hypotheses 5a and 5b.  On the other 

hand, firm- and network-level antecedents (biotechnology alliances) to innovation appear to complement 

one another, thus providing support for Hypothesis 4c.14 

The net effects of the interactions are depicted in Table 4, which further substantiates our claims 

pertaining to substitutive and complementarity effects.  The notion that intellectual human capital is a 

substitute to firm and network-level antecedents to innovation is highlighted by the fact that the positive 

direct effect of intellectual human capital on biotechnology patenting declines as R&D expenditures or 

the number of biotechnology alliances increase.  In particular, an innovation strategy that jointly 

emphasizes intellectual human capital and R&D expenditures or intellectual human capital and 

biotechnology alliances reduces the expected number of biotechnology patents between 6% and 11%, 

when any of the respective interaction variables is increased by one standard deviation.  On the other 

hand, the joint effects of R&D expenditures and biotechnology alliances on innovative output reinforce 

one another, thus highlighting their complementary natures.  In particular, the effect of R&D capability on 

innovative output increases between 8% and 11%, above and beyond the direct effects, when the number 

of biotechnology alliances is increased by one standard deviation, and vice versa.15   

                                                 
14 To further assess whether the results for the interaction effects could be driven by non-linearity of the direct 
effects composing the interaction effects or by collinearity between these direct effects (Cortina, 1993), we 
determined the bivariate correlations and shared variances of each of the direct effect combinations constituting the 
interactions as well as all variance inflation factors.  The bivariate correlations for the direct effects underlying the 
interaction effects are in the range between 0.122 ≤ r ≤ 0.423, and the shared variances are between 
1.49% ≤ r2 ≤ 17.89%.  Thus, the bivariate correlations are well below the traditional cut-off of r = 0.70, while the 
shared variances are well below the recommended ceiling of 50% shared variance (Cohen, et al. 2003).  Estimating 
all variance inflation factors (VIFs) reveals that, in the fully specified direct effects model, the average VIF is 1.90 
and the maximum VIF is 3.20.  In the interaction models the average VIF in Model 5 is 2.71, with a maximum VIF 
of 6.19.  The average VIF in Model 6 is 3.85, with a maximum VIF of 10.91.  Therefore, all VIFs, except for the 
interaction between non-star scientists and biotech alliances, are below the recommended ceiling of 10 (Cohen, et al. 
2003).  To investigate in more detail whether the slightly elevated VIF between non-star scientists and biotech 
alliances could lead to a level of collinearity where the significant interaction results are spurious due to non-
linearity of the direct effects underlying the interaction effects, we followed Cortina’s (1993) recommendation and 
tested the interaction between non-star scientists and biotech alliances after not only including all control variables 
and the linear direct effects for non-star scientists and biotech alliances, but also the squared terms of these two 
direct effects to control for potential non-linearity in the relationship between the direct effects and biotech 
patenting.  This approach allows the researcher to “control for possible non-linear effects and thus to rule out 
alternative explanations,” and as such “this solution is conservative [because] it involves the addition of [squared] 
terms to the equation that must be partialled out before the assessment of the interaction term” (Cortina, 1993: 918).  
The results of this test indicate that the interaction between non-star scientists and biotech alliances remained 
negative and statistically significant (p < .01), despite the inclusion of linear and squared terms for non-star 
scientists and biotech alliances.  These findings enhance our confidence in the results reported. 
15 The betas for Biotech Alliances in Table 2 are 0.0206 (Model 2) and 0.0199 (Model 4).  This translates into an 
incident rate ratio of 1.02 [exp(beta)] and a factor change of 2%. 
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Results of Control Variables 

Some of the results of the control variables are also noteworthy.  We assess them in the Model 1, 

the baseline estimation.  The results indicate that firms that are heavily engaged in patenting overall, as 

proxied by their non-biotechnology patents, are also very active in biotechnology patenting (p < .001).  In 

addition, past biotechnology patenting predicts future biotechnology patenting, because the lagged 

dependent variable is, as expected, positive and statistically significant (p < .001).  Thus, the observed 

effects above are not spurious to due a firm size effect in biotechnology.  Including a variable that 

captures a firm’s overall inclination to engage in the focal activity (proxied by non-biotechnology patents) 

and including a lagged dependent variable follow the recommendations of how to control for unobserved 

heterogeneity (Heckman and Borjas, 1980).  The results obtained are reassuring not only because they 

reduce the threat of unobserved heterogeneity, but also because they rule out the alternative explanation 

that the key independent variable findings might be caused by a firm’s innovation strategy, which is 

unobservable.   

