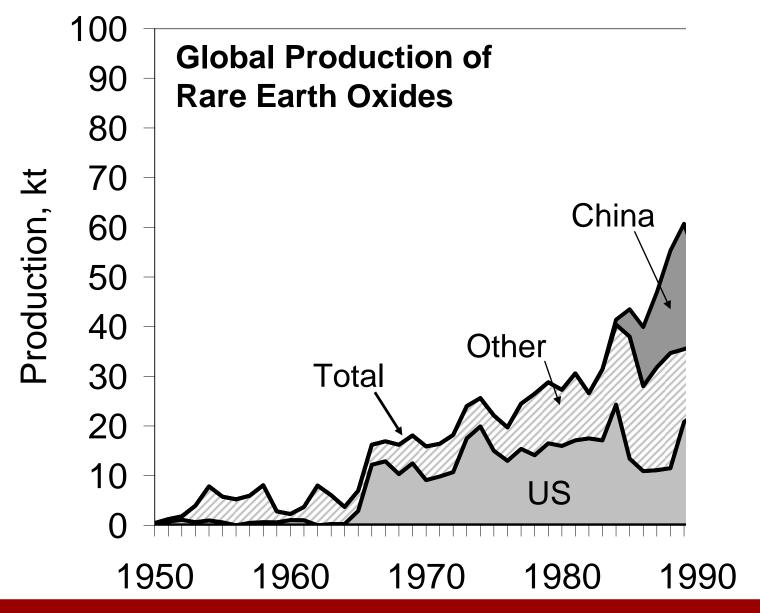
The internationalization of industry supply chains and the location of innovation activities

Brian J. Fifarek Engineering and Public Policy Francisco Veloso Engineering and Public Policy & Universidade Católica Portuguesa Cliff I. Davidson Engineering and Public Policy & Civil and Environmental Engineering

The Middle East has Oil, China has...

... Rare Earths

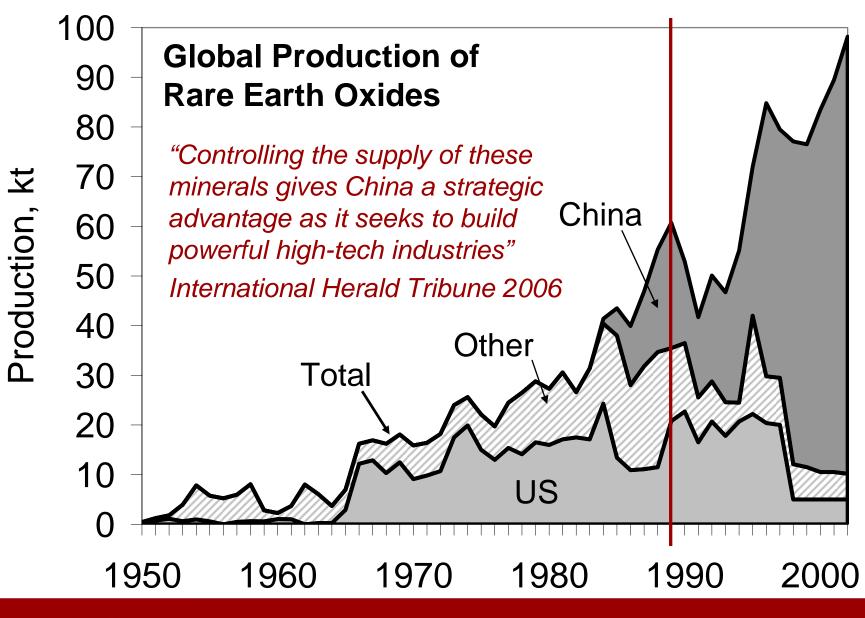
Deng Xiaoping, 1992



What is the Rare Earth Industry?

