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Spring 2003
Lecture#1

Jacob White
(Slidesthanksto A. Willsky, T. Weiss,
Q. Huy, and D. Boning)

1) Administrative details
2) Signas

“Figures and images used in these lecture notes by permission, e '“!‘Hl-lﬂh
copyright 1997 by Alan V. Oppenheim and Alan S. Wil sky” "
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/ Signals and Systems \

6.003 is about using mathematical techniques to help analyze
and synthesis systems which process signals.

e Signals are variables that carry information
o Systems process input signals to produce output signals.

Today: Signals, Next Time: Systems.

/ Different Types of Signals \

EKG —
Microphone —— Oscilloscope
CD —— i
Switch Speaker
Oscillator — box
Audio
Pulse generator — Amplifier

AM/FM generator —»

Signal Classification \
Type of Independent Variable

Time is often the independent variable. Example: the electri-
cal activity of the heart recorded with chest electrodes — the
electrocardiogram (ECG or EKG).
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éterm time is often used generically, to represent the inde—\

pendent variable of a signal. the independent variable may be a
spatial variable such as in an image. Here grayscale information
is specified as a function of position.

Cervica MRI

/

/ Independent Variable Dimensiondity \

An independent variable can be 1-D (t in the EKG) or 2-D (x,y
in the image).
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6.003 examples are mostly 1-D, but many applications use mul-
tiple dimensions (radar, MRIs, numerical simulation).




/ Continuous Time (CT) and Discrete-
Time (DT) Signds
CT signals take on real or complex values as a function of an
independent variable that ranges over the real numbers and are
denoted as z(t). DT signals take on real or complex values
as a function of an independent variable that ranges over the

integers and are denoted as z[n]. Note the use of parentheses
for CT signals and square brackets for DT signals.
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An image example on the left, its DT representation on the right
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The image on the left consists of 302 x 435 picture elements
(pixels) each of which is represented by a triplet of numbers
{R,G,B} that encode the color. Thus, the signal is represented
by c[n,m] where m and n are the independent variables that

specify pixel location and c is a color vector specified by a triplet
of hues {R,G,B} (red, green, and blue).

Mandril Example
Blurred Image

Mandril Example
Unblurred Image— No Noise
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Mandril Example
Unblurred Image— 0.1% Noise

11

Red and Complex Signals

An important ciass of;ignals are:
o CT signals of the form z(t) = e
e DT signals of the form z[n] = 2"

where z and s are complex numbers. For both exponential CT
and DT signals, z is a complex quantity and has:

e a real and imaginary part, or

& a magnitude and an angle

What is most convienient depends on the analysis.
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ﬂr example, suppose s = jr/8 and z = e/™/8, then the real ph
are

R{z(t)} = R{/8} = cos(nt/8),
R{z[n]} = R{™/} = cos[rn/8].

N /
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/ Periodic and A-periodic Signals \

Periodic signals are such that z(t4+7) = z(t) for all t. The small-
est value of T that satisfies the definition is called the period.
Below on the left below is an aperiodic signal, with a periodic
signal shown on the right.

t 0 T t

z(t) z(t)

\_ /

14

f Right- and L eft-Sided Signals \

A right-sided signal is zero for t < T and a left-sided signal is
zero for t > T where T can be positive or negative.
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K Bounded and Unbounded Signals \

x(t) *(t)

Unbounded Unbounded

‘Bounded Bounded

\_ /
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K Even and Odd Signals \

Even signals z.(t) and odd signals z,(t) are defined as

ze(t) = ze(—t) and zo(t) = —zo(—t).

zg_(t) zg(t)
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/Any signal is a sum of unique odd and even signals. Using\

z(t) = ze(t) + zo(t) and z(—t) = ze(t) — zo(t),
yeilds

2e(t) = 2(2(0) +2(~1)) and 2o(t) = _(2() ~ 2(~1).