With regard to the annual indicator variables, we see that the year dummies capture a trend 

acceleration and eventual deceleration in biotechnology patenting over time.  Patenting activity 

significantly accelerates in the early 1990s, peaks in the mid 1990s, and slows down somewhat towards 

the end of the study period.  This pattern suggests that inserting year dummies effectively controls for any 

remaining right truncation effect.  Pharmaceutical companies that underwent a horizontal merger or 

acquisition during the lengthy study period exhibit a significantly greater number of biotechnology 

patents (p < .001).  Larger firms, as proxied by their total assets, appear to be laggards in biotechnology 

patenting (p < .001).  Firms with higher revenues are more active in biotechnology patenting (p < .001).  

This result is important, because it isolates the effect of R&D expenditures on biotechnology patenting 

more fully, and because R&D expenditures and revenues are the two components of the frequently used 

R&D intensity measure (Cohen and Levinthal, 1989; 1990; Helfat, 1994a, 1994b, 1997).   As expected, 

firms that take longer to incorporate the breakthrough Cohen-Boyer patent into their knowledge base 

(p < .001) exhibit an overall lower innovation output.  Noteworthy is the strong negative effect of being 

late in citing the breakthrough Cohen-Boyer rDNA patent: Every 2.9 years of delay lowers the expected 

number of biotechnology patents by 45%.  This finding clearly highlights the imperative being a fast 

mover in this dynamic industry, where competition is characterized by winner-take-all scenarios (Arthur, 

1989). 
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DISCUSSION 

Following recent theoretical developments emphasizing that antecedents to dynamic capabilities 

can be found at the individual, firm, and network level of analysis (Eisenhardt and Martin, 2000; Teece, et 

al. 1997; Zollo and Winter, 2002), we set out to challenge the assumptions of homogeneity across and 

independence from different levels of analysis commonly found in extant uni-level research (Felin and 

Foss, 2005; Felin and Hesterly, 2006; Klein, et al. 1994; Dansereau, et al. 1999).  First, we scrutinized the 

assumption of homogeneity across levels of analysis by simultaneously testing the effects of different 

innovation antecedents across levels, thus explicitly controlling for alternate levels of analysis.  Second, 

we examined the assumption of independence from different levels of analysis by testing two competing 

interaction hypotheses concerning the potential complementary and substitutive nature of innovation 

antecedents in the intersections across different levels of analysis. 

Taken together, the results not only demonstrate heterogeneity across levels of analysis, but also 

interdependence with alternate levels of analysis.  We therefore reject both the assumption of 

homogeneity across levels and the assumption of independence from alternate levels of analysis.  These 

overarching findings resulted from attempting to answer questions pertaining to the locus of dynamic 

capabilities.   

With regard to heterogeneity across levels of analysis, we find that a significant amount of 

variance in innovation was explained by individual-level factors.  When splitting a firm’s intellectual 

human capital into its two components, star and non-star scientists, we find that the positive direct effect 

of intellectual human capital on patenting can be attributed to a firm’s non-star scientists, while its star 

scientists did not exert a significant direct effect on patenting.  At first glance, this result is somewhat 

surprising given that it highlights the importance of scale in intellectual human capital, accomplished 

through a large number of rank-and-file knowledge workers (Ashworth and Carley, 2006), rather than the 

primacy of elite scientists, which is emphasized in the few prior studies in this area (Lacetera, et al. 2004; 

Zucker and Darby, 1997a, 1997b).  This apparent tension, however, can be reconciled by the finding that 

non-star scientists fully mediate the effect of star scientists on innovative output.  It appears, therefore, 

that the primary role of the star scientist is to help cue the firm to potential shifts in the environment and 

direct it towards promising new research areas (Kaplan, Murray, and Henderson, 2003), rather than to 

facilitate its adaptation to the change itself.  