Ia IIa								IIIa	IVa	Va	VIa	VIIa	VIIIa
Н											Atomic		He
Hydrogen	ydrogen Rare Earths									Eleme Atomic	nt Name	Helium	
Li Be								В	С	N	O	F	2 Ne
Lithium Beryllium								Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
3 4								5	6	7	8	9	10
Na			_				d	min				1	Α
Sodium	sodum Erbium d					u	/miu				ine	Argon	
$\frac{11}{K}$ Er ³⁺ ID obcorption accept in along						m	aner	nt m	agno	<u>ot</u>	/	18 Kr	
									Ŭ		ine	Krypton	
¹⁹ Fr [.] (F [.] silica	or Gessil	ica d	lass	:) _ [2	aser		ar	-IR	ase	r (10)64	5	36
KD	Rb Rb												Xe
Rubidium amplifier, L	ised in fib	er ol	otic	cabl	es							he	Xenon
37								aiah	tom	nord	sture	3	54
LaF ₃ :Yb-Er – up-conversion phosphor – high te							lem	ipera	alure	t	Rn		
Cesium 5	•			•	-		•					ine	Radon 86
Fr SS												*	**
Francium													
87 88 103 104	105 106	107	108	109	110	111	112	113	114	115	116	117	118
La Ce	Pr Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	1	
Lanthanide Lanthanum Ceriur		Pomethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmiur	Erbium		1 D Ytterbium		
Series 57 58	59 60	61	6 2	63	64	65	66	67	68	69	70		
Ac Th		Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
Actinide Series Actinium Thoriu	n Protactinium Uranium	▲ Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium		
89 90	91 92	93	94	95	96	97	98	99	100	101	102		

