massachusetts institute of technology today's spotlight about
Close
Spotlight image Spotlight image
The iconic MIT home page Spotlight features a daily-changing image and design that focuses on advances in research, technology and education taking place at the Institute. Though some Spotlights do run multiple days - for example Friday's spot usually runs through the weekend, we work very hard to maintain the daily-changing tradition. We've combed our servers and have compiled a digital archive of the Institute home page through the years - well over 2000 images. Enjoy!
Close
Curves aheadToday’s Spotlight features an image courtesy of the researchers. A printable, self‑deforming material that changes its surface area in order to curve in two different directions simultaneously.

Today’s 3-D printers, in which devices rather like inkjet-printer nozzles deposit materials in layers to build up physical objects, are a great tool for designers building prototypes or small companies with limited product runs.

But they take a long time to produce objects that are more than a couple of centimeters in height, and many researchers believe that they’ll realize their full potential only when they can generate sheets of patterned materials that will automatically warp themselves into larger, more complex shapes.

Read full article.
The MIT home page Spotlight showcases the research, technology and education advances taking place at the Institute every day.

What makes it as a Spotlight image is an editorial decision by the MIT News Office based on factors that include timeliness, promotion of MIT's mission, the balance of interest to both internal and external audiences, and appropriateness.

We do welcome ideas and submissions for spotlights from community members, but please note we are not able to accommodate all requests. We are unable to run event previews or promotions as spotlights; for those looking to promote an event, we are happy to include your listing as an event headline on the homepage (when space is available). For more information, e-mail the spotlight team.

Request a Spotlight or Event Headline, here.
Today’s Spotlight features an image by Jennifer Jordan and Dragony Fu. To determine the location of ALKBH7 in cells, MIT researchers engineered these cells to express ALKBH7 bound to green fluorescent protein (GFP). The cells’ mitochondria express a red fluorescent protein. In cells where ALKBH7 is present in the mitochondria, the green and red signals mix and appear yellow.

When cells suffer too much DNA damage, they are usually forced to undergo programmed cell death, or apoptosis. However, cancer cells often ignore these signals, flourishing even after chemotherapy drugs have ravaged their DNA.

A new finding from MIT researchers may offer a way to overcome that resistance: The team has identified a key protein involved in an alternative death pathway known as programmed necrosis.

Read full article.