The structure of Sanofi-Aventis’ R&D process exemplifies the notion that the effects of star 

scientists on innovation are mediated by non-star scientists.  Sanofi-Aventis has two distinct research 
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groups.  The Discovery Research Group is comprised of a few key scientists and is responsible for 

identifying important treatment areas.  Every year this group recommends 15-20 promising areas for 

treatment.  These recommendations are followed up by the International Development Group, which is 

responsible for seeing the potential drug treatments through to development (Sanofi-Aventis 2004 Annual 

Report).  This structure seems to indicate that Sanofi-Aventis employs star scientists as visionaries in the 

Discovery Group, while non-star scientists are primarily responsible for drug development.  Without the 

involvement of a large number of non-star scientists in the development process, any innovative effect 

stars have would be attenuated.   

In contrast to prior work emphasizing networks as the locus of innovation (Powell, et al. 1996; 

Owen-Smith and Powell, 2004), our findings highlight the importance of individual-level factors in 

explaining firm-level heterogeneity in innovation, and thus validate recent theoretical calls for a stronger 

micro foundation in strategic management research (Felin and Foss, 2005; Felin and Hesterly, 2006).  

Since innovation is, by its nature, a knowledge intensive activity, the question turns to the issue of how 

firms learn.  Simon (1991) suggests that intellectual human capital, especially the recruitment of 

scientists, can be an effective way to learn and innovate.  He emphasizes that “all organizational learning 

takes place inside human heads; an organization learns in only two ways: (a) by the learning of its 

members, or (b) by ingesting new members who have knowledge the organization didn’t previously 

have” (Simon, 1991: 125).  The role of individuals in knowledge creation is also highlighted by Grant, 

who argues that “the emphasis upon the role of the individual as the primary actor in knowledge creation 

and the principle repository of knowledge … is essential to piercing the veil of organizational knowledge 

and clarifying the role of organizations in the creation and application of knowledge” (Grant, 1996: 121; 

italics added).  We find that rank-and-file knowledge workers, here non-star scientists, have a direct 

bearing on the innovative performance of firms, while controlling for alternative explanations across 

different levels.  We submit that future research needs to consider the role of individuals when studying 

antecedents to a firm’s dynamic capabilities, in particular, and firm performance, in general. 

Rather than finding a linearly positive relationship between R&D expenditures and biotech 

patenting, as hypothesized, we find that this relationship is characterized by diminishing marginal returns. 

This implies that while additional R&D expenditures may translate into a higher number of expected 

biotechnology patents, their positive effect, however, decreases as R&D expenditures increase.  A recent 

analysis of R&D expenditures and innovative output in the global pharmaceutical industry between 1980 

and 2003 details the phenomenon of ever increasing R&D expenditures, while the number of new drug 
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registrations declines, and concludes that “despite its outward strength, the [pharmaceutical] industry is 

ailing.  The pipelines of forthcoming drugs on which its future health depends have been drying up for 

some time” (The Economist, March 13, 2004).   

We find support for the notion that acquisitions increase innovative output, but no support for our 

hypothesis that alliances do the same.  This interesting result may be the product of our richly specified 

model, which allows us to uncover the effects of these disparate innovation mechanisms in greater detail.  

More specifically, our findings point to the notion that acquisitions can be a ‘stand-alone’ mechanism to 

innovation.  In an acquisition, a pharmaceutical firm often acquires not only the drug pipeline of the target 

firm, but also the firm’s internal research capability (Galambos and Sturchio, 1998; Higgins and 

Rodriguez, 2006).  In contrast, alliances between large pharmaceutical firms and biotechnology ventures 

often entail the sharing of explicit knowledge only in the later stages of drug development and subsequent 

commercialization (Rothaermel and Deeds, 2004).  The successful transformation and implementation of 

codified knowledge obtained in an alliance still requires that the firm has the ability to assimilate and 

apply this knowledge (Cohen and Levinthal, 1989).  Thus, by controlling for this internal ability, 

encompassing both intellectual human capital and R&D capability, we see that alliances, as a stand-alone 

mechanism, appear to be of little value to firm innovation.  While a firm can acquire the requisite 

dynamic capabilities to innovate through acquisitions, we find, in contrast, that the firm must already 

possess prior R&D capability for alliances to be a viable mechanism for innovation, as is highlighted in 

the significant interaction effects across levels of analysis.   