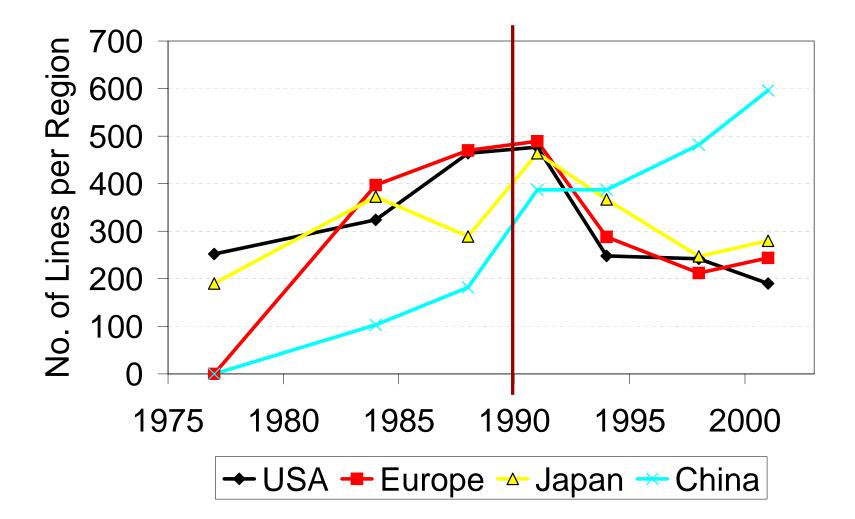
Carnegie Mellon


Development of a growing industry

Carnegie Mellon

USGS

The emergence and domination of China



Carnegie Mellon

USGS

China emerges as critical consumer

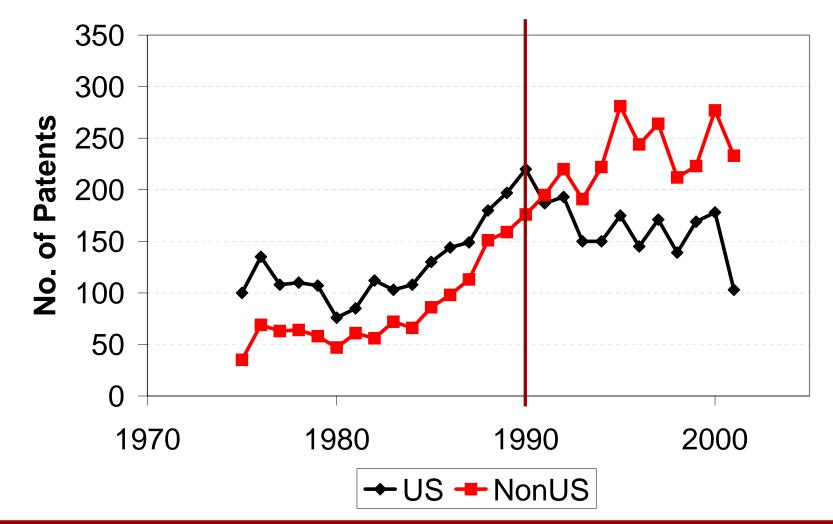
Rare Earth Industry Reports

Carnegie Mellon

Roskill Information Services

What is the impact of offshoring?

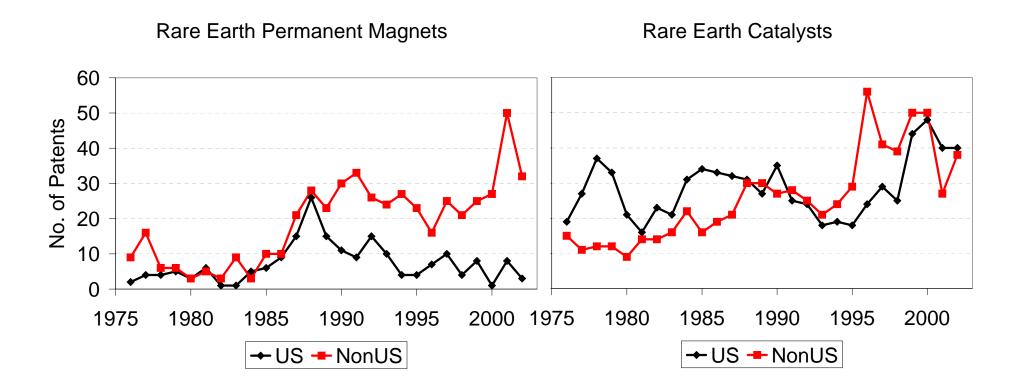
- Internationalization can benefit individual firms as well as regional economies (Mann, 2003; Farrell, 2003)
 - Reduces costs and expands markets (Aron & Singh, 2005)
 - Greater scale to exploit high technology innovation developed in home region (Shan and Song, 1997)
 - Increase innovation by augmenting knowledge base (Florida, 1997; Quinn, 1999, 2000)
- Manufacturing matters (Cohen & Zysman, 1987; Hira & Hira, 2005)
 - Manufacturing and high value added services are complements
 - As manufacturing moves, engineering and R&D will follow


Magnequench offshoring path

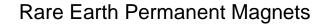
World leader in rare earth magnet powder metallurgy

- 1982 Files exclusive patent on NdFeB permanent magnet composition
- 1986 Opens \$70 million magnet facility in Indiana
- 1998 Begins production in China
- 1999 Opens R&D center in Research Triangle Park
- 2002 Closes Indiana production facility
- 2004 Moves R&D center to Singapore