=)
2e(t)
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Building Block Signals
Eternal Complex Exponentials

o z(t) = Xest for all ¢
o z[n] = Xz" for all n,

where X, s, and z are complex numbers. We illustrate the rich-
ness of this class of functions for CT signals; DT signals are
similarly rich. In general s is complex and can be written as

s =0+ jw,

Eternal, complex exponentials — real s
If s=¢ is real and X is real then

2(t) = X,
and we get the family of real exponential functions.
Eternal, complex exponentials — imaginary s

If s = jw is imaginary and X is real then
z(t) = X/t = X(coswt + jsinwt),

and we get the family of sinusoidal functions.
Eternal, complex exponentials — complex s
If s =0+ jw is complex and X is real then

z(t) = Xelotiolt = XeH(coswt + jsinwt),

and we get the family of damped sinusoidal functions.

where ¢ and w are the real and imaginary parts of s.
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For z(t) = Xe®t, R{z(t)} = Xetcoswt is plotted for different
values of s superimposed on the complex s-plane.
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For z(t) = Xe*, &{z(t)} = Xe'sinwt is plotted for different
values of s superimposed on the complex s-plane.
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Why are eternal complex
exponentials so important

Almost any signal can be represented as a sums of eternal
complex exponentials.

The output of linear time-invariant (LTI) systems is simple
to compute if the inputs are sums of eternal complex expo-
nentials.

Eternal complex exponentials are the characteristic (unforced,

homogeneous) responses of LTI systems (eigenfunctions).
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Cervical Spine MRI
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Unit Impulse Function

The unit impulse 6(¢), aka the Dirac delta function, is not a func-
tion in the ordinary sense. It is defined by the integral relation

[ swsw di= 1),

and is called a generalized function. The unit impulse is not
defined in terms of its values, but is defined by how it acts inside
an integral when multiplied by a smooth function f(¢). To see
that the area of the unit impulse is 1, choose f(¥) = 1 in the
definition. We represent the unit impulse schematically as shown
below; the number next to the impulse is its area.

Unit impulse
a(t)
1
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Narrow Pulse Approximation

To obtain an intuitive feeling for the unit impulse, it is often
helpful to imagine a set of rectangular pulses where each pulse
has width e and height 1/e so that its area is 1.

pe(t)

The unit impulse is the quintessential tall and narrow pulse!
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Robot Arm System
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Intuiting Impulse Definition

e |lpe(t)

£0)
e || f®pe(t)
£ _£(0)
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As the rectangular pulse gets taller and narrower,

t![rg)./z eyt — 19 = 50).

€
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Uses of the Unit Impulse

The unit impulse is a valuable idealization and is used widely in
science and engineering. Impulses in time are useful idealizations.

e Impulse of current in time delivers a unit charge instanta-
neously to a network.

o Impulse of force in time delivers an instantaneous momentum
to a mechanical system.
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Impulses in space are also useful.

o Impulse of mass density in space represents a point mass.

o Impulse of charge density in space represents a point charge.

o Impulse of light intensity in space represents a point of light.

We can imagine impulses in space and time.

e Impulse of light intensity in space and time represents a brief
flash of light at a point in space.




K Unit Step Function \

Integration of the unit impulse yields the unit step function

w(t) = ./joo &(r)dr,

which is defined as

u(t):{o ift<0

1 ift>0.
Unit impulse Unit step
5 u(t)
1 1 |:
t o] t /
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/ Successive Integrations of the Unit \

Impulse Function

Successive integration of the unit impulse yields a family of func-
tions.

Integration on t
Unit impulse  Unit step Unit ramp  Unit parabola

L2 ln—l
8(t) u(t) tult) S mu(t)
t t t t t
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Building Block Signals can be used to\
createarich variety of Signals

2(t) = e "t cos(wt)u(t)  x(t) = e cos(wt)u(~t)

N —n

u(t) —u(t—1) tu(t) = 2(¢t— Du(t— 1)+ (t-2)u(t—2)

T
1 t 1 2 t

N
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f Conclusions \

e We are awash in a sea of signals.

e Signal categories — identity of independent variable, dimen-
sionality, CT or DT, real or complex, periodic or aperiodic,
causality, bounded, even & odd, etc.

e Building block signals — eternal complex exponentials and
singularity functions — are a rich class of signals and we will
show that they can be summed to represent virtually any

Ksignal of physical interest. J