In regards to the demonstrated interdependence of alternate levels across analysis, we found, in 

general terms, that individual-level antecedents to innovation are substitutes for firm- and network-level 

antecedents to innovation, and that firm- and network-level antecedents to innovation are complements.  

The results obtained here are interesting in the sense that we find support for both substitutability and 

complementarity hypotheses, depending on which levels of analysis and intersections across levels are 

considered.  Thus, choosing between different innovation mechanisms in a discriminating fashion appears 

to be critical to firm innovation.  Taken together, the antecedents to innovation capabilities clearly lie 

across different levels of analysis.   

Limitations and Future Research 

 This research represents an initial attempt at developing and testing a multi-level model, 

incorporating individual-, firm-, and network-level effects, for use in investigating firm innovation.  As 

such, it is prone to several limitations that, in turn, open pathways to future research.  For example, it is 
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possible that some of the results presented, specifically those related to R&D capability and alliances, 

could be attributable to our choice of measurement, rather than to the underlying effect of the mechanism.  

By using more fine-grained data, future research could increase the confidence in the findings presented 

herein.  For example, prior research illustrates that when focusing exclusively on alliances, different types 

of alliances and different types of alliance experiences have differential effects on firm innovation (Hoang 

and Rothaermel, 2005; Rothaermel and Deeds, 2006).  Future research could incorporate detailed alliance 

distinctions into the multi-level theoretical model presented, while controlling for alternative innovation 

mechanisms, and thus expand our understanding of the mechanisms that drive firm innovation in a more 

in-depth manner.   

An additional limitation of this study is that we proxy firm R&D capability in biotechnology with 

an aggregate measure of R&D expenses.  This issue is especially troublesome for the more diversified 

pharmaceutical firms in this sample, such as Johnson & Johnson, because we are unable to segregate the 

portion of R&D expenses that are directed towards biotechnology.  Future research may increase the 

validity of the findings presented by parsing out the amount of firm-level R&D capability that is 

associated only with a firm’s biotechnology efforts.   

We also acknowledge that future research may be able to develop and implement a better 

measure of firm innovation than patent counts.  We emphasize, however, that patents are useful for 

measuring technological innovation, because they are only awarded to novel, non-obvious inventions that 

represent advancements over existing technology.  Moreover, we caution that alternative innovation 

measures, including new products developed, frequently exhibit too little variance to be feasible as a 

dependent variable and are difficult to track in the scale and detail necessary for a comprehensive 

longitudinal analysis.   

Finally, while the results presented offer fresh insights into firm innovation, the study’s focus on 

biotechnology innovation by large pharmaceutical firms raises questions about the generalizability of the 

findings.  This industry segment is unique in its significant reliance upon basic scientific research as well 

as its protracted and arcane product development and approval cycle.  Despite these unique 

characteristics, we submit that our results could be generalizable to other industries, because prior work 

details the increasing importance of research in basic science, inter-firm cooperation, and acquisitions in 

determining the innovation success or failure of individual firms across a diverse set of industries 

(Chesbrough, 2003; Cockburn, et al., 2000; Hagedoorn,1993). 
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Conclusion 

Our initial attempt to disentangle the multi-level effects associated with the various mechanisms 

firms can use to innovate contributes to the understanding of how firms build and refine dynamic 

capabilities in order to adapt to radical technological change.  This research demonstrates that individuals 

matter and that it is inappropriate to investigate firm adaptation and innovation without the consideration 

of its intellectual human capital.  Further, the various interactions between the levels of analysis indicate 

that the antecedents to dynamic capabilities lie across different levels.  Firm- and collective-level 

mechanisms appear to be complementary in nature, while intellectual human capital appears to substitute 

for firm- and network-level mechanisms.  The development of a strong intellectual capital base requires 

time and the commitment of resources that are often not available to a firm faced with the demands of 

adapting to a new technological paradigm.  Our research indicates that it is those firms that are able to 

identify, with the help of star scientists, an exogenous paradigm shift and to assemble the requisite human 

assets in the form of rank-and-file scientists that are ultimately able of developing the innovation 

capabilities necessary to succeed. 