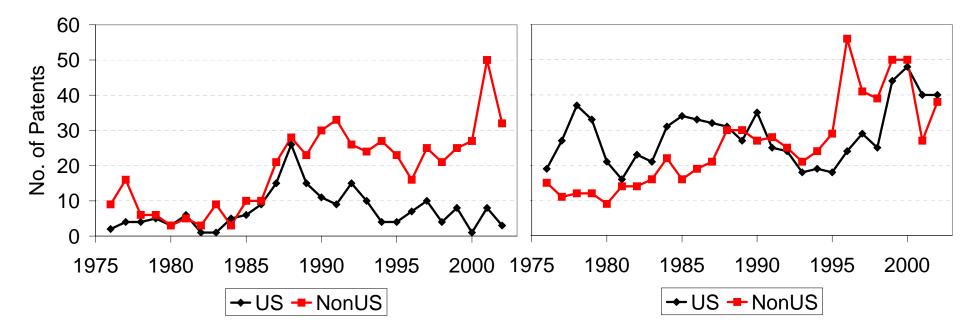
Magnequench as part of a broader trend


Rare-earth Patents

Carnegie Mellon


Rare earth technology differences

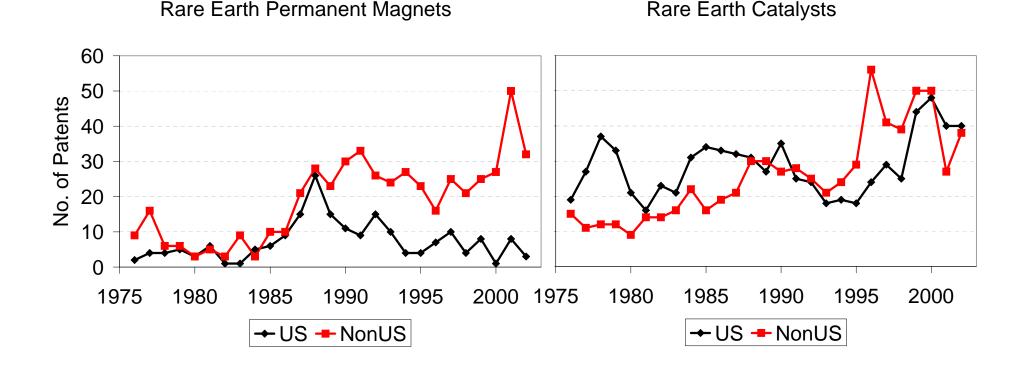
US rare earth patenting has been declining since 1990
 But this trend is not uniform across rare earth technologies



Research question

- When does innovation follow the internationalization of upstream supply chain activities and when does it not?
- What are <u>critical</u> drivers of co-location of innovation and production?

Knowledge spillovers as a critical driver


Knowledge spillovers

- Spillovers geographically localized (Jaffe et al., 1993; Audretsch and Feldman, 1996; Thompson and Fox-Kean, 2005)
- Codified vs. tacit knowledge
- Knowledge Spillovers and Co-location of Production and Innovation (Macher and Mowery, 2004)
 - When spillovers matter, innovation follows the movement of the value chain
 - When spillovers do not matter, the location of segments of the value chain do not impact the location of innovation activities
 - Industry interviews suggested spillovers important for permanent magnets but not catalysts

Carnegie Mellon

Knowledge spillovers and innovation offshoring in 2 rare earth technologies

- Are knowledge spillovers important?
- Do they play a role in the movement of innovation activities?

Methods: Empirical testing

Patent citations

Citations identify "prior art" of relevance to the focal patent

- Citations are one of the most traceable records to understand critical knowledge flows (*Jaffe et al., 1993, 2000; Stuart and Podolny, 1996*)
- Preponderance of local citations is indication of knowledge spillovers (*Jaffe et al., 1993, 2000*)

Take a US perspective

Measure percent of US citations by focal patents $perus = \frac{US \ citations}{T_{abs}}$

Total citations

Methods: Variables

Independent variables

US dummy (*US*)

US versus NonUS location

Time period dummy (d)

Before and after 1990

Interaction

Control variable

Random expected percent of US citations per focal patent

- Use algorithm to identify complete set of patents containing relevant and available prior art
- Controls for time trends

Carnegie Mellon

Regression Results

Dependent Variable: **In(perus/(1-perus))** Logistic transform of percent US citations

	Cata	lysts	Magnets			
Model	1a	1b	1a	1b		
US 0-1 dummy for location	+***	+***	+***	+**		
d 0-1 dummy for time period	+***	+**	-	_**		
US*d US after 1990		+		+**		
** p < 0.05; *** p < 0.001						

