

	Specification	Calculated	Simulated
Open-loop transimpedance	$> 200 \text{ k}\Omega$	$500~\mathrm{k}\Omega$	800 kΩ
Input common mode	±10 V	±13.8 V	14.8 V
Output swing	±10 V	±13.8 V	±14.3 V
Output current	$\pm 10 \text{ mA}$	-	$\pm 250 \text{ mA}$
Power consumption	< 250 mW	210 mW	205 mW
Phase margin	$> 70^{\circ}$		74°

Design Process

The three key components of the transimpedance amplifier are the input buffer, current mirror, and output buffer stages. The input buffer is provided for us as a diamond buffer configuration. This leaves the current mirror and output buffer design.

For the current mirror, we want a mirror with low error and a high output resistance. This output resistance will form the transimpedance of the amplifier, and thus needs to be sufficiently large (greater than 200 k Ω). Using a Wilson current mirror, we achieve very low error $(\frac{2}{\beta^2})$ and a high output resistance $(\frac{\beta r_o}{2})$.

For the output buffer, we use the same structure as the input buffer, a diamond buffer. This buffer has low offset, due to the matching V_{be} drops, and a current gain of β^2 . The buffer also has a large input impedance to create the high impedance node.

Design Calculations

Open-loop transimpedance

PNP Wilson mirror: $R_{O,\text{PNP}} = \frac{\beta r_o}{2} = 625 \text{ k}\Omega$

NPN Wilson mirror: $R_{O,NPN} = \frac{\beta r_o}{2} = 5 \text{ M}\Omega$

Output buffer: $R_I = (r_{\pi,NPN} + \beta_{NPN}(r_{\pi,PNP} + \beta_{PNP}1k\Omega))||(r_{\pi,PNP} + \beta_{PNP}(r_{\pi,NPN} + \beta_{NPN}1k\Omega))||(r_{\pi,PNP} + \beta_{PNP}(r_{\pi,NPN} + \beta_{NPN}1k\Omega))||$ $R_I = 5.1 \text{ M}\Omega$

 $Z=500~\mathrm{k}\Omega$

Input and output range

Our input and output buffers are designed to go nearly rail to rail, requiring only the 0.6 V margin for the V_{be} drops. However, the current mirror adds an extra V_{be} drop, so our final input and output swings are ± 13.8 V.

Output current

Since our output buffer has a current gain of $\beta_{\text{NPN}}\beta_{\text{PNP}} = 1000$, we need an input current of only $10 \ \mu\text{A}$ to produce an output current of $10 \ \text{mA}$.

Power consumption

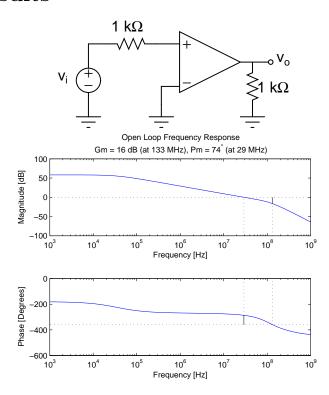
Our power consumption is made up of the 4 current sources driving our diamond buffers, and the current that is mirrored in the second half of the buffers and in the current mirror. If we drive the buffer with a current I, we have a total current draw of 7I, so we set I to 1 mA, setting a power consumption of 210 mW, which is below our specification of 250 mW.

Spice Deck *input diamond buffer Q1 vee in.p 1 qpnp *6.301 Design Project Q2 3 1 in.m qnpn *Transconductance Amplifier Q3 vcc in.p 2 qnpn Q4 5 2 in.m qpnp .option post I1 vcc 1 DC 1m I2 2 vee DC 1m **For AC Sweep .AC DEC 100 1e3 1e9 *upper current mirror .print ac vm(out) vp(out) Q5 3 4 vcc qpnp **For DC Sweep (output swing and current) Q6 4 4 vcc qpnp *.DC Vin -15 15 0.1 Q7 7 3 4 qpnp *.print dc v(out) *lower current mirror *Compensation test circuit Q8 5 6 vee qnpn Vhigh vcc 0 DC 15 Q9 6 6 vee qnpn Vlow vee 0 DC -15 Q10 7 5 6 qnpn Vin 1 comm AC 1 0 R1 1 minus 1k *compensation capacitor R2 out 0 1k Cc 7 0 3pF Voffs plus comm DC -12.7m Vcm comm 0 DC 0 *output diamond buffer Xamp plus minus out vcc vee transamp Q11 vee 7 8 qpnp Q12 vcc 8 out qnpn **Amplifier test - gain=11 Q13 vcc 7 9 qnpn *Vhigh vcc 0 DC 15 Q14 vee 9 out qpnp *Vlow vee 0 DC -15I3 vcc 8 DC 1m *Vin plus 0 AC 1 0 I4 9 vee DC 1m *R1 out minus 1k .ENDS transamp *R2 minus 0 100 *Xamp plus minus out vcc vee transamp .MODEL qnpn npn + is=150fA bf=200 **Buffer test - measure common mode + vaf=50 cje=10p *Vhigh vcc 0 DC 15 + tf=750p cjc=1p *Vlow vee 0 DC -15

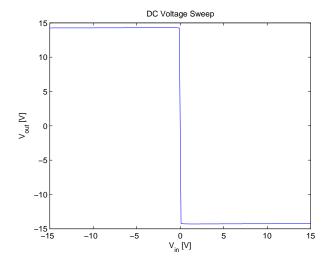
.SUBCKT transamp in.p in.m out vcc vee

*Xamp plus out out vcc vee transamp

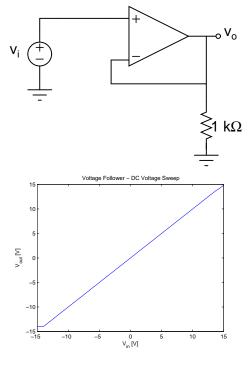
*Vin plus 0 AC 1 0

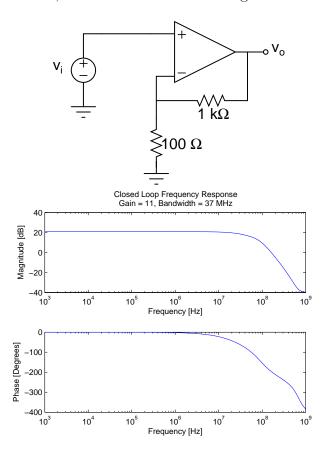

*Rout out 0 1k

.MODEL qpnp pnp


+ is=150fA bf=50

+ vaf=25 cje=10p + tf=750p cjc=1p


Simulation Results


In the graph above, we see the results of simulating the amplifier running open loop. The low frequency gain 58 dB implies an open-loop transimpedance of 800 k Ω . To achieve the required phase margin, a 3 pF capacitor is connected to the high impedance node in the amplifier, raising the phase margin to 74°.

The DC sweep shows that the output swing is ± 14.3 V, and that the output current is ± 14.3 mA. By decreasing the load resistor to 10 Ω , we find that the maximum output current is ± 250 mA.

By using a voltage buffer, we can show that the amplifier can handle common mode inputs sweeping almost from rail to rail, with a common mode range of $\pm 14.8 \text{ V}$.

The frequency response of the closed loop system shows that we achieve the expected gain of 11 from the amplifier, with a bandwidth of 37 MHz.