Managers generally face the added burden of time constraints when attempting to innovate.  It is 

tantamount, therefore, to firm success that a manager be able to not only weigh the strengths and 

weaknesses of the available innovation mechanisms, but also to understand and predict how these 

mechanisms will interact when used in tandem.  Faced with the daunting task of adapting to a new 

technological paradigm, however, managers often choose the “grab bag” approach to innovating, 

employing a variety of available mechanisms simultaneously without knowledge of the possible 

deleterious interaction effects.  Our research demonstrates that, due to path dependency and constraints 

imposed on a firm’s financial, managerial, and research-related resources, a tandem approach may 

actually lead to decreases in innovative output.  In other words, when investigating the number of 

innovation mechanisms a manager should employ, more is not always better.  Instead, the managers who 

take a discerning and discriminating approach towards selecting innovation mechanisms will be most 

successful in building the dynamic capabilities necessary to continuously innovate. 
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TABLE 1: Descriptive Statistics and Bivariate Correlation Matrix 
 
 

mean s.d. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.

1. Biotech Patents 7.18            14.30          

2. Year 1991 6.78            0.158

3. Firm Merged 0.07            0.26            0.081 0.261

4. Pharma Firm 0.54            0.50            0.081 -0.003 -0.150

5. US Firm 0.34            0.47            0.109 -0.109 0.082 -0.069

6. EU Firm 0.42            0.49            0.003 -0.114 0.020 0.149 -0.603

7. Net Income (MM$)* 842.17        2,235.08     0.269 0.184 0.185 -0.005 0.223 -0.007

8. Total Assets (MM$)* 12,264.81   15,608.86   0.105 0.083 0.105 -0.344 0.019 0.167 0.301

9. Total Revenues (MM$)* 12,190.34   20,195.48   0.055 -0.012 0.035 -0.366 -0.022 0.089 0.147 0.743

10. Time to First Cohen-Boyer 6.55            2.90            -0.196 0.059 -0.034 -0.028 -0.097 0.021 -0.024 0.033 0.036

       Patent Citation (years)

11. Non-Biotech Patents 80.42          127.78        0.176 0.050 0.015 -0.374 0.089 0.049 0.179 0.519 0.624 0.029

12. Lagged Biotech Patents 6.18            12.58          0.803 0.182 0.094 0.081 0.130 -0.016 0.277 0.107 0.049 -0.212 0.163

13. Scientists (total) 214.01        288.46        0.474 0.247 0.336 0.118 0.207 0.035 0.346 0.146 0.055 -0.164 0.253 0.464

14. Star Scientists 16.89          43.29          0.407 0.070 0.176 0.124 0.233 -0.122 0.234 0.041 -0.009 -0.077 0.123 0.402 0.672

15. Non-Star Scientists 197.12        261.51        0.456 0.261 0.342 0.110 0.189 0.059 0.343 0.154 0.062 -0.169 0.258 0.446 0.992 0.575

16. R&D Expenditures (MM$)* 835.45        1,137.15     0.197 0.065 0.207 -0.228 -0.008 0.295 0.332 0.627 0.441 -0.024 0.500 0.192 0.386 0.122 0.406

17. Biotech Alliances 3.03            7.14            0.253 0.094 0.348 0.067 0.161 -0.022 0.170 0.084 0.020 -0.152 0.054 0.214 0.425 0.423 0.398 0.175

18. Biotech Acquisitions 0.68            1.94            0.172 0.178 0.436 0.085 0.133 0.021 0.194 0.123 0.020 -0.134 0.076 0.182 0.385 0.353 0.366 0.180 0.534  
 
N = 1,782 firm-years. 
* Constant 2000 U.S. dollars.
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TABLE 2: Regression Results of Random-Effects Negative Binomial Estimation Predicting Biotech Patenting 

Direct Effects Models

 beta s.e. beta s.e. beta s.e. beta s.e. beta s.e.