Understanding regression results

 For both technologies
 Local knowledge spillovers matter in both time periods

 For Catalysts after 1990
 US knowledge more important for all innovation activities
 For Magnets after 1990
 US knowledge less important for innovation activities abroad
 US knowledge more important for US innovation activities

Carnegie Mellon

 $(US = +^{***} in all models)$

 $(d = +^{***} \text{ in Model 1a and 1b})$

$$(d = -^{**} \text{ in Model 1b})$$

 $(US^*d = +^{**} \text{ in Model 1b})$

Interpreting role of knowledge spillovers

Patent counts suggest

Innovation activities in <u>magnets moving away</u> from the US

Innovation activities in <u>catalysts remain</u> in the US

Citation regressions suggest

- For catalyst innovation, US knowledge remains important for domestic and foreign activities
- In magnet innovation, domestic and foreign activities increasingly rely on respective local knowledge
- When spillovers matter for innovation activities these will be located where relevant knowledge is

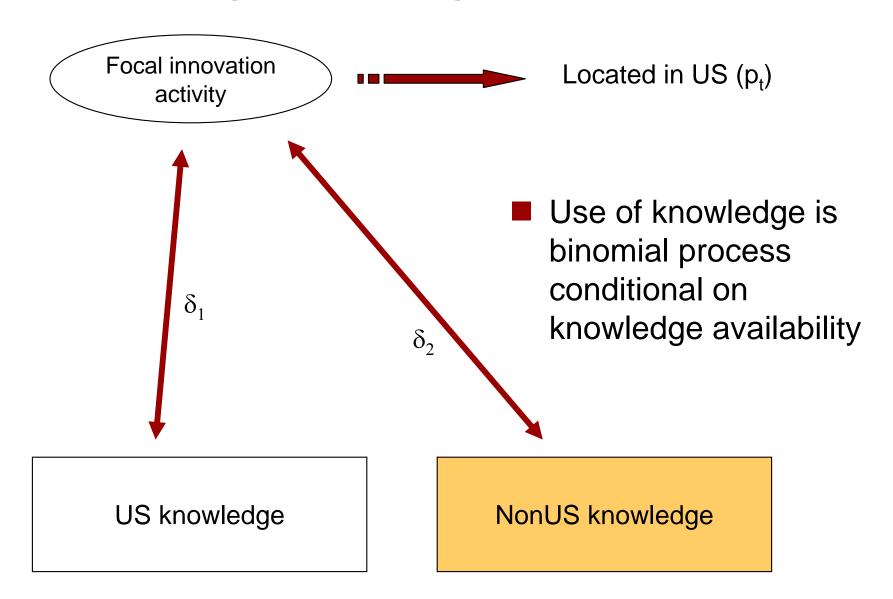
Carnegie Mellon

Understanding the Process

Testing for competing explanation

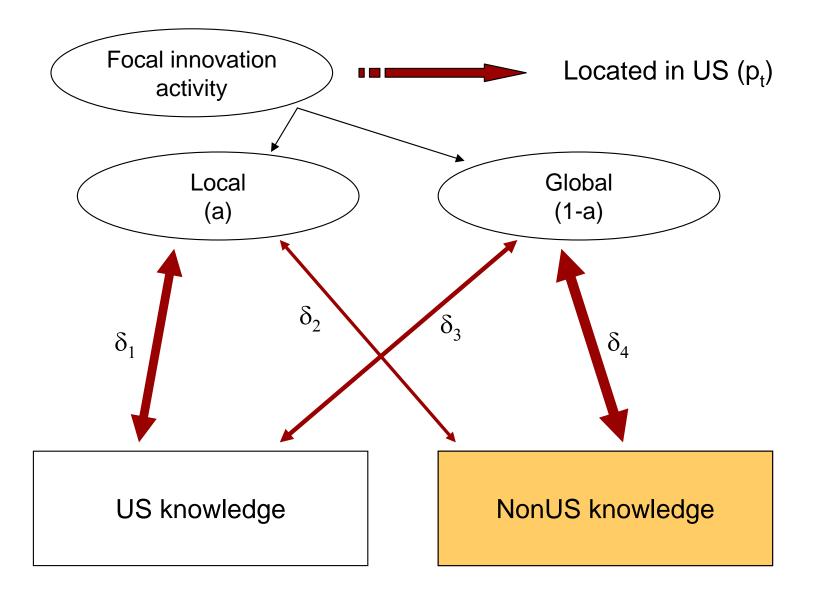
Nature of innovation process changed after 1990
 unobserved heterogeneity