Constant -0.8642 (0.7147) -0.7957 (0.7353) -0.4495 (0.7221) -0.7138 (0.7392) -0.8079 (0.7381)

Year is 1981 0.2655 (0.7429) 0.3590 (0.7643) -0.0423 (0.7484) 0.2654 (0.7694) 0.5861 (0.7696)

Year is 1982 0.7668 (0.7353) 0.8162 (0.7569) 0.4277 (0.7424) 0.7223 (0.7621) 1.0335 (0.7620)

Year is 1983 0.5977 (0.7381) 0.6559 (0.7598) 0.2708 (0.7448) 0.5665 (0.7644) 0.8701 (0.7645)

Year is 1984 0.9750 (0.7306) 1.0380 (0.7515) 0.6511 (0.7365) 0.9472 (0.7563) 1.2339 (0.7557)

Year is 1985 0.7458 (0.7328) 0.7792 (0.7550) 0.3984 (0.7397) 0.6923 (0.7593) 0.9609 (0.7590)

Year is 1986 0.9618 (0.7301) 0.9688 (0.7516) 0.5849 (0.7370) 0.8782 (0.7564) 1.1340 (0.7555)

Year is 1987 1.1812 (0.7262) 1.2058 (0.7462) 0.8390 (0.7323) 1.1193 (0.7506) 1.3622 * (0.7498)

Year is 1988 1.1512 (0.7259) 1.1527 (0.7454) 0.7760 (0.7321) 1.0601 (0.7506) 1.2845 * (0.7487)

Year is 1989 1.0880 (0.7251) 1.1138 (0.7455) 0.7397 (0.7312) 1.0256 (0.7501) 1.2365 * (0.7487)

Year is 1990 1.4142 * (0.7198) 1.3710 * (0.7391) 1.0222 (0.7267) 1.2871 * (0.7434) 1.4764 * (0.7422)

Year is 1991 1.3977 * (0.7180) 1.3813 * (0.7356) 1.0318 (0.7238) 1.2931 * (0.7403) 1.4596 * (0.7384)

Year is 1992 1.5735 * (0.7172) 1.5306 * (0.7343) 1.1991 * (0.7229) 1.4485 * (0.7383) 1.6092 * (0.7371)

Year is 1993 1.7267 ** (0.7173) 1.6621 * (0.7345) 1.3278 * (0.7238) 1.5773 * (0.7390) 1.7319 ** (0.7375)

Year is 1994 1.9339 ** (0.7162) 1.8833 ** (0.7333) 1.5635 * (0.7224) 1.8044 ** (0.7370) 1.9442 ** (0.7363)

Year is 1995 2.1946 *** (0.7158) 2.1913 ** (0.7324) 1.8770 ** (0.7218) 2.1136 ** (0.7359) 2.2529 *** (0.7354)

Year is 1996 1.5918 * (0.7153) 1.5049 * (0.7351) 1.1961 * (0.7229) 1.4373 * (0.7375) 1.5590 * (0.7381)

Year is 1997 1.9465 ** (0.7146) 1.8674 ** (0.7307) 1.5774 * (0.7204) 1.7999 ** (0.7333) 1.9090 ** (0.7336)

Year is 1998 1.6932 ** (0.7163) 1.6461 * (0.7341) 1.3466 * (0.7221) 1.5809 * (0.7363) 1.6621 * (0.7370)

Year is 1999 1.7147 ** (0.7163) 1.6917 * (0.7320) 1.3972 * (0.7211) 1.6232 * (0.7345) 1.6946 * (0.7345)

Year is 2000 1.4924 * (0.7168) 1.5234 * (0.7307) 1.2557 * (0.7208) 1.4641 * (0.7326) 1.5291 * (0.7327)

Year is 2001 1.3509 * (0.7171) 1.3429 * (0.7339) 1.0568 (0.7231) 1.2788 * (0.7360) 1.3321 * (0.7362)

Firm Merged 0.1855 *** (0.0312) 0.1473 *** (0.0317) 0.1499 *** (0.0315) 0.1460 *** (0.0316) 0.1472 *** (0.0314)

Pharma Firm -0.1404 (0.0866) -0.2480 ** (0.0910) -0.2195 ** (0.0896) -0.2520 ** (0.0911) -0.2179 ** (0.0904)

US Firm 0.1329 (0.0950) -0.0164  (0.1008) 0.0094 (0.0999) -0.0216 (0.1009) -0.1050 (0.1035)

European Firm -0.0633 (0.0997) -0.0788 (0.1077) -0.0491 (0.1083) -0.0672 (0.1084) -0.1964 * (0.1132)

Net Income 0.0613 (0.0577) 0.0433  (0.0596) 0.0566 (0.0585) 0.0468 (0.0596) 0.0241 (0.0604)

Total Assets -0.5691 *** (0.0850) -0.5189 *** (0.0885) -0.5353 *** (0.0867) -0.5220 *** (0.0877) -0.5758 *** (0.0885)

Total Revenues 0.1879 *** (0.0433) 0.1849 *** (0.0433) 0.1985 *** (0.0425) 0.1889 *** (0.0431) 0.1468 *** (0.0444)

Time to First Cohen-Boyer Patent Citation -0.6068 *** (0.0831) -0.6778 *** (0.0900) -0.6966 *** (0.0925) -0.6904 *** (0.0916) -0.6401 *** (0.0889)

Non-Biotech Patents 0.1608 *** (0.0404) 0.1531 *** (0.0399) 0.1546 *** (0.0396) 0.1523 *** (0.0398) 0.1547 *** (0.0398)

Lagged Biotech Patents 0.1703 *** (0.0164) 0.1509 *** (0.0177) 0.1565 *** (0.0178) 0.1493 *** (0.0179) 0.1497 *** (0.0174)

Scientists (total) 0.1296 *** (0.0411) 0.0938 * (0.0418)

Star Scientists 0.0775 ** (0.0275) 0.0484 (0.0325)

Non-Star Scientists 0.0911 * (0.0478)

R&D Expenditures -0.1080 * (0.0577) -0.0768 (0.0548) -0.1017 * (0.0575) 0.2784 * (0.1281)

R&D Expenditures Squared -0.0872 *** (0.0283)

Biotech Alliances 0.0206 (0.0206) 0.0201 (0.0205) 0.0199 (0.0205) 0.0174 (0.0207)

Biotech Acquisitions 0.0464 * (0.0246) 0.0556 ** (0.0236) 0.0473 * (0.0243) 0.0480 * (0.0245)

Log likelihood -2587.22 -2473.88 -2475.23 -2473.41 -2467.94

Chi Square 807.24 *** 831.93 *** 831.53 *** 833.34 *** 822.03 ***

Improvement over Base (∆χ
2
) 24.69 *** 24.29 *** 26.10 *** 14.79 **

* p  < .05; ** p  < .01; *** p  < .001; Standard errors are in parentheses

Post-hoc AnalysisModel 3 Model 4Model 1 Model 2
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TABLE 3: Regression Results of Random-Effects Negative Binomial Estimation Predicting Biotech 
Patenting 

 

 

Interaction Effects Models

beta s.e. beta s.e.

Constant -0.3719 (0.7693) -0.5968 (0.7849)

Year is 1981 0.0224 (0.7886) 0.2377 (0.8029)

Year is 1982 0.4840 (0.7809) 0.6928 (0.7955)

Year is 1983 0.3208 (0.7836) 0.5348 (0.7985)

Year is 1984 0.7219 (0.7775) 0.9308 (0.7921)

Year is 1985 0.4507 (0.7818) 0.6590 (0.7961)

Year is 1986 0.5527 (0.7816) 0.7447 (0.7960)

Year is 1987 0.8128 (0.7759) 1.0156 (0.7902)

Year is 1988 0.7934 (0.7756) 0.9702 (0.7897)

Year is 1989 0.7589 (0.7756) 0.9634 (0.7902)

Year is 1990 0.9956 (0.7709) 1.2135 (0.7857)

Year is 1991 0.9975 (0.7691) 1.2049 (0.7844)

Year is 1992 1.1299 (0.7682) 1.3459 * (0.7834)

Year is 1993 1.2646 * (0.7679) 1.4863 * (0.7837)

Year is 1994 1.4659 * (0.7670) 1.7010 * (0.7830)

Year is 1995 1.7952 ** (0.7697) 2.0355 ** (0.7860)

Year is 1996 1.0784 (0.7717) 1.3228 * (0.7879)