Model underlying structure for innovation processes

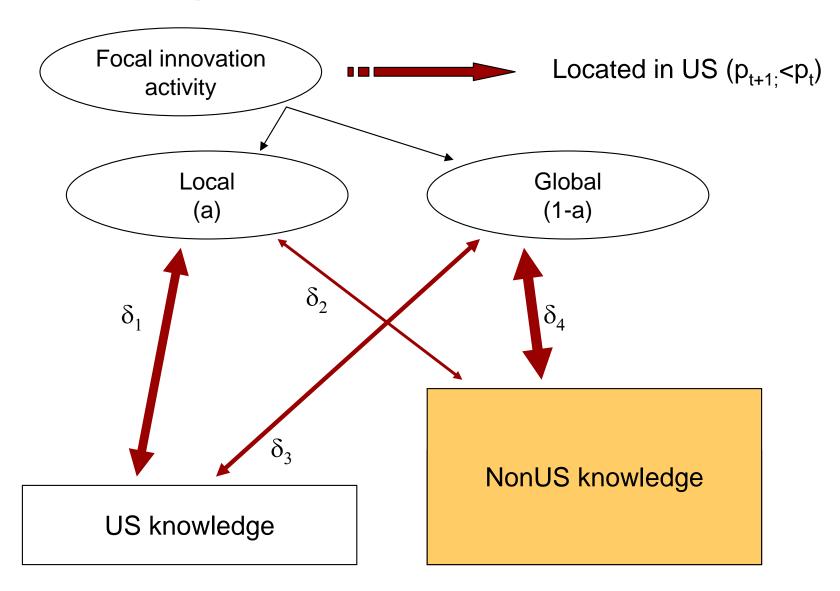

Capture the role of knowledge spillovers

Control for the nature of innovation processes

Replicate key regression results



Understanding knowledge use in innovation



Assume two classes of innovation activity

What changes in time period t+1?

Results of model

US Magnet Innovation Activities							
	Before	e 1990	After 1990				
	Local	Global	Local	Global			
Local Knowledge	51	%	64%				

For magnets after 1990,

- US knowledge more important
 - for US innovation activities
- US knowledge more important for US innovation activities

(Percent increase = 13%)

 $(US^*d = +^{**} \text{ in Model 1b})$

Process behind the results

US Magnet Innovation Activities							
	Before	e 1990	After 1990				
	Local	Global	Local	Global			
% innovation activities	39%	61%					
Local knowledge	98%	35%					
Global knowledge	2%	65%					

Conclusions

What innovation will stay and what will go?
 Knowledge spillovers play a role in determining location
 Need to understand changing nature of innovation activities

What tasks will stay and what will go?
 Codifiable and tacit information (*Leamer and Storper, 2001*)
 "Routine" and "nonroutine" tasks (*Levy and Murnane, 2004*)
 Electronic and nonelectronic tasks (*Blinder, 2006*)

Need to reframe discussion on appropriate responses to movements offshore

View that solution is just to upgrade to higher value-added (innovation) jobs may be incorrect – some of these will go

Questions?

Acknowledgements: We would like to thank Ashish Arora for his help in developing and specifying the model. Funding is provided by the Pennsylvania Infrastructure Technology Alliance.