Year is 1997 1.4904 * (0.7643) 1.7347 * (0.7806)

Year is 1998 1.2525 (0.7689) 1.5117 * (0.7862)

Year is 1999 1.2695 * (0.7625) 1.5063 * (0.7787)

Year is 2000 1.1655 (0.7596) 1.4036 * (0.7738)

Year is 2001 1.0027 (0.7631) 1.2502 (0.7780)

Firm Merged 0.1337 *** (0.0322) 0.1284 *** (0.0329)

Pharma Firm -0.2416 ** (0.0903) -0.2302 ** (0.0910)

US Firm -0.0565 (0.1037) -0.0469 (0.1044)

European Firm -0.1026 (0.1089) -0.0996 (0.1102)

Net Income 0.0602 (0.0593) 0.0685 (0.0602)

Total Assets -0.5627 *** (0.0899) -0.5269 *** (0.0910)

Total Revenues 0.1745 *** (0.0438) 0.1725 *** (0.0443)

Time to First Cohen-Boyer Patent Citation -0.6838 *** (0.0920) -0.6896 *** (0.0944)

Non-Biotech Patents 0.1666 *** (0.0399) 0.1662 *** (0.0398)

Lagged Biotech Patents 0.1713 *** (0.0200) 0.1719 *** (0.0211)

Scientists (total) 0.2186 *** (0.0532)

Star Scientists 0.0613 (0.0460)

Non-Star Scientists 0.1766 ** (0.0656)

R&D Expenditures -0.0297 (0.0615) -0.0583 (0.0653)

Biotech Alliances 0.0443 (0.0347) 0.0387 (0.0355)

Biotech Acquisitions -0.0265 (0.0453) -0.0376 (0.0465)

Scientists (total) x R&D Expenditures -0.1141 ** (0.0450)

Scientists (total) x Biotech Alliances -0.0630 *** (0.0174)

Scientists (total) x Biotech Acquisitions 0.0171 (0.0149)

Star Scientists x R&D Expenditures -0.1037 * (0.0613)

Star Scientists x Biotech Alliances 0.0132  (0.0114)

Star Scientists x Biotech Acquisitions 0.0028 (0.0107)

Non-Star Scientists x R&D Expenditures -0.0604  (0.0484)

Non-Star Scientists x Biotech Alliances -0.0873 *** (0.0221)

Non-Star Scientists x Biotech Acquisitions 0.0212 (0.0225)

R&D Expenditures x Biotech Alliances 0.0802 ** (0.0320) 0.1036 *** (0.0323)

R&D Expenditures x Biotech Acquistions 0.0556 (0.0406) 0.0568 (0.0414)

Log likelihood -2463.73 -2459.94

Chi Square 891.99 *** 901.23 ***

Improvement over Base (∆χ2) 84.75 *** 93.99 ***

* p  < .05; ** p  < .01; *** p  < .001; Standard errors are in parentheses

Model 5 Model 6
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TABLE 4: Interpretation of Negative Binomial Regression Results 
 

 

 
 

Incidence Factor

beta Rate Ratio Change

= exp(beta) = IRR-1

Direct Effects

Scientists (total) 0.1296 *** 1.14 0.14

Star Scientists 0.0775 ** 1.08 0.08

Non-Star Scientists 0.0911 * 1.10 0.10

R&D Expenditures 0.2784 * 1.32 0.32

R&D Expenditures Squared -0.0872 *** 0.92 -0.08

Biotech Acquisitions 0.0464 * 1.05 0.05

Biotech Acquisitions 0.0473 * 1.05 0.05

  

Interaction Effects  

Scientists (total) x R&D Expenditures -0.1141 ** 0.89 -0.11

Scientists (total) x Bio Alliances -0.0630 *** 0.94 -0.06

Star Scientists x R&D Expenditures -0.1037 * 0.90 -0.10

Non-Star Scientists x Biotech Alliances -0.0873 *** 0.92 -0.08

R&D Expenditures x Biotech Alliances 0.0802 * 1.08 0.08

R&D Expenditures x Biotech Alliances 0.1036 *** 1.11 0.11

* p  < .05; ** p  < .01; *** p  < .001.


